
Genesys Desktop 7.6

.NET Toolkit

Developer’s Guide

The information contained herein is proprietary and confidential and cannot be disclosed or duplicated
without the prior written consent of Genesys Telecommunications Laboratories, Inc.
Copyright © 2005–2008 Genesys Telecommunications Laboratories, Inc. All rights reserved.

About Genesys
Genesys Telecommunications Laboratories, Inc., a subsidiary of Alcatel-Lucent, is 100% focused on software for call
centers. Genesys recognizes that better interactions drive better business and build company reputations. Customer
service solutions from Genesys deliver on this promise for Global 2000 enterprises, government organizations, and
telecommunications service providers across 80 countries, directing more than 100 million customer interactions every
day. Sophisticated routing and reporting across voice, e-mail, and Web channels ensure that customers are quickly
connected to the best available resource—the first time. Genesys offers solutions for customer service, help desks,
order desks, collections, outbound telesales and service, and workforce management. Visit www.genesyslab.com for
more information.
Each product has its own documentation for online viewing at the Genesys Technical Support website or on the
Documentation Library DVD, which is available from Genesys upon request. For more information, contact your sales
representative.

Notice
Although reasonable effort is made to ensure that the information in this document is complete and accurate at the
time of release, Genesys Telecommunications Laboratories, Inc., cannot assume responsibility for any existing errors.
Changes and/or corrections to the information contained in this document may be incorporated in future versions.

Your Responsibility for Your System’s Security
You are responsible for the security of your system. Product administration to prevent unauthorized use is your
responsibility. Your system administrator should read all documents provided with this product to fully understand the
features available that reduce your risk of incurring charges for unlicensed use of Genesys products.

Trademarks
Genesys, the Genesys logo, and T-Server are registered trademarks of Genesys Telecommunications Laboratories,
Inc. All other trademarks and trade names referred to in this document are the property of other companies. The
Crystal monospace font is used by permission of Software Renovation Corporation, www.SoftwareRenovation.com.

Technical Support from VARs
If you have purchased support from a value-added reseller (VAR), please contact the VAR for technical support.

Technical Support from Genesys
If you have purchased support directly from Genesys, please contact Genesys Technical Support at the following
regional numbers:

Prior to contacting technical support, please refer to the Genesys Technical Support Guide for complete
contact information and procedures.

Ordering and Licensing Information
Complete information on ordering and licensing Genesys products can be found in the Genesys 7 Licensing Guide.

Released by
Genesys Telecommunications Laboratories, Inc. www.genesyslab.com
Document Version: 76gd_dev_dotnet-toolkit_07-2008_v7.6.101.00

Region Telephone E-Mail

North and Latin America +888-369-5555 or +506-674-6767 support@genesyslab.com

Europe, Middle East, and Africa +44-(0)-1276-45-7002 support@genesyslab.co.uk

Asia Pacific +61-7-3368-6868 support@genesyslab.com.au

Japan +81-3-6361-8950 support@genesyslab.co.jp

http://www.genesyslab.com
http://www.genesyslab.com
mailto:support@genesyslab.com
mailto:support@genesyslab.co.uk
mailto:support@genesyslab.com.au
http://genesyslab.com/support/dl/retrieve/default.asp?item=B3BFC6DABE22B62AAE32A6D31E6396E3&view=item
mailto:support@genesyslab.co.jp
http://genesyslab.com/support/dl/retrieve/default.asp?item=B6C52FB62DB42BB229B02755A1D12650&view=item

.NET Toolkit—Developer’s Guide 3

Table of Contents
Preface ... 7

Intended Audience... 7
Usage Guidelines .. 8
Chapter Summaries... 9
Document Conventions ... 10
Related Resources .. 11
Making Comments on This Document .. 12

Chapter 1 About Genesys Desktop .NET Toolkit .. 13

Overview.. 13
Components .. 14
Architecture ... 15
Scope of Use... 16
Benefits.. 18
Platform Requirements.. 18
Design Features .. 18

Service-Oriented Architecture... 18
Multithreaded .. 19
Synchronization .. 19

Connecting to Your Genesys Environment.. 19
Framework Compatibility .. 19
Configuring Your Application in the Configuration Layer 20
Genesys Multimedia Compatibility.. 22
Outbound Campaign Support ... 23
Voice Callback Support... 23

API Overview... 23
Namespaces... 23
Underlying Services and Events... 24
What’s Next .. 25

Chapter 2 About the Examples... 27

Overview of the Code Examples ... 27
Installing the Code Examples .. 28

Table of Contents

4 Genesys Desktop 7.6

Location of the Code Examples.. 28
Archive Content .. 28
Using the Code Examples .. 29

.NET Toolkit Components.. 29
Types of Components ... 30
Working with Component Properties .. 31
Delegates.. 35
Connection and Agent Components ... 35

The XML Configuration File... 36
Mandatory Attributes... 36
Optional Attributes .. 37
XML Configuration File Example .. 39

Chapter 3 .NET Toolkit Examples... 41

Prerequisites.. 41
Three Steps to a .NET Toolkit Application ... 42
ResourceService ... 42

Add .NET Toolkit Components.. 43
Connect to GIS ... 44
Implement Delegates.. 45

DatabaseLookupVoice... 46
Add .NET Toolkit Components.. 47
Connect to GIS ... 48
Implement Delegates.. 49

MultipleAttachedData .. 50
Add .NET Toolkit Components.. 51
Connect to GIS ... 53
Implement Delegates.. 53

ActiveXCalendar.. 54
Add .NET Toolkit Components.. 55
Connect to GIS ... 56
Implement Delegate.. 57

ChangeLookAndFeelVoice .. 58
Add .NET Toolkit Components.. 59
Connect to GIS ... 60
Implement Delegates.. 60

RegisterEvent .. 61
Add .NET Toolkit Components.. 62
Connect to GIS ... 63
Implement Delegates.. 63
Code Explanation ... 64

.NET Toolkit—Developer’s Guide 5

Table of Contents

Index ... 67

Table of Contents

6 Genesys Desktop 7.6

.NET Toolkit—Developer’s Guide 7

Preface
Welcome to the Genesys Desktop 7.6 .NET Toolkit Developer’s Guide. This
document introduces you to the concepts, terminology, and procedures relevant
to the Genesys Agent Desktop .NET Toolkit 7.6.
This document is valid for all the 7.6.x release(s) of this product.

Note: For versions of this document created for other releases of this product,
please visit the Genesys Technical Support website, or request the
Documentation Library DVD, which you can order by e-mail from
Genesys Order Management at orderman@genesyslab.com.

This preface provides an overview of this document, identifies the primary
audience, introduces document conventions, and lists related reference
information:

Intended Audience, page 7
Usage Guidelines, page 8
Chapter Summaries, page 9
Document Conventions, page 10
Related Resources, page 11
Making Comments on This Document, page 12

Genesys Agent Desktop .NET Toolkit 7.6 is a development toolset for building
a rich custom agent desktop application based on .NET technology.
Genesys Agent Desktop .NET Toolkit components provide agent access to
Multimedia services including inbound voice, outbound services, e-mail, chat,
callback interactions, and open media interactions.

Intended Audience
This guide, primarily intended for developers, assumes that you have a basic
understanding of:
• Computer-telephony integration (CTI) concepts, processes, terminology,

and applications
• Network design and operation

mailto:orderman@genesyslab.com

8 Genesys Desktop 7.6

Preface Usage Guidelines

• Your own network configurations
• .NET framework
• Client -server architectures
• XML
You should also be familiar with Genesys Framework architecture and
functions.

Usage Guidelines
The Genesys developer materials outlined in this document are intended to be
used for the following purposes:
• Creation of contact-center agent desktop applications associated with

Genesys software implementations.
• Creation of a specialized client application specific to customer needs.
The Genesys software functions available for development are clearly
documented. No undocumented functionality is to be utilized without
Genesys’s express written consent.
The following Use Conditions apply in all cases for developers employing the
Genesys developer materials outlined in this document:
1. Possession of interface documentation does not imply a right to use by a

third party. Genesys conditions for use, as outlined below or in the Genesys
Developer Program Guide, must be met.

2. This interface shall not be used unless the developer is a member in good
standing of the Genesys Interacts program or has a valid Master Software
License and Services Agreement with Genesys.

3. A developer shall not be entitled to use any licenses granted hereunder
unless the developer’s organization has met or obtained all prerequisite
licensing and software as set out by Genesys.

4. A developer shall not be entitled to use any licenses granted hereunder if
the developer’s organization is delinquent in any payments or amounts
owed to Genesys.

5. A developer shall not use the Genesys developer materials outlined in this
document for any general application development purposes that are not
associated with the above-mentioned intended purposes for the use of the
Genesys developer materials outlined in this document.

6. A developer shall disclose the developer materials outlined in this
document only to those employees who have a direct need to create, debug,
and/or test one or more participant-specific objects and/or software files
that access, communicate, or interoperate with the Genesys API.

.NET Toolkit—Developer’s Guide 9

Preface Chapter Summaries

7. The developed works and Genesys software running in conjunction with
one another (hereinafter referred to together as the “integrated solutions”)
should not compromise data integrity. For example, if both the Genesys
software and the integrated solutions can modify the same data, then
modifications by either product must not circumvent the other product’s
data integrity rules. In addition, the integration should not cause duplicate
copies of data to exist in both participant and Genesys databases, unless it
can be assured that data modifications propagate all copies within the time
required by typical users.

8. The integrated solutions shall not compromise data or application security,
access, or visibility restrictions that are enforced by either the Genesys
software or the developed works.

9. The integrated solutions shall conform to design and implementation
guidelines and restrictions described in the Genesys Developer Program
Guide and Genesys software documentation. For example:
a. The integration must use only published interfaces to access Genesys

data.
b. The integration shall not modify data in Genesys database tables

directly using SQL.
c. The integration shall not introduce database triggers or stored

procedures that operate on Genesys database tables.
Any schema extension to Genesys database tables must be carried out using
Genesys Developer software through documented methods and features.
The Genesys developer materials outlined in this document are not intended to
be used for the creation of any product with functionality comparable to any
Genesys products, including products similar or substantially similar to
Genesys’s current general-availability, beta, and announced products.
Any attempt to use the Genesys developer materials outlined in this document
or any Genesys Developer software contrary to this clause shall be deemed a
material breach with immediate termination of this addendum, and Genesys
shall be entitled to seek to protect its interests, including but not limited to,
preliminary and permanent injunctive relief, as well as money damages.

Chapter Summaries
In addition to this preface, this document contains the following chapters:
• Chapter 1, “About Genesys Desktop .NET Toolkit,” on page 13, introduces

the Genesys Desktop 7.6 .NET Toolkit with an overview of it design
features along with the structure and key concepts of the library API.

• Chapter 2, “About the Examples,” on page 27, introduces the supplied
source code examples.

• Chapter 3, “.NET Toolkit Examples,” on page 41, discusses the consistent
explanation about the GUI Examples delivered with this developer’s guide.

10 Genesys Desktop 7.6

Preface Document Conventions

Document Conventions
This document uses certain stylistic and typographical conventions—
introduced here—that serve as shorthands for particular kinds of information.

Document Version Number

A version number appears at the bottom of the inside front cover of this
document. Version numbers change as new information is added to this
document. Here is a sample version number:
gd_dev_dotnet-toolkit _09-2007_v7.6.000.01

You will need this number when you are talking with Genesys Technical
Support about this product.

Type Styles

Italic

In this document, italic is used for emphasis, for documents’ titles, for
definitions of (or first references to) unfamiliar terms, and for mathematical
variables.

Examples: • Please consult the Genesys 7 Migration Guide for more information.
• A customary and usual practice is one that is widely accepted and used

within a particular industry or profession.
• Do not use this value for this option.
• The formula, x +1 = 7 where x stands for . . .

Monospace Font

A monospace font, which looks like teletype or typewriter text, is used for
all programming identifiers and GUI elements.
This convention includes the names of directories, files, folders, configuration
objects, paths, scripts, dialog boxes, options, fields, text and list boxes,
operational modes, all buttons (including radio buttons), check boxes,
commands, tabs, CTI events, and error messages; the values of options; logical
arguments and command syntax; and code samples.

Examples: • Select the Show variables on screen check box.
• Click the Summation button.
• In the Properties dialog box, enter the value for the host server in your

environment.
• In the Operand text box, enter your formula.
• Click OK to exit the Properties dialog box.

.NET Toolkit—Developer’s Guide 11

Preface Related Resources

• The following table presents the complete set of error messages T-Server®
distributes in EventError events.

• If you select true for the inbound-bsns-calls option, all established
inbound calls on a local agent are considered business calls.

Monospace is also used for any text that users must manually enter during a
configuration or installation procedure, or on a command line:

Example: • Enter exit on the command line.

Screen Captures Used in This Document

Screen captures from the product GUI (graphical user interface), as used in this
document, may sometimes contain a minor spelling, capitalization, or
grammatical error. The text accompanying and explaining the screen captures
corrects such errors except when such a correction would prevent you from
installing, configuring, or successfully using the product. For example, if the
name of an option contains a usage error, the name would be presented exactly
as it appears in the product GUI; the error would not be corrected in any
accompanying text.

Square Brackets

Square brackets indicate that a particular parameter or value is optional within
a logical argument, a command, or some programming syntax. That is, the
parameter’s or value’s presence is not required to resolve the argument,
command, or block of code. The user decides whether to include this optional
information. Here is a sample:
smcp_server -host [/flags]

Angle Brackets

Angle brackets indicate a placeholder for a value that the user must specify.
This might be a DN or port number specific to your enterprise. Here is a
sample:
smcp_server -host <confighost>

Related Resources
Consult these additional resources as necessary:
• Genesys Integration Server 7.6 Deployment Guide, which details important

configuration data.
• CHM API references, which are located in the doc/ subdirectory within the

product installation directory tree.

12 Genesys Desktop 7.6

Preface Making Comments on This Document

• Genesys Voice Callback 7.6 Deployment Guide, which provides
configuration information for the Voice Callback Solution.

• The Genesys Technical Publications Glossary, which ships on the Genesys
Documentation Library DVD and which provides a comprehensive list of
the Genesys and CTI terminology and acronyms used in this document.

• The Genesys 7 Migration Guide, also on the Genesys Documentation
Library DVD, which provides a documented migration strategy from
Genesys product releases 5.1 and later to all Genesys 7.x releases. Contact
Genesys Technical Support for additional information.

• The Release Notes and Product Advisories for this product, which are
available on the Genesys Technical Support website at
http://genesyslab.com/support.

• Information on supported hardware and third-party software is available on
the Genesys Technical Support website in the following documents:

• Genesys 7 Supported Operating Systems and Databases
• Genesys 7 Supported Media Interfaces
Genesys product documentation is available on the:
• Genesys Technical Support website at http://genesyslab.com/support.
• Genesys Developer website at http://devzone.genesyslab.com.
• Genesys Documentation Library DVD, which you can order by e-mail

from Genesys Order Management at orderman@genesyslab.com.

Making Comments on This Document
If you especially like or dislike anything about this document, please feel free
to e-mail your comments to Techpubs.webadmin@genesyslab.com.
You can comment on what you regard as specific errors or omissions, and on
the accuracy, organization, subject matter, or completeness of this document.
Please limit your comments to the information in this document only and to the
way in which the information is presented. Speak to Genesys Technical
Support if you have suggestions about the product itself.
When you send us comments, you grant Genesys a nonexclusive right to use or
distribute your comments in any way it believes appropriate, without incurring
any obligation to you.

http://genesyslab.com/support/dl/retrieve/default.asp?item=B6C52FB62DB42BB229B02755A3D92054&view=item
http://genesyslab.com/support/dl/retrieve/default.asp?item=A9CB309AF4DEB8127C5640A3C32445A7&view=item
http://genesyslab.com/support
mailto:orderman@genesyslab.com
http://devzone.genesyslab.com
mailto:techpubs.webadmin@genesyslab.com
http://genesyslab.com/support

.NET Toolkit—Developer’s Guide 13

Chapter

1 About Genesys Desktop
.NET Toolkit
This chapter introduces the Genesys Desktop .NET Toolkit. It contains the
following topics:

Overview, page 13
Components, page 14
Architecture, page 15
Scope of Use, page 16
Benefits, page 18
Platform Requirements, page 18
Design Features, page 18
Connecting to Your Genesys Environment, page 19
API Overview, page 23

Overview
The Genesys Desktop .NET Toolkit provides a developer tools for creating
.NET-compliant, agent-facing desktop client applications. To create client
applications, you can use the Genesys Desktop .NET Toolkit’s GUI
components for rapid application development (RAD) using drag-and-drop.
The Genesys Desktop .NET Toolkit also provides an entry point to the
Genesys services lower-level API to create specific applications, or to integrate
the services into other application.
The Genesys Desktop .NET Toolkit lets you develop .NET applications for the
following purposes:
• Create a contact center agent desktop application to let agents interact with

Genesys software.

14 Genesys Desktop 7.6

Chapter 1: About Genesys Desktop .NET Toolkit Components

• Create an application that integrates third-party software with Genesys
software.

• Create other applications specific to your needs.
See “Scope of Use” on page 16 for further details on the .NET Toolkit features.
The Genesys Desktop .NET Toolkit relies on Agent Interaction Services which
send requests to a server-side application that provides the services’ features.
The Genesys Integration Server (GIS) hosts this server-side application, as
presented in Figure 1.

Figure 1: A .NET Toolkit Application Working in a LAN with GIS

You use the Genesys Desktop .NET Toolkit to develop client-side applications.
These client-side applications offer the agent a GUI desktop. Applications built
on top the .NET Toolkit can either use SOAP or GSAP protocols to
communicate with GIS that interacts with the Genesys Framework.

Components
The Genesys Desktop .NET Toolkit comprises the following:
• Assemblies:

AgentDesktopToolkit.dll—this library provides the drag-and-drop
GUI assembly for rapid application development.
AILLibrary.dll—this library provides the Agent Interaction Service
Proxy Library for .NET, designed for exacting application
requirements.

GIS

Contact
Server

Outbound
Server

E-Mail
Server

Agent 0

Phone

Workstation

Agent 1

Phone

Workstation

LAN

Agent
Desktop

Application

Genesys
Framework

.NET Toolkit—Developer’s Guide 15

Chapter 1: About Genesys Desktop .NET Toolkit Architecture

AilServicesPropProtocol.dll—this library provides the Agent
Interaction GSAP Library for .NET.
The ail-configuration.xml file—configuration file used with the
Agent Interaction Service Proxy Library for .NET.

Note: These assemblies are available in the <installation_directory>
directory of the Genesys Desktop .NET Toolkit Multimedia
Application Sample.

• An API reference in Compiled HTML format, covering the .NET Toolkit
API.

• A set of examples. For further information, see Chapter 2, “About the
Examples,” page 27.

As presented in the previous sections, the Genesys Desktop .NET Toolkit
presents a high-level API in the form of a broad range of components available
in the Visual Studio toolbox.
This set of components lets you manage agent and interaction features, as well
as such services as voice telephony, outbound campaigns, and callback.
These drag-and-drop components completely abstract the underlying details of
the services, so events and requests are transparently handled. However, these
GUI components provide an entry point to the underlying Agent Interaction
Services API so you can access specific-service details to fine-tune your
application.

Architecture
The Genesys Desktop .NET Toolkit makes use of the lower Agent Interaction
Service layer and includes complete interactive GUI components abstracting
the implemented services.
To connect GIS that hosts the Service Core, the Agent Interaction Service layer
provides either GSAP or SOAP depending on the library used to run the
Genesys Desktop .NET Toolkit (See “Components” on page 14). This
application might be available, for example, on Genesys Integration Server
(GIS), which integrates the exposed services.
Figure 2 on page 16 presents the architecture of the Genesys Desktop .NET
Toolkit communicating with GIS.

16 Genesys Desktop 7.6

Chapter 1: About Genesys Desktop .NET Toolkit Scope of Use

Figure 2: Architectural Overview

Figure 2 shows that the Agent Interaction Service layer communicate with the
corresponding exposed services of GIS. The communication is performed
through the SOAP or GSAP protocols, available for both client and server side
applications.
On the server side, the services integrate the Agent Interaction Layer (AIL),
which is a Genesys library available in the Genesys Interaction SDK. This
library enables the Service Core to deal with the Genesys Framework and to
perform the client-side services’ requests.

Scope of Use
The Genesys Desktop .NET Toolkit typical usage scenarios include:
• Managing agent activity:

Login, logout.
Ready, Not-ready, and After-call-work features.

.NET Toolkit

Agent Interaction Service

Service Core

Agent Interaction Layer

Genesys Framework

SOAP or GSAP

Client application
embedding the .NET Toolkit

GIS

.NET Toolkit—Developer’s Guide 17

Chapter 1: About Genesys Desktop .NET Toolkit Scope of Use

• Handling voice interactions (depending on your switch’s available
features):

Make an outgoing call,
Answer an incoming call,
Hold and retrieve a call,
Transfer a call,
Alternate calls,
Initiate, enter and leave a conference.

• Handling the callback feature:
Accept, reject, or cancel a request,
Accept and dial a callback request,
Reschedule the record.

• Handling e-mail:
Create and send an e-mail,
Reply an e-mail,
Transfer an e-mail,
Pull an e-mail off a workbin.

• Handling outbound campaigns:
Add a new record to the campaign,
Request a record,
Cancel a record,
Reject a record.

• Using the Standard Response Library:
Get standard responses,
Get standard response information about categories,
Get standard responses by category,
Manage favorite standard responses.

• Managing contacts:
Add a contact,
Remove a contact,
Modify contact information,
Search a contact.

• Using contact history information.
• Using the workbin features to store interactions:

Get the Workbin’s queues and views,
Put an interaction in the Workbin.

• Using the System features to get options about the application used in the
Configuration Layer.

• Handling open media interactions:
Reply to an open media interaction such as phone call,

18 Genesys Desktop 7.6

Chapter 1: About Genesys Desktop .NET Toolkit Benefits

Reply to an open media interaction such as e-mail,
Transfer an open media interaction.

• Handling chat interactions:
Have a chat conversation,
Transfer a chat interaction.

Benefits
The Microsoft .NET framework enables developers to use the same tools and
skill to develop software for a variety of system, using variety of programming
languages. It can minimize conflicts among applications by providing
compatibility among otherwise incompatible software components.
The Genesys Desktop .NET Toolkit is a .NET-compliant product, and benefits
from .NET Framework technology.

Platform Requirements
For development, you need access to the following:
• Microsoft Visual Studio .NET.
• A working Genesys Integration Server.
• The Genesys Desktop .NET Toolkit libraries:

AgentDesktopToolkit.dll,
AILLibrary.dll,

AilServicesPropProtocol.dll.

Note: The dll files are available in the <installation_directory> directory
of the Genesys Desktop .NET Toolkit Multimedia Application Sample.

Design Features

Service-Oriented Architecture
The Genesys Desktop .NET Toolkit is based on Service-Oriented Architecture
(SOA). SOA is a specific type of distributed system in which features are
exposed with services.
When you are using the Genesys Desktop .NET Toolkit APIs, you are dealing
with service interfaces that do not manage anything locally. Each service
defines a specific feature of your distributed system. Data management and

.NET Toolkit—Developer’s Guide 19

Chapter 1: About Genesys Desktop .NET Toolkit Connecting to Your Genesys Environment

actions are performed by GIS and you are concerned only with the interface
descriptions.

Multithreaded
The Genesys Desktop .NET Toolkit is thread-safe and therefore can be run in
multithreaded environments.
In particular, parallel threads can make calls to the same services’ methods at
the same time without encountering issues.

Synchronization
At start-up, the Genesys Desktop .NET Toolkit establishes a link with GIS
which performs your client-application requests. The communication with this
server-side application is synchronous.

Connecting to Your Genesys Environment
Connections to Genesys servers are maintained by GIS. The client-side
application developed with the Genesys Desktop .NET Toolkit can be notified
of servers’ statuses, namely the loss of a connection.
GIS can maintain connections to multiple T-Servers.
GIS is designed to work in a single-tenant environment. It is possible to create
a multi-tenant application, but all configuration layer objects that your
application uses must be specified in the Tenants tab of the application, and
these names must be unique.
For further information, refer to the Genesys Interaction SDK 7.6 Java
Deployment Guide.

Framework Compatibility
The Genesys Desktop .NET Toolkit connects—through GIS—to the following
Genesys servers of the Genesys Framework Suite:
• Configuration Server—the Configuration Server stores configuration

information such as application parameters, or objects description such as
DNs, places, or persons. The library core monitors the configuration server
to update modifications. The library provides full integration with Genesys
configuration layer objects such as Agent, Place, and DN.

• T-Server—the Telephony Server handles telephone requests and events by
communicating with switches.

For voice-only mode, your application should connect with a Configuration
Server, at least one T-Server, and optionally a Contact Server (included with
the Internet Contact Solution).

20 Genesys Desktop 7.6

Chapter 1: About Genesys Desktop .NET Toolkit Connecting to Your Genesys Environment

Refer to the Genesys Integration Server 7.6 Deployment Guide for further
details and to the Genesys Supported Media Interfaces document for
information on supported switches.

Configuring Your Application in the Configuration Layer
In order to have your custom .NET Toolkit application work with the Genesys
Framework as an agent desktop, or in another capacity, you need to provide the
Configuration Layer with specific information. You do this through an Agent
Interaction Server Application object that GIS uses, and with the options you
set for that Agent Interaction Server. The following information indicates
which sections and which options in those sections you need to set in that
Application object.

multimedia Section

In the multimedia section on the Options tab of your Agent Interaction Server
Application object, set the following options:

email-default-queue
Valid Values: <Any valid queue name>
Specifies the queue used for any new e-mail interaction created by the desktop
(for example, a new e-mail out, a reply, or an invitation).

collaboration-mode
Valid Values: pull, push
Enables agents to use the collaboration feature to invite other agents to help
answer a question from a contact.

email-trsf-ext-queue
Valid Values: <Any valid queue name>
Specifies the queue that the client application uses for an e-mail transfer
request to an external resource.

email-outbound-queue
Valid Values: <Any valid queue name>
Specifies the default queue used to send an e-mail.

email-drafts-workbin
Valid Values: <Any valid workbin names (as defined in the Configuration
Layer)>
Used to store outgoing e-mails as drafts in a workbin when an agent clicks the
Save & Close button.

.NET Toolkit—Developer’s Guide 21

Chapter 1: About Genesys Desktop .NET Toolkit Connecting to Your Genesys Environment

collaboration-workbin
Valid Values: <Any valid workbin names (as defined in the Configuration
Layer)>
Used for the desktop collaboration feature. When inviting an agent in pull
mode, the internal invitation is stored in the agent workbin.

openMedia-default-queue
Valid Values: <Any valid queue name>
Specifies the queue used for any new open-media interaction created by the
desktop (for instance, an sms reply to an open media interaction).

openMedia-outbound-queue
Valid Values: <Any valid queue name>
Specifies the default queue used to send an open-media interaction.

preview-park-queue
Valid Values: <Any valid interaction queue name>
Allows an agent to transfer ownership of a proactive interaction to the transfer
target when a proactive interaction voice call is transferred.
This permits the appropriate post processing to be applied after the target of the
transfer releases.

default-from-address
Valid Values: <An email address that is part of the from addresses list>.
The default-from-address option defines the email address that will be used
by default in outgoing email.

media
Valid Values: <Any valid media names (as defined in the Configuration Layer),
separated by commas>
The media option defines the various media available to an agent at login.

Notes: The media option can be defined either in the multimedia section of
your Agent Interaction Server Application object (along with the
above options), or on a given agent’s Annex tab.
If you choose not to set this option, by default the agent is logged in on
e-mail and chat.

kworker Section

In the kworker section on the Options tab of your Agent Interaction Server
Application object, set the following option:

22 Genesys Desktop 7.6

Chapter 1: About Genesys Desktop .NET Toolkit Connecting to Your Genesys Environment

easy-newcall
Valid Values: true, false
If set to true, the knowledge worker only needs to click the New Call button in
order to establish the call.

outbound Section

enable-chain-75api
Valid Values: true, false
If set to true, enables the use of the new 7.5 API with the OutboundChain class.

Note: If the enable-chain-75api option is set to true, then the
GetOutboundRecordForOutboundChain() method should be used to
access the Outbound Record in the OutboundService component. If the
option is set to false, then you should use of the GetOutboundRecord()
method.

Genesys Multimedia Compatibility
The Genesys Desktop .NET Toolkit connects—through GIS—to Genesys
Multimedia and provides full multimedia support for voice, e-mail, chat
interactions, and open media interactions.
The connectivity concerns the following servers of Genesys Multimedia:
• Interaction Server—This server manages voice, e-mail, chat interaction,

and open media interaction information with the Genesys Framework.
• Chat Server—This server manages chat interactions between agents and

web visitors.
• Universal Contact Server (UCS)—This database server is used to retrieve

e-mails, history, and contact information. It also allows for the
manipulation of contact histories and of the standard response library. This
server is optional for an application designed to run in voice-only
configuration.

For e-mail and open media handling, GIS must connect with a Configuration
Layer and a UCS and Interaction Server (both included with Multimedia).
For chat handling, GIS should connect with a Configuration Layer and a Chat
Server, a UCS, and an Interaction Server (all three included with Multimedia).

.NET Toolkit—Developer’s Guide 23

Chapter 1: About Genesys Desktop .NET Toolkit API Overview

Outbound Campaign Support
The Genesys Desktop .NET Toolkit connects—through GIS—to the Genesys
Outbound Solution:
• Outbound Campaign Server—This server controls and organizes outbound

campaigns.
For Outbound Campaign handling, GIS should connect with a Configuration
Layer, an Outbound Campaign Server, and at least one T-Server.

Voice Callback Support
The Genesys Desktop .NET Toolkit connects—through GIS—to the Genesys
Universal Callback Solution:
• Callback Server—This server controls and organizes callback records.
For voice callback handling, GIS should connect with a Configuration Layer, a
Callback Server, and at least one T-Server.

API Overview
The Genesys Desktop .NET Toolkit allows you to access the
AgentDesktopToolkit.dll assembly. You can use the APIs namespaces and
services to create custom applications or to modify your existing applications.

Namespaces
The .NET Toolkit provides you with a set of GUI components associated with
the AgentDesktopToolkit.dll assembly, which contains the following
namespaces:
• AgentDesktopToolkit—general components.
• AgentDesktopToolkit.Agents—components for agent features.
• AgentDesktopToolkit.Callbacks—components for callback features.
• AgentDesktopToolkit.Contacts—components for contact features.
• AgentDesktopToolkit.ExtendedControls—extended controls, providing for

components’ enhancement.
• AgentDesktopToolkit.Histories—components for managing contacts’

histories.
• AgentDesktopToolkit.Interactions—components for general interaction

features.
• AgentDesktopToolkit.Interactions.Chat—components for chat features.
• AgentDesktopToolkit.Interactions.Mail—components for e-mail

features.

24 Genesys Desktop 7.6

Chapter 1: About Genesys Desktop .NET Toolkit API Overview

• AgentDesktopToolkit.Interactions.OpenMedia—components for
openmedia features.

• AgentDesktopToolkit.Interactions.Voice—components for voice
features.

• AgentDesktopToolkit.Outbounds—components for processing outbound
interactions.

• AgentDesktopToolkit.Resources—components for resource features.
• AgentDesktopToolkit.SRL—components for managing the Standard

Response Library feature.
• AgentDesktopToolkit.Workbins—components for workbin management.

Underlying Services and Events
The .NET Toolkit components implement and share a set of services that
interact with GIS.
The .NET Toolkit components hide the services and their inherent complexity:
• The components’ features mask the services’ requests.
• The components refresh when they receive services’ events.
A .NET Toolkit component does not necessarily implement any services. It can
be linked to other .NET Toolkit components implementing the required
features, as shown in Figure 3 on page 24.

Figure 3: .NET Toolkit Components and Underlying Services

For further details about links, see “Working with Component Properties” on
page 31.

Agent Desktop built on top the .NET Toolkit

...

HiddenExposed

Genesys
Integration

Server

Service 1

Service 2

Service 3

Service N

Component 1

Component 2

Component M

...

link

.NET Toolkit—Developer’s Guide 25

Chapter 1: About Genesys Desktop .NET Toolkit API Overview

Events received from the .NET Toolkit components could be received in
another thread besides the GUI thread. For example, when the Agent
component is instantiated, it has no association with a graphical container like
a Form or a Control (in Windows.Forms). When the Agent component receives
an (asynchronous) event, it is handled by an undetermined thread.
Consequently, the following code is absolutely forbidden by Microsoft
Windows:

agent1.AgentStatusChanged += new AgentDesktopToolkit.Agents.AgentAgentStatusChanged
(agent1_AgentStatusChanged);

...
private void agent1_AgentStatusChanged(AgentDesktopToolkit.Agents.AgentStatus status)
{

MessageBox.Show("Hello World!"); // This is a Win32 action
}

The correct code should be:
agent1.AgentStatusChanged += new AgentDesktopToolkit.Agents.AgentAgentStatusChanged

(agent1_AgentStatusChanged);
...

private void agent1_AgentStatusChanged(AgentDesktopToolkit.Agents.AgentStatus status)
{

if(InvokeRequired) //If true, we need to go into the GUI thread
BeginInvoke(new AgentStatusChangedDelegate(AgentStatusChanged),

new object[] {status});
 else

AgentStatusChanged(status);
}

private delegate void AgentStatusChangedDelegate(AgentDesktopToolkit.Agents.
AgentStatus status);

private void AgentStatusChanged(AgentDesktopToolkit.Agents.AgentStatus status)
{

MessageBox.Show("//Hello World!//"); //This is a Win32 action
}

What’s Next
The next chapter goes into greater detail about the examples provided with this
SDK. It provides installation instructions and gives a basic explanation of the
supported features.

26 Genesys Desktop 7.6

Chapter 1: About Genesys Desktop .NET Toolkit API Overview

.NET Toolkit—Developer’s Guide 27

Chapter

2 About the Examples
Source code examples in both Visual Basic .NET and C# exercise the use of
the Rapid Application Development (RAD) GUI API and the Agent
Interaction Services API features you are likely to use in your applications.
This chapter discusses them in the following topics:

Overview of the Code Examples, page 27
Installing the Code Examples, page 28
.NET Toolkit Components, page 29
The XML Configuration File, page 36

Overview of the Code Examples
The following .NET examples demonstrate the use of important features of the
.NET Toolkit API:
• The ResourceService example shows how to use .NET components on one

side, and methods from the Agent Interaction Services on the other side.
• The DatabaseLookupVoice example is an application that handles voice

interactions and retrieves information about contacts from a contact
database, simulated by the DatabaseLookup.xml file.

• The MultipleAttachedData example is a voice application that enables the
agent to manage attached data of several voice interactions.

• The ActiveXCalendar example is an application that manages an ActiveX
component—the calendar—and voice interactions.

• The ChangeLookAndFeelVoice example is a simple application that manages
voice interactions and shows how to customize the look and feel of .NET
Toolkit components.

28 Genesys Desktop 7.6

Chapter 2: About the Examples Installing the Code Examples

• The RegisterEventSample is an application that handles the
registration/unregistration of workbin events, using the RegisterEvent()
and UnregisterEvent() public methods from the Connection .NET Toolkit
component.

For further information, see Chapter 3, “.NET Toolkit Examples,” page 41.

Installing the Code Examples
Before installing the .NET Toolkit code examples, you need to install
Microsoft .NET Visual Studio.

Location of the Code Examples
The source code examples are available by browsing the
\documentation\docs\ALL SDK Documentation.html file located on your
product CD. They are also available on the SDK Documentation CD.

Archive Content
Unzip the contents of the 76gd_exmpl_dotnet-toolkit.zip archive to get the
following directory tree:
76gd_exmpl_dotnet-toolkit/

ResourceService/
ResourceService/
ExternalDependency/

DatabaseLookupVoice/
DatabaseLookupVoice/
ExternalDependency/

MultipleAttachedData/
MultipleAttachedData/
ExternalDependency/

ActiveXCalendar/
ActiveXCalendar/
ExternalDependency/

ChangeLookAndFeelVoice/
ChangeLookAndFeelVoice/
ExternalDependency/

RegisterEventSample/
RegisterEventSample/
ExternalDependency/

Each example directory contains a sub-directory containing the Microsoft
Visual Studio project files and an ExternalDependency directory containing the
project references.

.NET Toolkit—Developer’s Guide 29

Chapter 2: About the Examples .NET Toolkit Components

Using the Code Examples
Before you compile and run the .NET Toolkit examples, you must copy the
required .NET Toolkit files into the ExternalDependency/ directory:
ail-configuration.xml
AgentDesktopToolkit.dll
AilServicesPropProtocol.dll
AilLibrary.dll
log4net.dll
C1spell.dll (and dictionary files, such as, for instance, C1SP_AE.dct)
In the project’s Properties pages dialog box, replace the
<ExternalDependency> placeholders with the location of the
ExternalDependency directory for the following properties:
• Common Properties/References Path

• Configuration Properties/Debugging/Start Options/Working Directory

Then, set the project properties working directory location for this project with
the location of the ExternalDependency directory.
Then, set up proper configuration data in the ExternalDependency/ail-
configuration.xml file. See “The XML Configuration File” on page 36 for
further details.
To make GUI components available from the toolbox, you must add them to
the toolbox, as follows:
• In the View menu, select Toolbox.
• Click right in the Toolbox window.
• Select Add/Remove Items...
• In the Customize Toolbox dialog box, browse the AgentDesktopToolkit.dll

library.
Examples and Agent Interaction Services are designed to work with GIS. This
server must be available on the network and expose the services. Also, an
agent must be available: You must configure an Agent in your Configuration
Layer before you run the examples.

.NET Toolkit Components
The .NET Toolkit components are easy to drag and drop into a form, allowing
you to rapidly build an agent desktop. Although the .NET Toolkit components
appear easy to use as independent objects, they have been designed to work in
concert. Your development efforts will proceed more smoothly if you employ
these components according to their designed logic.
Moreover, the namespaces forming the assembly also contain classes to
facilitate the use of the .NET Toolkit components.
The following subsections should familiarize you with the .NET Toolkit
components and help you to take advantage of the components.

30 Genesys Desktop 7.6

Chapter 2: About the Examples .NET Toolkit Components

Types of Components
In the Toolbox, you have a set of components that you can drag and drop into a
form (or into a panel, and so on). There are two types of components:
• Those that have a visual representation in the form to which they have

been added.
• Those that become associated with the form, but that are hidden and are

only represented by a reference below the form itself.

Visible
Components

Most of the components have a GUI container that automatically appears in the
form. Figure 4 shows an AgentDirectory component, that is still selected in the
Toolbox, and that has been dragged and dropped into the form. A table appears
in the Form1 window.

Figure 4: An AgentDirectory Component in a Form

Hidden
Components

Some of these components have no GUI container appearing inside the form,
and they appear at the bottom of the form window in the design sheet, as for
example the Connection component shown in Figure 5 on page 31.

.NET Toolkit—Developer’s Guide 31

Chapter 2: About the Examples .NET Toolkit Components

Figure 5: A Connection Component Dropped in a Form

Working with Component Properties
Once your application starts, you must initialize the .NET Toolkit components.
This initialization activates the services and events managers for your GUI
components and allows your application to interact with the Genesys
Framework.
To initialize a component, you must set the value of some specific properties.
To determine which properties are required for the initialization, look for the
Initialize() method and properties of a given component in the Genesys
Desktop 7.6 .NET Toolkit API Reference.
The .NET Toolkit components use two types of properties:
• “CTI Properties”.
• “Links Between Components”.

CTI Properties

CTI properties are common properties of the Properties windows and they
include all information related to your application configuration in the Genesys
Framework.
CTI properties are affected when your application changes its environment in
one of the following ways:
• You have changed the location of your server and use new port values, or

you have changed values in the Configuration Layer. Such a change, for
instance, would affect the URL property of the Connection component,
which is required to connect to the server-side application.

• Your component is updated regarding some CTI events. For example, the
Agent component is updated with respect to the CTI values used by the
person logging in.

32 Genesys Desktop 7.6

Chapter 2: About the Examples .NET Toolkit Components

The Agent component, for instance, relies on the following CTI properties:
• Agent login and password.
• Place of the agent.
• Workmode of the agent.
The Interaction component, on the other hand, relies on the following CTI
properties:
• InteractionId.
• PhoneNumber.
• Extensions.

Links Between Components

The .NET Toolkit components have been designed to work together, and you
have to follow some rules to obtain the expected behavior.
To work together, two components must be linked. Links are defined as
<Type>Link or <Type>AutoLink properties, where <Type> is a component type.
For example, the ConnectionLink property of a component refers to a
Connection instance.

Linking Components

You can link components in two ways:
• The manual mode.
• The automatic mode.
In each mode, you can set up the components’ link property in two ways:
• Graphically.
• By hand-coding.

Link Mode In the manual mode, you must set the <Type>Link property, then call the
Initialize() method for each component to be initialized.
In the automatic mode, you must set the <Type>AutoLink property of each
component, and then you must initialize only the first component of the links’
chain. All the other components automatically initialize.

Note: To avoid unpredictable results, do not mix manual and automatic
modes when you set links.

Figure 6 on page 33 shows an Agent component that is auto-linked to the
Connection component. When the Connection component initializes (by calling
its connect() method), then the Agent component automatically initializes.

.NET Toolkit—Developer’s Guide 33

Chapter 2: About the Examples .NET Toolkit Components

Figure 6: AutoLink Example

Graphical Linking The first way to set up a component’s link is to use the graphical interface.
After dragging and dropping the components, select one of them. In the
Properties window, set the <Type>Link or the <Type>AutoLink (according to the
mode chosen) property from the available options in the drop-down list. See
Figure 7 on page 33.

Figure 7: Available Connections for the Agent.ConnectionLink Property

In general, this approach is used to set logical and definitive links between the
main components during the application build.

Hand-Coded Links The second way to set the component link is to code it yourself. Once you have
instantiated a component in your application, write the code for the link.
For example, for the manual mode, the corresponding code is:

mAgent.ConnectionLink = mConnection;

The above code snippet is equivalent to Figure 7 on page 33.

Connection

Agent

ConnectionAutoLink

34 Genesys Desktop 7.6

Chapter 2: About the Examples .NET Toolkit Components

Warning! If, in your application code, you change the links of a component,
then, you must reinitialize the component to take into account the
new links.

Exclusive Links

A component can have more than one link, but some links are exclusive. This
means that, if you activate an exclusive link, you cannot activate some of the
other links. Links are exclusive for logical reasons. For example, the Notepad
component displays notes attached to an interaction. The Notepad component
might have the following two links:
• InteractionAutoLink: If this property has a reference, the Notepad displays

the notepad of the associated interaction.
• HistoryAutoLink: If this property has a reference, the Notepad displays the

notepad of the interaction selected in the History component.
• InteractionId: If this property contains an interaction ID, the Notepad

displays the notepad of the interaction corresponding to the ID.
The Notepad component, however, cannot display the notepad of two distinct
interactions at the same time. Therefore, only one link is available at a given
time.
Another reason for link exclusivity might be link inheritance. For example, if
the InteractionVoice component has a value set for a BatchAutoLink property
or for a ConnectionLink, it is an exclusive link by inheritance. Figure 8 displays
the inherited links for an Interaction linked with a Batch.

Figure 8: Links Examples for an Interaction Component

Figure 8 shows an InteractionVoice component having an inherited link from
a Connection component, if the InteractionVoice uses its BatchAutoLink
property. Therefore, the BatchAutoLink property prevents the InteractionVoice

Connection

Batch

AgentAutoLink

Agent

ConnectionAutoLink

InteractionVoice

ConnectionLink

BatchAutoLink

.NET Toolkit—Developer’s Guide 35

Chapter 2: About the Examples .NET Toolkit Components

component from implementing its ConnectionLink property as well—it cannot
handle two concurrent Connection links.

Note: To identify exclusive links, see the <Component>.initialize() method
description in the Genesys Desktop .NET Toolkit API Reference.

Delegates
Each component has a related set of delegates that helps in fine-tuning your
application. There are two types of delegates:
• GUI delegates for GUI events, such as mouse clicks, mouse positions,

element selected, and so on.
• Component-specific delegates for component changes such as interaction

status, DN status, record status, and so on.
Delegates have explicit names, for example:
delegate <component_name><event_type>(<argument_list>);

Connection and Agent Components
The Genesys Desktop .NET Toolkit allows you to build client agent-desktop
applications. As such, the Agent and Connection components are mandatory for
your application development:
• The Connection component establishes a connection with GIS.
• The Agent component allows you to perform agent-related actions on

media such as login, ready, not ready, and logout.

Connection

The Connection component does not have a GUI interface. To connect, call the
Connection.Connect() method. This method takes into account the
Connection.EventPolling and Connection.URL properties.
The Connection.EventPolling property is true by default and indicates
whether your application pulls events or not. If you set the
Connection.EventPolling property to false, the Connection component uses
the notification mode for getting events.
The Connection.URL property depends on the protocol that your application
uses to communicate with GIS:
• For GSAP, the value is prop://[Server address]:[Server port].
• For SOAP, the value is http://[Server Address]:[Server Port]/gis.
If no Connection.URL property is defined, the application takes into account the
ail-configuration.xml file. See “The XML Configuration File” on page 36.

36 Genesys Desktop 7.6

Chapter 2: About the Examples The XML Configuration File

The Connection.AilServiceFactory property accesses the underlying services.
See “ResourceService” on page 42.
For further details about services, refer to the Agent Interaction SDK 7.6
Services Developer’s Guide.

Agent

To initialize the Agent component, first set the AgentId and Place properties,
then either:
• Set the ConnectionLink property and call the Initialize() method.
• Set the ConnectionAutoLink property.
The Agent component allows agent actions such as login, ready, not ready, and
logout. To perform these actions, it takes into account the following properties
(depending on the media related to the action):
• AgentId

• AgentLogin

• AgentPassword

• Place

• Queue

• Workmode

Refer to the API Reference for further details about these properties.

The XML Configuration File
When you start your .NET Toolkit application, it reads the
ail-configuration.xml file to determine which protocols and options should
be used for instantiating connection to GIS.
The XML configuration file is composed of two mandatory attributes that
define the two different protocols that your application can use to connect the
client. You can also define several optional attributes attached to these
mandatory attributes.

Mandatory Attributes
In your XML configuration file, you must specify for the factory tag one of
the following two attributes with their url option, according to the protocol
used to communicate with GIS:
• For GSAP:

PropFactory—The factory name.
url option—The value is prop://[Server address]:[Server port]".

• For SOAP:

.NET Toolkit—Developer’s Guide 37

Chapter 2: About the Examples The XML Configuration File

WebServicesFactory—The factory name.
url option—The value is http://[Server Address]:[Server
Port]/gis.

Optional Attributes
Table 1 on page 37 shows all the attributes that you can define for GSAP.

Table 2 on page 38 shows all the attributes that you can define for SOAP
protocol. For further information, see “XML Configuration File Example” on
page 39.

Table 1: Optional GSAP Attributes

Name Type Description

logger string The path to the log file.

logger.level string The level of the ROOT logger.

logger.levels string The levels of the loggers.

initial.connect.timeout string The timeout interval for the first connection to the GSAP
Connector in synchronous mode.

timeout.ack string The timeout interval for acknowledgements from the
server, in milliseconds.

timeout.response string The timeout interval for responses from
the server, in milliseconds.

timeout.check_interval string The period for checking for the timeouts, in milliseconds.

threads.max.worker string Maximum number of threads in system pool. Should be
greater than 50.

threads.max.io string Maximum number of threads for IO operations in system
pool. Should be greater than 50.

connector.buffersize.receive string Receive buffer size for the sockets operations, in bytes.
Should be greater than 8000 bytes.

connector.buffersize.send string Send buffer size for the sockets operations, in bytes.
Should be greater than 8000 bytes.

connector.tcpnodelay string Should be set to true. Do not change this option.

38 Genesys Desktop 7.6

Chapter 2: About the Examples The XML Configuration File

Table 2: Optional SOAP Attributes

Name Type Description

timeout int The timeout interval for an XML web
service client that waits for a
synchronous XML web service request,
to complete, in milliseconds. The
default value is 100000 milliseconds.

gis.checkSessionInterval int The check session interval in seconds.
The value 0 means no check is done.

gis.username string The GIS user name to log in the
factory. Refer to Configuration Layer
documentation for further details.

gis.password string The GIS password to log in the factory.
Refer to Configuration Layer
documentation for further details.

gis.tenant string The GIS tenant to use with the factory.
Refer to Configuration Layer
documentation for further details.

gis.sessionId string The GIS session identity to use with the
factory. If you use this option, do not
use gis.username, gis.password, and
gis.tenant.

notification.HTTPport int The notification HTTP port. The
default value is 0 (in which case, it is
the remote system that chooses an open
port on your behalf).

notification.createHTTPchannel bool Specifies the creation, or not, of an
HTTP channel. The default value is
true.

notification.objectURI string Specifies the remote object URI
(Universal Resource Identifier). By
default, the URI is generated by the
WebServiceFactory.

notification.reachableURL string Indicates it is a reachable URI from the
server.

.NET Toolkit—Developer’s Guide 39

Chapter 2: About the Examples The XML Configuration File

XML Configuration File Example
The following is an example of an XML configuration file for a Genesys
Desktop .NET Toolkit application using GSAP to communicate with GIS:

<?xml version="1.0"?>
<configuration default-factory="PropFactory"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<factory name="PropFactory"
 classname="com.genesyslab.ail.propprotocol.PropFactory"
 assembly="AilServicesPropProtocol">

<option name="url"
type="string"
value="prop://[Server address]:[Server port]"/>

<option name="logger" type="string" value="log.log"/>

<option name="logger.level" type="string" value="DEBUG"/>

<option name="logger.levels"
type="string"
value="BinaryFormatter:FATAL"/>

<option name="timeout.ack" type="string" value="20000"/>

<option name="timeout.response" type="string" value="60000"/>

<option name="timeout.check_interval"
type="string"
value="1000"/>

<option name="threads.max.worker" type="string" value="100"/>

<option name="threads.max.io" type="string" value="100"/>

service-point-manager.defaultConnectionLimit int The service point manager’s connection
limit. The default value is 2.

service-point-manager.maxServicePointIdleTime int The service point manager’s maximum
idle time. The default value is 900,000
milliseconds (15 minutes).

Table 2: Optional SOAP Attributes (Continued)

Name Type Description

40 Genesys Desktop 7.6

Chapter 2: About the Examples The XML Configuration File

<option name="connector.buffersize.receive"
type="string"
value="524288"/>

<option name="connector.buffersize.send"
type="string"
value="524288"/>

<option name="connector.tcpnodelay"
type="string"
value="true"/>

</factory>

<factory name="WebServicesFactory"
classname="com.genesyslab.ail.WebServicesFactory"
assembly="AilLibrary">

<option name="Url"
value="http://[Server Address]:[Server Port]/gis" />

<option name="gis.username" value="default" />
<option name="gis.password" value="password" />

<!--- OPTIONAL
<option name="gis.sessionId" value="1234567"/>
<option name="notification.HTTPport" type="int" value="10000"/>
<option name="notification.createHTTPchannel"

type="bool"
value="true"/>

<option name="notification.objectURI" value="NotifLoad"/>
<option name="gis.checkSessionInterval" type="int" value="900"/>
<option name="service-point-manager.defaultConnectionLimit"

type="int"
value="10"/>

<option name="notification.reachableURL"
value="http://localhost:8080/gis"/>

<option name="service-point-manager.maxServicePointIdleTime"
type="int"
value="90000"/>

END OPTIONAL -->
</factory>
</configuration>

.NET Toolkit—Developer’s Guide 41

Chapter

3 .NET Toolkit Examples
This chapter is intended to give a consistent explanation of the code examples
delivered with this developer’s guide. It contains the following sections:

Prerequisites, page 41
Three Steps to a .NET Toolkit Application, page 42
ResourceService, page 42
DatabaseLookupVoice, page 46
MultipleAttachedData, page 50
ActiveXCalendar, page 54
ChangeLookAndFeelVoice, page 58
RegisterEvent, page 61

Prerequisites
To follow the discussion in this chapter, you will need:
• The Genesys Desktop 7.6 .NET Toolkit API Reference, available on both

Product and Documentation CDs.
• The source code for the code examples.
See Chapter 2 on page 27 for further information about installing the code
examples.
Each <example name> directory has two directory structures:
• <example name> contains the MS Visual Studio project files:

<example name>.csproj—The <example name> project file.
Form<example name>.cs—The example source file.

• ExternalDependency contains all the references you need. To implement
this example, copy the following files into this directory:

ail-configuration.xml—The XML configuration file.
The Genesys Desktop 7.6 .NET Toolkit dlls.

42 Genesys Desktop 7.6

Chapter 3: .NET Toolkit Examples Three Steps to a .NET Toolkit Application

References to dll files and other dependencies already exist in the project and
are available if the ExternalDependency directory contains the correct files.
At application build time, the IDE copies the referenced dll files into the build
directories (debug/release).

Note: At the project’s first build, Microsoft Visual Studio performs all the
required dll builds for the ActiveX components.

For other details, refer to the Readme.html file delivered with the examples.

Three Steps to a .NET Toolkit Application
Now that you have been introduced to the Genesys Desktop .NET Toolkit, it is
time to outline the steps you will need to take work with its events and objects.
There are five basic things you will need to do in your .NET Toolkit
applications:
• Add .NET Toolkit components to a form and set up properties.
• Connect to GIS. Most of the examples use a .NET Toolkit dialog box—

LoginForm—to get the CTI information required to connect using the
Connection component.

• Implement delegates to the appropriate .NET Toolkit components.
The new examples have been designed to make these steps stand out so that
you can quickly learn to write your own real-world applications. Now it is time
to see how they are implemented in the ResourceService example.

ResourceService
The ResourceService example is a .NET Toolkit application that uses one of
the underlying Agent Interaction Services—the IResourceService interface—
to see a summary of each DN’s status.
This example enables the agent to log in and select a DN resource type. After
making his or her choice, the agent validates it by clicking the Get Resource
Type button. A list of DNs appears in a treeview. For each DN, the tree displays
the corresponding summary, as shown in Figure 9 on page 43.

.NET Toolkit—Developer’s Guide 43

Chapter 3: .NET Toolkit Examples ResourceService

Figure 9: The Resource Service Example

Add .NET Toolkit Components
The FormResourceService form includes the following .NET Toolkit
components:
• A Connection component—mConnection—that enables connection to GIS.
• An Agent component—mAgent—that logs the agent in.
• An AgentPlaceStatus component—mAgentPlaceStatus—that displays the

agent’s status on his or her place.
For this example, the values set to .NET Toolkit components’ properties only
concern automatic links. Figure 10 on page 44 shows these links, that can be
set in the Design view of the project in Microsoft Visual Studio.

44 Genesys Desktop 7.6

Chapter 3: .NET Toolkit Examples ResourceService

Figure 10: Links Set for the Resource Service Example

Except the Connection component, all the .NET Toolkit components have their
AutoLink property set. This means that these components are initialized when
the FormResourceService() constructor calls the Connection.connect() method.
For further information about links, see “Links Between Components” on
page 32.

Connect to GIS
Before attempting a connection, the Resource Service example uses a dialog
box to collect the CTI data required, first to connect, then to log in.
In this purpose, the FormResourceService() constructor creates and shows a
LoginForm component, as shown here.

LoginForm loginForm = new LoginForm();
DialogResult nResult = loginForm.ShowDialog();

When the user clicks this dialog’s OK button, loginForm contains the required
values to fill in the mConnection and mAgent’s CTI properties, as shown here:

mConnection.URL = loginForm.URL;
mAgent.AgentId = loginForm.AgentId;
mAgent.AgentLogin = loginForm.AgentLogin;
mAgent.AgentPassword = loginForm.AgentPassword;
mAgent.Queue = loginForm.mQueue;
mAgent.Place = loginForm.mPlace;

At this point, the mConnection and mAgent components are ready to attempt a
connection and then a login, as shown in the following code snippet:

try
{

//Connect to GIS and intialize all auto-linked components

Connection

Agent

ConnectionAutoLink

AgentPlaceStatus

AgentAutoLink

.NET Toolkit—Developer’s Guide 45

Chapter 3: .NET Toolkit Examples ResourceService

mConnection.Connect();

//Log in the Agent
AgentDesktopToolkit.Agents.AgentStatus status = mAgent.Login();

//If the login failed, disconnect from GIS
if(status == null)
{

mAgent.Release();
mConnection.Disconnect();

}
}
catch(Exception e)
{

MessageBox.Show(e.ToString());
}
//...

Note: If an agent has a DN(s) in his Place, the Agent.Login() and the
Agent.Logout() methods can sometimes return an incorrect
AgentStatus due to the quick state change of the DN(s). You should not
use possibles or status returned by those methods, instead use events to
determine the correct status of the agent and DN(s).

Implement Delegates
The Resource Service example does not implement .NET Toolkit components’
delegates. In this example, the implemented delegates concern the use of the
IResourceService interface.
The FormResourceService_Load() method implements the Form.Load delegate,
to be called at startup before the GUI form is visible for the user. This delegate
gets the Agent Interaction Service’s factory available through the Connection
component, and creates a IResourceService instance, as shown in the
following code snippet:

//Create Resource Service
mResourceService = mConnection.AilServiceFactory.createService(

typeof(IResourceService), null) as IResourceService;

The btGetResourceType_Click() method implements the Button.Click delegate
of the GetResourceInfo button. The btGetResourceType_Click() method
retrieves DN summaries through the IResourceService interface, as shown in
the following code snippet.

46 Genesys Desktop 7.6

Chapter 3: .NET Toolkit Examples DatabaseLookupVoice

// DnSummaryType to be retrieved: the one selected in the ComboBox
DnSummaryType type = (DnSummaryType) this.cbResourceType.SelectedItem;

//
DnSummaryDTO[] summaryDTO = mResourceService.getDnSummariesDTO("", //any switch

type, // Type of concerned DNs
0,
-1,
new string[] {"*"});//all attribute values to be retrieved

Then, it displays the DN summaries into the tree view of the form. For further
details about sevices, refers to the Agent Interaction Service 7.6
Documentation.

DatabaseLookupVoice
The DatabaseLookupVoice example is an application that handles voice
interactions and retrieves information about contacts from a contact database,
simulated by the DatabaseLookup.xml file.
When the agent selects an interaction in the Batch component, the example
uses the contact ID available in the interaction’s attached data to retrieve
contact information from the file. Then, the example displays these
information in a list view, as shown in Figure 11 on page 47.

.NET Toolkit—Developer’s Guide 47

Chapter 3: .NET Toolkit Examples DatabaseLookupVoice

Figure 11: The Database Lookup Voice Example

Note: If the interaction has no contact ID specified in attached data, the
example generates a contact ID for this interaction.

Add .NET Toolkit Components
The example use attached data in conjunction with the analysis of an XML file
to provide the agent with more information about the customer.
The FormDataBaseLookupVoice form includes the following .NET Toolkit
components:
• A Connection component—mConnection.

• An Agent component—mAgent.

• A Batch component—mBatch—manages all the agent voice interactions.
• An InteractionVoice component—mInteractionVoice—displays the

voice interaction selected in mBtach.
• An AgentPlaceStatus component—mAgentPlaceStatus.
• An AttachedData component—mAttachedData.

48 Genesys Desktop 7.6

Chapter 3: .NET Toolkit Examples DatabaseLookupVoice

For this example, the values set to .NET Toolkit components’ properties only
concern automatic links.
Figure 12 on page 48 shows these links, that can be set in the Design view of
the project in Microsoft Visual Studio.

Figure 12: Links Set for the Database Lookup Voice Example

In this example, except the Connection component, the .NET Toolkit
components have their AutoLink property set. This means that these
components are initialized when the FormDatabaseLookupVoice() constructor
calls the Connection.connect() method.
For further information about links, see “Links Between Components” on
page 32.

Connect to GIS
The DatabaseLookupVoice example uses a dialog box to collect the CTI data
required, first to connect, then to log in. In this purpose, the
FormDatabaseLookupVoice() constructor uses a LoginForm component, then
connects by calling the Connection.connect() method, as described for the
Resource Service example, on page 44.

Connection

Batch

AgentAutoLink

Agent

ConnectionAutoLink

AgentPlaceStatus

AgentAutoLink

InteractionVoice

BatchAutoLink

AttachedData

InteractionAutoLink

.NET Toolkit—Developer’s Guide 49

Chapter 3: .NET Toolkit Examples DatabaseLookupVoice

Implement Delegates
When the agent receives a voice interaction, this interaction contains attached
data. The attached data’s key is ContactID and the attached data’s value is 1, 2,
3, or 4.
To simulate that the framework adds contact IDs to interactions, the
mAttachedData_Initialized() method implements the
AttachedData.Initialized delegate. This method checks whether or not the
mAttachedData component includes a contact ID. In case there is no contact ID
available, the method adds a random one to attached data, as shown here:

// Generates randomly a contact ID
// and adds it as the value of the "contactID" key
if(!this.mAttachedData.KeyValueData.Contains("contactID"))
{

int randomNumber = randComp.Next(1,5);
this.mAttachedData.Add("contactID",randomNumber.ToString());

}

When the agent selects a batch button, the autolinked components update
accordingly to display the selected interaction. So, the example synchronizes
the update of the listview—that displays contact information—with the
selection of batch buttons.
In this purpose, the mBatch_InteractionSelected() method implements the
Batch.InteractionSelected component. It retrieves the value of the contactID
attached data and reads the corresponding information in the XML file
DatabaseLookup.xml. Then, the example updates the list view with contact
information.
See the following code snippet used for this process.

string contactIDStr = "";
//Search for the "contactID" key in attached data.
if (this.mAttachedData.KeyValueData.Contains("contactID"))
{

//Retrieves from Attached Data the value that corresponds to the "contactID" key
contactIDStr= this.mAttachedData.KeyValueData["contactID"].ToString();
XmlDocumentdoc= new XmlDocument();
//Loads the xml file that contains all contact descriptions
doc.Load("DatabaseLookup.xml");
//Searches for the "contactID" entry in the xml file.
XmlNodeListcontactIDList = doc.SelectNodes("//TheAll/Code");
for(int i=0; i< contactIDList.Count ; i++)
{

XmlNodecontactID = contactIDList[i];
string id =contactID.SelectSingleNode("Id").InnerText;
//If IDs match,retrieves the associated description
if (id.CompareTo(contactIDStr) == 0)
{

50 Genesys Desktop 7.6

Chapter 3: .NET Toolkit Examples MultipleAttachedData

//Retrieves the contact information
string firstname = contactID.SelectSingleNode("FirstName").InnerText;
string lastname= contactID.SelectSingleNode("LastName").InnerText;
string phonenumber = contactID.SelectSingleNode("PhoneNumber").InnerText;
string emailaddress= contactID.SelectSingleNode("EmailAddress").InnerText;
string city= contactID.SelectSingleNode("City").InnerText;

//Updates the list view with the contact information
ListViewItem lvi = new ListViewItem(newstring[5]

{firstname,lastname,emailaddress,phonenumber,city});
this.lvContact.Items.Add(lvi);
return;

}
}

}

MultipleAttachedData
The MultipleAttachedData example is a voice application that enables the
agent to manage attached data of several voice interactions.
The Interaction Attached Data component displays attached data of the
interaction selected in the batch. The Connection Attached Data component
displays attached data of one of the interactions available through the
application’s connection, as shown in Figure 13 on page 51.

.NET Toolkit—Developer’s Guide 51

Chapter 3: .NET Toolkit Examples MultipleAttachedData

Figure 13: The Multiple Attached Data Example

In Figure 13, the agent selects the interaction identifier Phonecall-1 in the
combo box. The corresponding data appears in Connection Attached Data.

Add .NET Toolkit Components
The FormMultipleAttachedData form includes the following .NET Toolkit
components:
• A Connection component—mConnection.

• An Agent component—mAgent.

• A Batch component—mBatch—manages all the agent voice interactions.
• An InteractionVoice component—mInteractionVoice—displays the

voice interaction selected in mBatch.
• An AgentPlaceStatus component—mAgentPlaceStatus.

52 Genesys Desktop 7.6

Chapter 3: .NET Toolkit Examples MultipleAttachedData

• Two AttachedData components:
mADInteraction is linked to the InteractionVoice component and is
visible as Interaction Attached Data at runtime (see Figure 13 on
page 51).
mADConnection is linked to the Connection component and is visible as
Connection Attached Data at runtime (see Figure 13 on page 51). It
requires the InteractionId property to determine which interaction’s
attachedData should be displayed.

Consequently, the example can display at the same time attached data of two
different interactions.
As shown in Figure 14 on page 52, this example uses autolinks and simples
links for the mADConnection attached data component.

Figure 14: Links Set For the Multiple Attached Data Example

In this example, most of the .NET Toolkit components have their AutoLink
property set. This means that these components are initialized when the
FormMultipleAttachedData() constructor calls the Connection.connect()
method.
The second AttachedData component—mADConnection—implements a manual
link—ConnectionLink. So this example must manage the initialization of this
component. See “Implement Delegates” on page 53.
For further information about links, see “Links Between Components” on
page 32.

Connection

Batch

AgentAutoLink

Agent

ConnectionAutoLink

AgentPlaceStatus

AgentAutoLink

InteractionVoice

BatchAutoLink

AttachedData

InteractionAutoLink

AttachedData

ConnectionLink

.NET Toolkit—Developer’s Guide 53

Chapter 3: .NET Toolkit Examples MultipleAttachedData

Connect to GIS
The MultipleAttachedData example uses a dialog box to collect the CTI data
required, first to connect, then to log in. In this purpose, the
FormMultipleAttachedData() constructor uses a LoginForm component, then
connects by calling the Connection.connect() method, as described for the
Resource Service example, on page 44.

Implement Delegates
The MultipleAttachedData example implements two delegates of the Batch
component to handle the cbInteractionsId combo box—which lists the IDs of
interactions available—and to synchronize with the mADConnection
component—which displays attached data of the interaction selected in the
combo box.
The mBatch_InteractionSelected() method implements the
Batch.InteractionSelected delegate, to be called when the interaction is
selected in the batch component. This method adds the ID of the selected
interaction to the cbInteractionsId combo box if it does not already belong to
the list displayed, as shown in the following code snippet.

if (!this.cbInteractionsId.Items.Contains(interactionId))
{

this.cbInteractionsId.Items.Add(interactionId);
this.mADInteraction.Add("Interaction_ID",interactionId);

}

The mBatch_InteractionClosed() method implements the
Batch.InteractionClosed delegate, to be called when the interaction is closed.
This method removes the interaction identifier from the list that the combo box
displays. If the ID to be removed is the one selected in the list, the method
releases the mADConnection component which displays attached data associated
with this ID, as shown here:

if (this.cbInteractionsId.Text == interactionId)
{

this.mADConnection.Release();
this.cbInteractionsId.Text = "";

}
this.cbInteractionsId.Items.Remove(interactionId);

Finally, the cbInteractionsId_SelectedIndexChanged() method implements the
delegate, to be called when the user selects an interaction in the combo box. It
initializes the mADConnection component, which displays attached data
associated with the selected interaction ID. The following code snippet
illustrates this process.

54 Genesys Desktop 7.6

Chapter 3: .NET Toolkit Examples ActiveXCalendar

if (this.cbInteractionsId.Text != "")
{

this.mADConnection.InteractionId = this.cbInteractionsId.Text;
this.mADConnection.ConnectionLink = this.mConnection;
this.mADConnection.Initialize();

}

ActiveXCalendar
The ActiveXCalendar example is an application that manages an ActiveX
component—the calendar—and voice interactions. It enables the agent to
attach data (calendar dates) to voice interactions. It demonstrates an easy
integration of an ActiveX component in an agent desktop application with a
minimum of hand-coding.

Note: The only ActiveX components compatible with Genesys Desktop
.NET Toolkit are Microsoft ActiveX Standard Components.

At runtime, when the agent handles a voice interaction, the ActiveX Calendar
example displays the information of the current interaction (selected in the
Batch) in the InteractionVoice and AttachedData components. If the agent
selects a date in the ActiveX Calendar, the example adds this date into the
interaction’s attached data as shown in Figure 15 on page 55.

.NET Toolkit—Developer’s Guide 55

Chapter 3: .NET Toolkit Examples ActiveXCalendar

Figure 15: The ActiveX Calendar Example

Note that, at application startup, only the Microsoft Calendar ActiveX OCX is
visible. The InteractionVoice and AttachedData components are visible only if
an interaction is selected in the Batch component.

Add .NET Toolkit Components
The FormActiveXCalendar form includes the following .NET Toolkit
components:
• A Connection component—mConnection—that enables connection to GIS.
• An Agent component—mAgent—that logs the agent in.
• A Batch component—mBatch—manages all the agent voice interactions.
• An InteractionVoice component—mInteractionVoice—displays the

voice interaction selected in mBtach.
• An AttachedData component—mAttachedData—displays the attached data

of the voice interaction displayed in mInteractionVoice.
The FormActiveXCalendar form also includes an AxCalendar component—
mCalendar—that is the Microsoft ActiveX Calendar.

56 Genesys Desktop 7.6

Chapter 3: .NET Toolkit Examples ActiveXCalendar

For this example, the values set to .NET Toolkit components’ properties only
concern automatic links.
Figure 16 shows these links, that can be set in the Design view of the project in
Microsoft Visual Studio.

Figure 16: Links Set for the ActiveX Calendar Example

In this example, except the Connection component, the .NET Toolkit
components have their AutoLink property set. This means that these
components are initialized when the FormActiveXCalendar() constructor calls
the Connection.connect() method.
For further information about links, see “Links Between Components” on
page 32.

Connect to GIS
The ActiveX Calendar example uses a dialog box to collect the CTI data
required, first to connect, then to log in. In this purpose, the
FormActiveXCalendar() constructor uses a LoginForm component, then connects
by calling the Connection.connect() method, as described for the Resource
Service example, on page 44.
Then, the FormActiveXCalendar() constructor disables the mInteractionVoice
and mAttachedData components because they should only be visible when a
voice interaction is available for the agent.

Connection

Batch

AgentAutoLink

Agent

ConnectionAutoLink

InteractionVoice

BatchAutoLink

AttachedData

InteractionAutoLink

.NET Toolkit—Developer’s Guide 57

Chapter 3: .NET Toolkit Examples ActiveXCalendar

//Hide the InteractionVoice and AttachedData components
this.mInteractionVoice.Visible = false;
this.mAttachedData.Visible = false;

Implement Delegate
The ActiveX Calendar example includes a Batch component to manage voice
interactions and implements two of its delegates:
• BatchInteractionCreated:

The form calls this delegate when an interaction is created via the batch
(the user created an interaction using the Batch or a ringing interaction
is added to the Batch).
In this example, this delegate makes mInteractionVoice and
mAttachedData components visible.

this.mInteractionVoice.Visible = true;
this.mAttachedData.Visible = true;

• BatchInteractionClosed:
This delegate is called when the selected interaction is closed.
In this example, this delegate makes mInteractionVoice and
mAttachedData components invisible if there is no longer an interaction
selected in the Batch.

if (this.mBatch.InteractionIds.Length == 0)
{

this.mInteractionVoice.Release();
this.mAttachedData.Release();
this.mInteractionVoice.Visible = false;
this.mAttachedData.Visible = false;

}

When you open the project in the Design view, .NET Toolkit delegates are
available in the CTI section of the Events Properties tool. The corresponding
source code is available in the FormActiveXCalendar.initializeComponent()
method, as shown in the following code snippet:

this.mBatch.InteractionCreated += new
AgentDesktopToolkit.Interactions.BatchInteractionCreated(

this.mBatch_InteractionCreated);
this.mBatch.InteractionClosed += new

AgentDesktopToolkit.Interactions.BatchInteractionClosed(
this.mBatch_InteractionClosed);

In this example, the ActiveX Calendar control has a minor task. Its purpose is
to show that it is simple to interact with the .NET Toolkit components. Here,

58 Genesys Desktop 7.6

Chapter 3: .NET Toolkit Examples ChangeLookAndFeelVoice

when the user clicks in the Calendar, the mCalendar_AfterUpdate delegate
adds the selected date to the mAttachedData component, as shown in the
following code snippet:

private void mCalendar_AfterUpdate(object sender,
System.EventArgs e)

{
string str = mCalendar.Day + "/" + mCalendar.Month + "/"

+ mCalendar.Year;
this.mAttachedData.Add("Date",str);

}

ChangeLookAndFeelVoice
The ChangeLookAndFeelVoice example is a simple application that manages
voice interactions and shows how to customize the look and feel of .NET
Toolkit components. It allows you to modify the background color, the
foreground color, and the font of the agent’s application.
The agent opens the LookFeel menu and selects the BackColor or ForeColor
item. It opens the Edit Colors dialog box. Then, the agent selects a new color
and clicks OK. The new setting is immediately taken into account, as shown in
Figure 17 on page 59.

.NET Toolkit—Developer’s Guide 59

Chapter 3: .NET Toolkit Examples ChangeLookAndFeelVoice

.

Figure 17: The Change Look and Feel Example

Add .NET Toolkit Components
The FormChangeLookAndFeelVoice form includes the following .NET Toolkit
components:
• A Connection component—mConnection—that enables connection to GIS.
• An Agent component—mAgent—that logs the agent in.
• A Batch component—mBatch—manages all the agent voice interactions.
• An InteractionVoice component—mInteractionVoice—displays the

voice interaction selected in mBtach.
• A Notepad component—mNotepad—displays the Look and Feel changes

applied to the .NET Toolkit components.
• An AgentPlaceStatus component—mAgentPlaceStatus.
For this example, the values set to .NET Toolkit components’ properties only
concern automatic links.
Figure 18 on page 60 shows these links, that can be set in the Design view of
the project in Microsoft Visual Studio.

60 Genesys Desktop 7.6

Chapter 3: .NET Toolkit Examples ChangeLookAndFeelVoice

Figure 18: Links Set for the Change Look and Feel Example

In this example, except the Connection component, the .NET Toolkit
components have their AutoLink property set. This means that these
components are initialized when the FormActiveXCalendar() constructor calls
the Connection.connect() method.
For further information about links, see “Links Between Components” on
page 32.

Connect to GIS
The ChangeLookAndFeelVoice example uses a dialog box to collect the CTI data
required, first to connect, then to log in. In this purpose, the
FormChangeLookAndFeelVoice() constructor uses a LoginForm component, then
connects by calling the Connection.connect() method, as described for the
Resource Service example, on page 44.

Implement Delegates
The ChangeLookAndFeelVoice example does not implement .NET Toolkit
components’ delegates. In this example, the implemented delegates concern
the GUI events on the menu provided to change font and colors of the
application.

Connection

Batch

AgentAutoLink

Agent

ConnectionAutoLink

AgentPlaceStatus

AgentAutoLink

Notepad

InteractionAutoLink

InteractionVoice

BatchAutoLink

.NET Toolkit—Developer’s Guide 61

Chapter 3: .NET Toolkit Examples RegisterEvent

The miBackColor_Click() method implements the MenuItem.Click delegate, to
be called when the agent clicks on the BackColor menu item. This delegate
displays a dialog box to choose the color for the components’ background.
Then, the application applies the selected color to all the .NET components, as
shown here:

if (this.colorDialog.ShowDialog() == DialogResult.OK)
{

//Color selected in the color dialog box
Color clr = this.colorDialog.Color;
//Form
this.BackColor = clr;
//Batch
this.mBatch.BackColor = clr;

foreach (AgentDesktopToolkit.Interactions.BatchButton bb in
this.mBatch.BatchButtons)
{

bb.FlatStyle = System.Windows.Forms.FlatStyle.Standard;
bb.BackColor = clr;

}
//AGENT PLACE STATUS
this.mAgentPlaceStatus.BackColor = clr;
this.mAgentPlaceStatus.ListViewAgentStatus.BackColor = clr;
setBackColorObject(this.mAgentPlaceStatus.ButtonLogin,clr);
setBackColorObject(this.mAgentPlaceStatus.ButtonReady,clr);

For some components, the BackColor property must be set for the component’s
subelements—for example, the BackColor property applies not only to the
AgentPlaceStatus component, but also to its buttons and its
ListViewAgentStatus. The example calls the setBackColorObject() method to
modify colors of the sub-components, as shown for the InteractionVoice
component.

//INTERACTION VOICE
this.mInteractionVoice.BackColor = clr;
this.mInteractionVoice.ListViewParty.BackColor = clr;
setBackColorObject(this.mInteractionVoice.ButtonAcceptAndDial,clr);
setBackColorObject(this.mInteractionVoice.ButtonAnswer,clr);
setBackColorObject(this.mInteractionVoice.ButtonClose,clr);

This example uses the same mechanism for the ForeColor and Font properties.

RegisterEvent
The RegisterEvent example is a .NET Toolkit application that
registers/unregisters workbin events. The OnConnectionEvent method from
IConnectionNotification interface is implemented to receive registered

62 Genesys Desktop 7.6

Chapter 3: .NET Toolkit Examples RegisterEvent

events. Events are registered and unregistered using the RegisterEvent and
UnregisterEvent public methods found in the Connection component.
By clicking on the Register Workbin Events button, all the events related to the
agent’s workbin will be displayed in the form’s text window, as shown in
Figure 19 on page 62. The Unregister Workbin Events button unregisters the
workbin events and stops the display. To clear the text window, click on the
Clear button.

Figure 19: The Register Event Example

Add .NET Toolkit Components
The MainForm form includes the following .NET Toolkit components:
• A Connection component—connection1—that enables connection to GIS.
• An Agent component—agent1—that logs the agent in.
For this example, the values set to .NET Toolkit components’ properties only
concern automatic links. Figure 20 on page 62 shows these links, which can be
set in the Design view of the project in Microsoft Visual Studio.

Figure 20: Links Set for the Register Event Example

.NET Toolkit—Developer’s Guide 63

Chapter 3: .NET Toolkit Examples RegisterEvent

In this example, the Agent component has its AutoLink property set. This means
that the Agent component is initialized when the MainForm() constructor calls
the Agent.connect() method.
For further information about links, see “Links Between Components” on
page 32.

Connect to GIS
The RegisterEvent example uses a dialog box to collect the CTI data required,
first to connect, then to log in. When the MainForm() loads, the Agent
component is initialized and connects to GIS.
private void MainForm_Load(object sender, System.EventArgs e)
{

agent1.ConnectionAutoLink = connection1;
agent1.Connect();
tbEvents.Clear();

}

Implement Delegates
The RegisterEvent sample implements one delegate, the
ConnectionEventDelegate:

ConnectionEventDelegate(com.genesyslab.ail.ws._event.Event e);

The OnConnectionEvent method from the IConnectionNotification interface is
implemented in order to receive registered events using the RegisterEvent
public method of the Connection component. A delegate must be used to
ensure that the graphical action will be made in the GUI thread:

void AgentDesktopToolkit.IConnectionNotification.OnConnectionEvent
(com.genesyslab.ail.ws._event.Event e)

{
if(InvokeRequired) //If true, we need to go into the GUI thread
{

Invoke(new ConnectionEventDelegate(this.ConnectionEvent), new object[] { e });
}
else

ConnectionEvent(e);
}

private delegate void ConnectionEventDelegate(com.genesyslab.ail.ws._event.Event e);

private void ConnectionEvent(com.genesyslab.ail.ws._event.Event e)
{

//We do some graphical stuff here....
}

64 Genesys Desktop 7.6

Chapter 3: .NET Toolkit Examples RegisterEvent

Code Explanation
The RegisterEvent sample has three buttons:
• Register Workbin Events—Registers the events of all the workbins

available to the agent.
• Unregister Workbin Events—Unregisters the events of all the workbins

available to the agent.
• Clear—Clears the text box of all event information.
The Click() events of the Register Workbin Events and Unregister Workbin
Events buttons contain the code that you will want to examine and utilize in
your own custom build application.

Registering Events

An explanation of the code executed when the Register Workbin Events button
is clicked follows:

private void btRegisterWBEvent_Click(object sender, System.EventArgs e)
{

if(connection1 != null && agent1.Place != "")
{

First, retrieve a list of workbins available for the agent.
IWorkflowService mWorkflowService = connection1.AilServiceFactory.createService

(typeof(IWorkflowService), null) as WorkflowService;
WorkbinDTO[] workbins = mWorkflowService.getWorkbinsDTO(agent1.Place,null,

new string[] {"workbin:id"},null);
System.Collections.Specialized.StringCollection workbinsIdCollection =

new System.Collections.Specialized.StringCollection();
if(workbins != null)
{

foreach(com.genesyslab.ail.ws.workflow.WorkbinDTO w in workbins)
{

foreach(KeyValue kv in w.data)
{

if(kv.key == "workbin:id")
workbinsIdCollection.Add(kv.value.ToString());

}
}

}.....

Then, if at least one workbin exists for the agent, registration is made to
WorkflowService/WorkbinEvent for all the workbins available to that agent.
See AilServices.chm help file for additional information.

if (workbinsIdCollection.Count > 0)
{

TopicsService [] topicServices = new TopicsService[1];
topicServices[0] = new TopicsService();
topicServices[0].serviceName = "WorkflowService";
topicServices[0].topicsEvents = new TopicsEvent[1];

.NET Toolkit—Developer’s Guide 65

Chapter 3: .NET Toolkit Examples RegisterEvent

topicServices[0].topicsEvents[0] = new TopicsEvent();

Here, the list of requested attributes is asked. The attributes are Ail Services
"workbin:*" attributes.

topicServices[0].topicsEvents[0].attributes = new string[]
{ "workbin:id","workbin:actorId","workbin:operationType","workbin:interactionId"};

topicServices[0].topicsEvents[0].filters = null;
topicServices[0].topicsEvents[0].eventName = "WorkbinEvent";

The trigger for this type of event uses a KEY=WORKBIN and a
VALUE=placeId:workbinId.

topicServices[0].topicsEvents[0].triggers = new Topic[workbinsIdCollection.Count];
for(int index = 0; index < workbinsIdCollection.Count; index++)
{

topicServices[0].topicsEvents[0].triggers[index] = new Topic();
topicServices[0].topicsEvents[0].triggers[index].key = "WORKBIN";
topicServices[0].topicsEvents[0].triggers[index].value =

agent1.Place.Replace(":","::") + ":" +
workbinsIdCollection[index].Replace(":","::");
}

Registration to these types of events uses the RegisterEvent public method
from the Connection component.

connection1.RegisterEvent(this,topicServices);
}

Displaying the Recieved Event

The ConnectionEvent method handles the incoming registered event and
displays information about the event in the text box:

private void ConnectionEvent(com.genesyslab.ail.ws._event.Event e)
{

string interactionId = "", actorId = "", workbinName = "",
operationType ="",workbinOperationType = "";

if (e.attributes != null && e.attributes.Length > 0)
{

foreach(KeyValue kv in e.attributes)
{

if (kv.key == "workbin:id")
workbinName = kv.value.ToString();

if (kv.key == "workbin:actorId")
actorId = kv.value.ToString();

if (kv.key == "workbin:operationType")
operationType = kv.value.ToString();

if (kv.key == "workbin:workbinOperationType")
workbinOperationType = kv.value.ToString();

if (kv.key == "workbin:interactionId")
interactionId = kv.value.ToString();

}

66 Genesys Desktop 7.6

Chapter 3: .NET Toolkit Examples RegisterEvent

tbEvents.Text += string.Format("{0} Workbin Event received: Actor {1} has made
action {2} on interaction {3} in workbin
{4}\r\n",DateTime.Now.ToLongTimeString(),actorId,operationType,interactionId,workbin
Name);
}

}

Unregistering Events

To unregister from registered workbin events, the UnregisterEvent public
method from the Connection component is used, as seen here:

private void btUnregisterWBEvent_Click(object sender, System.EventArgs e)
{

connection1.UnRegisterEvent(this);
}

.NET Toolkit—Developer’s Guide 67

Index

Symbols
.NET Toolkit Components 29

A
ActiveXCalendar27, 54
add .NET Toolkit components 42
agent 36, 43, 47, 51, 62
AgentPlaceStatus 43, 47, 51
architecture. 15
assemblies 14
AttachedData. 47, 52
audience

defining 7

B
Batch47, 51

C
cbInteractionsId_SelectedIndexChanged() . 53
ChangeLookAndFeelVoice27, 58
chapter summaries

defining 9
collaboration-mode option 20
collaboration-workbin option 21
commenting on this document 12
component properties 31
components 14
Configuration Layer Options 20
connect to GIS 42
connection 35, 43, 47, 51, 62
connectivity. 19

Configuration Server 19
T-Server 19

D
DatabaseLookupVoice 27, 46
delegates 35
document

conventions 10
errors, commenting on 12
version number 10

E
easy-newcall option 22
email-default-queue option 20
email-drafts-workbin option 20
email-outbound-queue option 20
email-trsf-ext-queue option 20

F
FormActiveXCalendar() 56
FormMultipleAttachedData 51

G
Genesys Desktop .NET Toolkit Multimedia

Application Sample 15
GIS. .14
GSAP .14

I
implement delegates. 42
installing the code examples. 28
InteractionVoice 47, 51

L
link

automatic mode 32

Index

68 Genesys Desktop 7.6

manual mode 32
links . 32

exclusive links 34
inheritance. 34

M
mandatory attributes 36
mBatch_InteractionClosed() 53
mBatch_InteractionSelected() 53
media option 21
MultipleAttachedData. 27, 50
multithreaded. 19

N
namespaces 23

O
openMedia-default-queue option. 21
openMedia-outbound-queue option 21
optional attributes 37
options . 20

collaboration-mode 20
collaboration-workbin 21
easy-newcall. 22
email-default-queue 20
email-drafts-workbin 20
email-outbound-queue 20
email-trsf-ext-queue 20
media . 21
openMedia-default-queue 21
openMedia-outbound-queue 21
preview-park-queue 21

P
platform requirements 18
prerequisites 41
preview-park-queue option 21

R
RAD . 27
RegisterEvent 28, 61
ResourceService27, 42

S
server-side application 14
services and events 24
SOA . 18

SOAP .14
synchronization 19

T
typical scenarios16
typographical styles 10

U
URL .35

V
version numbering

document 10

X
XML Configuration File 36

	Table of Contents
	Preface
	Intended Audience
	Usage Guidelines
	Chapter Summaries
	Document Conventions
	Related Resources
	Making Comments on This Document

	About Genesys Desktop .NET Toolkit
	Overview
	Components
	Architecture
	Scope of Use
	Benefits
	Platform Requirements
	Design Features
	Service-Oriented Architecture
	Multithreaded
	Synchronization

	Connecting to Your Genesys Environment
	Framework Compatibility
	Configuring Your Application in the Configuration Layer
	Genesys Multimedia Compatibility
	Outbound Campaign Support
	Voice Callback Support

	API Overview
	Namespaces
	Underlying Services and Events
	What’s Next

	About the Examples
	Overview of the Code Examples
	Installing the Code Examples
	Location of the Code Examples
	Archive Content
	Using the Code Examples

	.NET Toolkit Components
	Types of Components
	Working with Component Properties
	Delegates
	Connection and Agent Components

	The XML Configuration File
	Mandatory Attributes
	Optional Attributes
	XML Configuration File Example

	.NET Toolkit Examples
	Prerequisites
	Three Steps to a .NET Toolkit Application
	ResourceService
	Add .NET Toolkit Components
	Connect to GIS
	Implement Delegates

	DatabaseLookupVoice
	Add .NET Toolkit Components
	Connect to GIS
	Implement Delegates

	MultipleAttachedData
	Add .NET Toolkit Components
	Connect to GIS
	Implement Delegates

	ActiveXCalendar
	Add .NET Toolkit Components
	Connect to GIS
	Implement Delegate

	ChangeLookAndFeelVoice
	Add .NET Toolkit Components
	Connect to GIS
	Implement Delegates

	RegisterEvent
	Add .NET Toolkit Components
	Connect to GIS
	Implement Delegates
	Code Explanation

	Index

