
Genesys Voice Platform 7.6

VoiceXML 2.1

Reference Manual

The information contained herein is proprietary and confidential and cannot be disclosed or duplicated
without the prior written consent of Genesys Telecommunications Laboratories, Inc.

Copyright © 2006–2010 Genesys Telecommunications Laboratories, Inc. All rights reserved.

About Genesys
Alcatel-Lucent's Genesys solutions feature leading software that manages customer interactions over phone, Web,
and mobile devices. The Genesys software suite handles customer conversations across multiple channels and
resources—self-service, assisted-service, and proactive outreach—fulfilling customer requests and optimizing
customer care goals while efficiently using resources. Genesys software directs more than 100 million customer
interactions every day for 4000 companies and government agencies in 80 countries. These companies and agencies
leverage their entire organization, from the contact center to the back office, while dynamically engaging their
customers. Go to www.genesyslab.com for more information.

Each product has its own documentation for online viewing at the Genesys Technical Support website or on the
Documentation Library DVD, which is available from Genesys upon request. For more information, contact your sales
representative.

Notice
Although reasonable effort is made to ensure that the information in this document is complete and accurate at the
time of release, Genesys Telecommunications Laboratories, Inc., cannot assume responsibility for any existing errors.
Changes and/or corrections to the information contained in this document may be incorporated in future versions.

Your Responsibility for Your System’s Security
You are responsible for the security of your system. Product administration to prevent unauthorized use is your
responsibility. Your system administrator should read all documents provided with this product to fully understand the
features available that reduce your risk of incurring charges for unlicensed use of Genesys products.

Trademarks
Genesys, the Genesys logo, and T-Server are registered trademarks of Genesys Telecommunications Laboratories,
Inc. All other trademarks and trade names referred to in this document are the property of other companies. The
Crystal monospace font is used by permission of Software Renovation Corporation, www.SoftwareRenovation.com.

Technical Support from VARs
If you have purchased support from a value-added reseller (VAR), please contact the VAR for technical support.

Technical Support from Genesys
If you have purchased support directly from Genesys, please contact Genesys Technical Support at the following
regional numbers:

Prior to contacting technical support, please refer to the Genesys Technical Support Guide for complete
contact information and procedures.

Ordering and Licensing Information
Complete information on ordering and licensing Genesys products can be found in the Genesys Licensing Guide..

Released by

Genesys Telecommunications Laboratories, Inc. www.genesyslab.com
Document Version: 76gvp_ref_xml_11-2010_v7.6.401.00

Region Telephone E-Mail

North and Latin America +888-369-5555 or +506-674-6767 support@genesyslab.com

Europe, Middle East, and Africa +44-(0)-118-974-7002 support@genesyslab.co.uk

Asia Pacific +61-7-3368-6868 support@genesyslab.com.au

Japan +81-3-6361-8950 support@genesyslab.co.jp

http://www.genesyslab.com
mailto:support@genesyslab.com
mailto:support@genesyslab.co.uk
mailto:support@genesyslab.com.au
http://genesyslab.com/support/dl/retrieve/default.asp?item=B3BFC6DABE22B62AAE32A6D31E6396E3&view=item
mailto:support@genesyslab.co.jp
http://genesyslab.com/support/dl/retrieve/default.asp?item=B6C52FB62DB42BB229B02755A1D12650&view=item
http://www.genesyslab.com

VoiceXML 2.1—Reference Manual 3

Table of Contents
Preface ... 7

Intended Audience... 7
Chapter Summaries... 8
Document Conventions ... 8
Related Resources .. 10
Making Comments on This Document .. 12
Document Change History .. 12

Release 7.6.4.. 12

Chapter 1 Overview.. 13

Introducing VoiceXML.. 13
VoiceXML Platform Architecture.. 14
Supported Schemas.. 15
Platform Specifics .. 15

Referencing Grammars Dynamically .. 16
Referencing Scripts Dynamically .. 16
Concatenating Prompts Dynamically Using <foreach> 16
Using <mark> to Detect Bargein During Prompt Playback................. 18
Recording User Utterances While Attempting Recognition 19
Adding namelist to <disconnect>.. 24
Adding type to <transfer> ... 24
Accessing Additional Properties from ASR Results............................ 26
Support Notes... 27

VoiceXML Properties ... 28
VoiceXML 2.0.. 28
VoiceXML 2.1.. 30

Chapter 2 Platform Extensions... 33

Platform Extensions to VoiceXML ... 33
Element Extensions .. 33
Property Extensions.. 39
Error Extensions ... 45
Platform-Specific Properties ... 46

Call Control Elements.. 48

Table of Contents

4 Genesys Voice Platform 7.6

TXML .. 49
Object Element Extensions... 50

Chapter 3 Reference for Call Control Elements .. 63

Call Control Elements.. 64
<ALERT_LEG>.. 65
<BRIDGE_CALL>.. 66
<CREATE_LEG_AND_DIAL> ... 68

How It Works... 71
Route-Based Dialing... 73

<HANGUP_AND_DESTROY_LEG>... 73
<END_SESSION>... 74
<LEG_WAIT> .. 75
<ON_LEGHUP> .. 77
<QUEUE_CALL>... 78
<REXFER>.. 82
<SCRIPT_RESULT> ... 84
<SET> ... 87
<UNBRIDGE_CALL> .. 88
Treatments... 90

PlayAnnouncement... 90
PlayAnnouncementandCollectDigits... 91
PlayApplication ... 92
Music .. 92
Retransfer ... 92

Appendix A Transfer Scripts with DTMF Base ... 93

Overview.. 93
Configuring TransferConnect in GVP .. 93
Examples of Transfer Scripts... 93

Converted XML Script for XferConnect .. 94

Appendix B UTF-8 Support for Attached Data.. 99

Overview.. 99
Application to IVR Server .. 99
IVR Server to Application .. 100
Double-Byte Character .. 101

Appendix C Passing MRCP Vendor Specific Parameters 103

Overview.. 103

VoiceXML 2.1—Reference Manual 5

Table of Contents

Hotword Support.. 103
Passing Parameters to ASR Servers .. 104
Passing Parameters to TTS Servers ... 105

Appendix D Key Ahead ... 107

Overview.. 107
Clearing Key Ahead Buffer .. 108

Appendix E SIP Headers... 117

Propagation of Headers... 117
P-Asserted-Identity ... 117
Call-ID... 117
Accessing Header Values ... 117

Appendix F Application Developer Note... 119

Transferring Calls Using GVP.. 119
Using TRANSFER Block .. 120
Using CONNECT Block .. 121

Appendix G Best Practices... 125

Overview.. 125
Application Guidelines ... 126

Careful Caching of Resources.. 126
Reduce Number of Page Transitions.. 127
Reduce Number of ECMAScripts ... 127
Reduce Number of Global Variables... 128
Reduce Usage of Inline ECMAScripts .. 128
Reduce Time Required to Compile VoiceXML Page 128
Use fetchhint Values (safe or prefetch) Properly 131
Production Deployment .. 133
Ensure That Expires Header is Present ... 134
Avoid Using Inline Grammars ... 134
Precompile Grammars When Possible ... 134
Avoid Frequent Modification of Application Root Document............. 134
Avoid Keeping Audio Files on GVP Servers 135
Reduce Sample Audio Files to 8K Samples/Sec, 8bit Mono 135
Use Asynchronous Mode for Posting Audio Recordings 135
Adjust Timeout to a Reasonable Amount Depending on Data Being

Collected... 135
Resolve Grammar Ambiguity.. 136

Table of Contents

6 Genesys Voice Platform 7.6

Renew Expires Time for Resources When If-Modified-Since Request
Made... 136

Avoid Using <break> tag for Pause Between Audio Prompts........... 136
Avoid Interleaving of Small TTS Prompts with Audio Prompts 136
Understand Prompt Queuing .. 138
Grammars Inside Transfers .. 138
Tune Grammars and Prompts for Speech Applications.................... 138
Load Test Applications Before Production Operations 139

Index ... 141

VoiceXML 2.1—Reference Manual 7

Preface
Welcome to the Genesys Voice Platform 7.6 VoiceXML 2.1 Reference Manual.
This manual provides information about developing voice applications with
Voice Extensible Markup Language (VoiceXML) 2.1 on the Genesys Voice
Platform (GVP). It presents VoiceXML 2.1 concepts and describes the
platform extensions on the GVP.

This document is valid only for the 7.6 release(s) of this product.

Note: For releases of this document created for other releases of this product,
please visit the Genesys Technical Support website, or request the
Documentation Library DVD, which you can order by e-mail from
Genesys Order Management at orderman@genesyslab.com.

This preface provides an overview of this document, identifies the primary
audience, introduces document conventions, and lists related reference
information:
 Intended Audience, page 7
 Chapter Summaries, page 8
 Document Conventions, page 8
 Related Resources, page 10
 Making Comments on This Document, page 12
 Document Change History, page 12

Intended Audience
This guide, primarily intended for system integrators and administrators,
assumes that you have a basic understanding of:

• Computer-telephony integration (CTI) concepts, processes, terminology,
and applications.

• Network design and operation.

• Your own network configurations.

You should also be familiar with HTML, XML, and VoiceXML concepts.

mailto:orderman@genesyslab.com

8 Genesys Voice Platform 7.6

Preface Chapter Summaries

Chapter Summaries
In addition to this preface, this document contains the following chapters and
an appendixes:

• Chapter 1, “Overview,” on page 13, introduces VoiceXML and describes
the GVP platform specifics.

• Chapter 2, “Platform Extensions,” on page 33, describes the platform
extensions for VoiceXML 2.1.

• Chapter 3, “Reference for Call Control Elements,” on page 63, describes
the call control element extensions that the platform supports.

• Appendix A, “Transfer Scripts with DTMF Base,” on page 93, provides
information on how to develop transfer scripts to support the
TransferConnect feature.

• Appendix B, “UTF-8 Support for Attached Data,” on page 99, describes
the UTF-8 support and provides a VoiceXML example.

• Appendix C, “Passing MRCP Vendor Specific Parameters,” on page 103,
describes how to pass MRCP vendor-specific parameters.

• Appendix D, “Key Ahead,” on page 107, describes the Key Ahead feature
and provides VoiceXML examples.

• Appendix E, “SIP Headers,” on page 117, describes how to propagate SIP
Header values to VoiceXML applications.

• Appendix F, “Application Developer Note,” on page 119, provides
additional information for application developers.

• Appendix G, “Best Practices,” on page 125, summarizes some of the
techniques that can be used to develop efficient VoiceXML applications.

Document Conventions
This document uses certain stylistic and typographical conventions—
introduced here—that serve as shorthands for particular kinds of information.

Document Version Number

A version number appears at the bottom of the inside front cover of this
document. Version numbers change as new information is added to this
document. Here is a sample version number:

75fr_ref_09-2006_v7.6.000.00

You will need this number when you are talking with Genesys Technical
Support about this product.

VoiceXML 2.1—Reference Manual 9

Preface Document Conventions

Type Styles

Italic

In this document, italic is used for emphasis, for documents’ titles, for
definitions of (or first references to) unfamiliar terms, and for mathematical
variables.

Examples: • Please consult the Genesys Migration Guide for more information.

• A customary and usual practice is one that is widely accepted and used
within a particular industry or profession.

• Do not use this value for this option.

• The formula, x +1 = 7 where x stands for . . .

Monospace Font

A monospace font, which looks like teletype or typewriter text, is used for
all programming identifiers and GUI elements.

This convention includes the names of directories, files, folders, configuration
objects, paths, scripts, dialog boxes, options, fields, text and list boxes,
operational modes, all buttons (including radio buttons), check boxes,
commands, tabs, CTI events, and error messages; the values of options; logical
arguments and command syntax; and code samples.

Examples: • Select the Show variables on screen check box.

• Click the Summation button.

• In the Properties dialog box, enter the value for the host server in your
environment.

• In the Operand text box, enter your formula.

• Click OK to exit the Properties dialog box.

• The following table presents the complete set of error messages T-Server®
distributes in EventError events.

• If you select true for the inbound-bsns-calls option, all established
inbound calls on a local agent are considered business calls.

Monospace is also used for any text that users must manually enter during a
configuration or installation procedure, or on a command line:

Example: • Enter exit on the command line.

Screen Captures Used in This Document

Screen captures from the product GUI (graphical user interface), as used in this
document, may sometimes contain a minor spelling, capitalization, or
grammatical error. The text accompanying and explaining the screen captures
corrects such errors except when such a correction would prevent you from

10 Genesys Voice Platform 7.6

Preface Related Resources

installing, configuring, or successfully using the product. For example, if the
name of an option contains a usage error, the name would be presented exactly
as it appears in the product GUI; the error would not be corrected in any
accompanying text.

Square Brackets

Square brackets indicate that a particular parameter or value is optional within
a logical argument, a command, or some programming syntax. That is, the
parameter’s or value’s presence is not required to resolve the argument,
command, or block of code. The user decides whether to include this optional
information. Here is a sample:

smcp_server -host [/flags]

Angle Brackets

Angle brackets indicate a placeholder for a value that the user must specify.
This might be a DN or port number specific to your enterprise. Here is a
sample:

smcp_server -host <confighost>

Related Resources
Consult these additional resources as necessary:

• Genesys Voice Platform 7.6 Deployment Guide, which provides detailed
installation and configuration instructions for GVP.

• Genesys Voice Platform 7.6 Reference Manual, which provides
instructions for the administration, provisioning, and configuring of GVP
and its components.

• Genesys Voice Platform 7.6 Troubleshooting Guide, which provides trap
and basic troubleshooting information for the GVP.

• Genesys Voice Platform 7.6 Voice Application Reporter SDK Developer’s
Guide, which provides examples on how to develop VoiceXML
applications that interface with the Voice Application Reporter (VAR)
database and generate application reports.

• Genesys 7.6 Proactive Contact Solution Guide, which consolidates
information about the Genesys Proactive Contact solution. The Genesys
Proactive Contact solution integrates Outbound Contact with GVP, and
provides the ability to proactively initiate and handle outbound campaign
calls using GVP.

VoiceXML 2.1—Reference Manual 11

Preface Related Resources

• Voice Extensible Markup Language (VoiceXML) Version 2.1, W3C
Candidate Recommendation 13 June 2005. The World Wide Web
Consortium (W3C) publishes a technical report as a Candidate
Recommendation to indicate that the document is believed to be stable, and
to encourage its implementation by the developer community.

• Genesys Technical Publications Glossary, which ships on the Genesys
Documentation Library DVD and which provides a comprehensive list of
the Genesys and CTI terminology and acronyms used in this document.

• Genesys Migration Guide, which ships on the Genesys Documentation
Library DVD, and which provides documented migration strategies for
Genesys product releases. Contact Genesys Technical Support for more
information.

• Release Notes and Product Advisories for this product, which are available
on the Genesys Technical Support website at
http://genesyslab.com/support.

Information about supported operating systems and third-party software is
available on the Genesys Technical Support website in the following
documents:

• Genesys Supported Operating Environment Reference Manual

• Genesys Supported Media Interfaces Reference Manual

Genesys product documentation is available on the:

• Genesys Technical Support website at http://genesyslab.com/support.

• Genesys Documentation Library DVD, which you can order by e-mail
from Genesys Order Management at orderman@genesyslab.com.

Consult these additional resources as necessary:

• Genesys Hardware Sizing Guide, which provides information about
Genesys hardware sizing guidelines for the Genesys 7.x and Genesys 8.x
releases.

• Genesys Interoperability Guide, which provides information on the
compatibility of Genesys products with various Configuration Layer
Environments; Interoperability of Reporting Templates and Solutions; and
Gplus Adapters Interoperability.

• Genesys Licensing Guide, which introduces you to the concepts,
terminology, and procedures relevant to the Genesys licensing system.

• Genesys Database Sizing Estimator 7.6 Worksheets, which provides a
range of expected database sizes for various Genesys products.

For additional system-wide planning tools and information, see the release-
specific listings of System Level Documents on the Genesys Technical Support
website, accessible from the system level documents by release tab in the
Knowledge Base Browse Documents Section.

Genesys product documentation is available on the:

• Genesys Technical Support website at http://genesyslab.com/support.

http://genesyslab.com/support
http://genesyslab.com/support/dl/retrieve/default.asp?item=B6C52FB62DB42BB229B02755A3D92054&view=item
http://genesyslab.com/support/dl/retrieve/default.asp?item=A9CB309AF4DEB8127C5640A3C32445A7&view=item
http://genesyslab.com/support
mailto:orderman@genesyslab.com
http://genotype.genesyslab.com/support/dl/browse/Default.asp?view=list&list=mrno-cnti&grby=epms;0&publ=11,39&nflt=publ&show=tabl&epms=1&mask=83&indx=141&ctgr=30,23,27,31,683,736,1097,1241,1311,1321
http://genesyslab.com/support

12 Genesys Voice Platform 7.6

Preface Making Comments on This Document

• Genesys Documentation Library DVD, which you can order by e-mail
from Genesys Order Management at orderman@genesyslab.com.

Making Comments on This Document
If you especially like or dislike anything about this document, please feel free
to e-mail your comments to Techpubs.webadmin@genesyslab.com.

You can comment on what you regard as specific errors or omissions, and on
the accuracy, organization, subject matter, or completeness of this document.
Please limit your comments to the information in this document only and to the
way in which the information is presented. Speak to Genesys Technical
Support if you have suggestions about the product itself.

When you send us comments, you grant Genesys a nonexclusive right to use or
distribute your comments in any way it believes appropriate, without incurring
any obligation to you.

Document Change History
This section lists topics that are new or that have changed significantly since
the first release of this document.

Release 7.6.4

• TXML media elements are no longer supported and have been removed
from Appendix A.

mailto:techpubs.webadmin@genesyslab.com
mailto:orderman@genesyslab.com

VoiceXML 2.1—Reference Manual 13

Chapter

1 Overview
This chapter describes VoiceXML (Voice Extensible Markup Language) and
provides an overview of the general platform architecture.

This chapter covers the following topics:
 Introducing VoiceXML, page 13
 VoiceXML Platform Architecture, page 14
 Supported Schemas, page 15
 Platform Specifics, page 15
 VoiceXML Properties, page 28

Introducing VoiceXML
VoiceXML is a standard markup language used to develop voice applications.
Voice applications use an HTTP browser and server model. The voice
application host acts as the server and the telephony server acts as the browser
that fetches and executes VoiceXML documents. VoiceXML provides a simple
means for:

• Playing synthesized speech (text-to-speech) and audio files.

• Recognizing and recording spoken input.

• Recognizing Dual-Tone Multi-Frequency (DTMF) input.

• Controlling the flow of a call.

For more information about VoiceXML, refer to the Voice Extensible Markup
Language (VoiceXML) Version 2.1, W3C Candidate Recommendation 13 June
2005.

14 Genesys Voice Platform 7.6

Chapter 1: Overview VoiceXML Platform Architecture

VoiceXML Platform Architecture
Figure 1 illustrates the architecture of a voice application. A customer calls a
specified phone number; this call is answered at a VoiceXML gateway, and the
request is passed to the Web Server.

Figure 1: Platform for Voice Application

The client voice application, the VoiceXML Interpreter, sends requests to the
Web Server through the VoiceXML Interpreter Context. The Web Server
produces VoiceXML documents in reply. The VoiceXML Interpreter parses
and executes the instructions in the VoiceXML document. For example, when
the document indicates that user input is required, the Interpreter hands control
over to a speech recognition engine that “hears” and interprets the spoken
response. The speech recognition component is entirely separate from the other
components of the gateway.

The Interpreter Context works in conjunction with the Interpreter component.
For example, Interpreter Context may listen for an escape phrase that will take
the user to an agent or to another document in the voice application. The
implementation platform is comprised of telephony, automatic speech
recognition (ASR), text-to-speech (TTS), and conferencing components. These

VoiceXML 2.1—Reference Manual 15

Chapter 1: Overview Supported Schemas

components generate events in response to caller actions (for example, spoken
input received or caller disconnect) or system events (for example, timeout
expiration), and the VoiceXML Interpreter or VoiceXML Interpreter Context
acts on these events.

Supported Schemas
GVP supports the following schema files.

• VoiceXML 2.1 W3C CR schema

• Genesys namespace (http://www.genesyslab.com/vxml/2.0/ext/20020430)
schema

• SSML 1.0 R schema

• SRGS 1.0 R schema

• Telera namespace (http://www.telera.com/vxml/2.0/ext/20020430)
schema

Platform Specifics
This section describes the enhancements in VoiceXML 2.1 and how GVP
supports them. Refer to the Voice Extensible Markup Language (VoiceXML)
Version 2.1, W3C Candidate Recommendation 13 June 2005 for examples and
sample scripts.

Table 1 lists the elements that have been introduced or enhanced in
VoiceXML 2.1.

Table 1: New or Enhanced Elements in VoiceXML 2.1

Element Purpose New/Enhanced GVP Support

<data> Fetches arbitrary XML data from a
document server.

New Yes

<disconnect> Disconnects a session. Enhanced Yes

<grammar> References a speech recognition or
DTMF grammar.

Enhanced Yes

<foreach> Iterates through an ECMAScript
array.

New Yes

<mark> Declares a bookmark in a sequence of
prompts.

Enhanced Yes

<property> Controls platform settings. Enhanced Yes

16 Genesys Voice Platform 7.6

Chapter 1: Overview Platform Specifics

Referencing Grammars Dynamically

A new attribute, srcexpr, is available in the <grammar> element of the
VoiceXML application.

srcexpr—Equivalent to src, except that the URI is dynamically determined by
evaluating the given ECMAScript expression in the current scope (for
example, the current form item). The expression must be evaluated each time
the grammar needs to be activated. If srcexpr cannot be evaluated, an
error.semantic event is thrown.

Exactly one of src, srcexpr, or an inline grammar must be specified;
otherwise, an error.badfetch event is thrown.

Referencing Scripts Dynamically

A new attribute, srcexpr, is available in the <script> element of the
VoiceXML application.

srcexpr—Equivalent to src, except that the URI is dynamically determined by
evaluating the given ECMAScript expression. The expression must be
evaluated each time the script needs to be executed. If srcexpr cannot be
evaluated, an error.semantic event is thrown.

Exactly one of src, srcexpr, or an inline script must be specified; otherwise,
an error.badfetch event is thrown.

Concatenating Prompts Dynamically Using <foreach>

A new element, <foreach>, is available in VoiceXML 2.1.

<foreach>—Enables a VoiceXML application to iterate through an
ECMAScript array and execute the content within the <foreach> element for
each item in that array.

<script> References a document containing
client-side ECMAScript.

Enhanced Yes

<transfer> Transfers the user to another
destination.

Enhanced Yes

Table 1: New or Enhanced Elements in VoiceXML 2.1 (Continued)

Element Purpose New/Enhanced GVP Support

VoiceXML 2.1—Reference Manual 17

Chapter 1: Overview Platform Specifics

Attributes

Both array and item must be specified; otherwise, an error.badfetch event is
thrown.

The <foreach> element can occur in executable content and as a child of
<prompt>.

Example of <foreach> VoiceXML Element

<?xml version="1.0" encoding="UTF-8"?>
<vxml xmlns="http://www.w3.org/2001/vxml" version="2.1">

 <script>
 function GetMovieList()
 {
 var movies = new Array(3);
 movies[0] = new Object();
 movies[0].audio = "godfather.wav"; movies[0].tts = "godfather";
 movies[1] = new Object();
 movies[1].audio = "high_fidelity.wav"; movies[1].tts = "high fidelity";
 movies[2] = new Object();
 movies[2].audio = "raiders.wav"; movies[2].tts = "raiders of the lost ark";

 return movies;
 }
 </script>

 <form id="pick_movie">

 <!--
 GetMovieList returns an array of objects
 with properties audio and tts.
 The size of the array is undetermined until runtime.
 -->
 <var name="prompts" expr="GetMovieList()"/>

 <field name="movie">
 <grammar xmlns="http://www.w3.org/2001/vxml"
 type="application/srgs+xml" xml:lang="en-US"
 version="1.0" mode="voice" root="command">

Table 2: <foreach> Attributes

array An ECMAScript expression that must evaluate to an array;
otherwise, an error.semantic event is thrown.

item The variable that stores each array item upon each iteration
of the loop. A new variable will be declared if it is not
already defined within the parent’s scope.

18 Genesys Voice Platform 7.6

Chapter 1: Overview Platform Specifics

 <rule id="command" scope="public">
 <one-of>
 <item> godfather </item>
 <item> high fidelty </item>
 <item> raiders of the lost ark </item>
 </one-of>
 </rule>
 </grammar>

 <prompt>
 <audio src="prelist.wav">Say the name of the movie from following list.</audio>
 <foreach item="thePrompt" array="prompts">
 <audio expr="thePrompt.audio"><value expr="thePrompt.tts"/></audio>
 <break time="300ms"/>
 </foreach>
 </prompt>

 <noinput>
 I'm sorry. I didn't hear you.
 <reprompt/>
 </noinput>

 <nomatch>
 I'm sorry. I didn't get that.
 <reprompt/>
 </nomatch>
 <filled>
 You said <value expr="movie"/>
 </filled>
 </field>
 </form>
</vxml>

Using <mark> to Detect Bargein During Prompt Playback

The Voice Communication Server/IP Communication Server (VCS/IPCS) is
dependent on the partner MRCP TTS server’s ability to support <mark> as
described in Section 3.3.2 of the Speech Synthesis Markup Language (SSML)
specification. The <mark> element places a marker into the text/element
sequence. The MRCP TTS server must inform the interpreter when <mark> is
executed during audio output.

GVP provides to the VoiceXML application the last <mark> element (if any)
that was executed before bargein or the end of the prompt and the amount of
time that had elapsed since the <mark> element.

GVP fully supports <mark> contingent upon the MRCP TTS servers support of
sending MRCP SPEECH-MARKER events that are synchronized with the sending of
the corresponding RTP packets for the TTS stream.

Genesys supports using Nuance SWMS with RealSpeak for <mark>.

VoiceXML 2.1—Reference Manual 19

Chapter 1: Overview Platform Specifics

Note: RealSpeak 4.0 only supports <mark> with names that are unsigned
32-bit integers. The <mark> elements that do not meet this requirement
are ignored by RealSpeak.

Recording User Utterances While Attempting Recognition

Several elements defined in VoiceXML can instruct the Interpreter to accept
user input during execution. GVP has extended the <field>, <initial>, <link>,
and <menu> elements to allow utterance recordings. Support for the <transfer>
element is optional with VoiceXML 2.1, and is not supported by GVP.
VoiceXML 2.1 extends these elements so that the Interpreter can conditionally
enable recording while simultaneously gathering input from the user.

To enable recording during recognition, set the value of the recordutterance
property to true. If the recordutterance property is set to true in the current
scope, the three shadow variables shown in Table 3 are set on the
application.lastresult$ object whenever the application.lastresult$ object
is assigned (for example, when a <link> is matched).

When these properties are set on the application.lastresult$ object, if an
input item (as defined in the VoiceXML specification) has also been filled and
has its shadow variables assigned, the Interpreter also assigns recording,
recordingsize, and recordingduration shadow variables for these input items;
the values of these equal the corresponding properties of the
application.lastresult$ object. For example, in the case of <link> and
<menu>, since no input item has its shadow variables set, the Interpreter sets
only the application.lastresult$ properties. Like recordings created using
the <record> element, utterance recordings can be played back using the expr
attribute on <audio>.

Table 3: Recordutterance-Related Shadow Variables

Shadow
Variable

Description

recording The variable that stores a reference to the recording or is
undefined if no audio is collected. Like the input item
variable associated with a <record> element, as described
in VoiceXML specification.

recordingsize The size of the recording in bytes, or undefined if no
audio is collected.

recordingduration The duration of the recording in milliseconds, or
undefined if no audio is collected.

20 Genesys Voice Platform 7.6

Chapter 1: Overview Platform Specifics

User utterances can be recorded when there is a recognition active. This
implies that during <transfer>, if the recognition is turned on, user utterances
can be recorded.

Like recordings created using the <record> element, utterance recordings can
be submitted to a document server via HTTP POST, using the namelist attribute
of the <submit> and <subdialog> elements. The enctype attribute must be set to
multipart/form-data, and the method attribute must be set to post. To provide
flexibility in the naming of the variable that is submitted to the document
server, the Interpreter also enables the utterance recording to be assigned to
and, posted via, any valid ECMAScript variable.

Note: During execution of the <submit> element, GVP uses multipart-
formdata encoding type for POSTing recording/user utterance
variables.

The user utterance recording is supported for MRCP ASR only.

Posting User Utterances

User utterances can be posted to the VoiceXML application during <submit> or
<subdialog>. When the Interpreter encounters either of these two elements,
utterances for all of the recognitions that have occurred so far will be posted.
For example, if three recognitions have occurred since the last
<submit>/<subdialog>, all three utterances will be posted to the application
during current <submit>/<subdialog>.

Posting of utterances is a two step process:

1. The Interpreter fetches all of the captured utterances from the ASR server
to VCS/IPCS.

2. The Interpreter posts them to the VoiceXML application.

The following sections provide more detail about each step, as well as the
controls that are available to the VoiceXML application to regulate the
Interpreter behavior during each step.

<submit> or <submit mode="sync"> or <subdialog>

After each recognition, the Interpreter downloads the captured utterance from
the ASR server to the VCS/IPCS. During <submit> or <subdialog> execution,
the Interpreter packages all of the utterances and any other fields (including the
regular <record>, for example) into one multipart/form-data package, and
posts it to the VoiceXML application.

<submit mode="async">

After each recognition, the Interpreter downloads the captured utterance from
the ASR server to the VCS/IPCS. During <submit mode="async"> execution,
the Interpreter packages all of the utterances and any other fields (including the

VoiceXML 2.1—Reference Manual 21

Chapter 1: Overview Platform Specifics

regular <record>, for example) into one multipart/form-data package, and
queues it to the Bandwidth Manager.

Note: In both scenarios, the ASR server to the VCS/IPCS download always
happens synchronously. This might adversely affect the caller-
perceived latency. If the VoiceXML application wants to improve the
caller-perceived latency, the Interpreter makes available a custom
property—com.genesys.utterancefetchmode—that can be used to
control the Interpreter behavior during the download from ASR Server
to the VCS/IPCS.

com.genesys.utterancefetchmode="sync"

If the property is unspecified, it defaults to sync. In both cases (unspecified
and specified as sync), the Interpreter behavior is to download the utterances
from the ASR server to the VCS/IPCS synchronously (that is, the same
behavior as the two preceding scenarios).

com.genesys.utterancefetchmode="async"

During <submit mode="async"> execution, the Interpreter spawns off an
independent thread to download the utterances for all recognitions that have
happened so far. The Interpreter thread also hands off all of the field data
(including any <record> data) to this independent thread. The Interpreter then
proceeds with the VoiceXML execution. When the independent thread has
finished downloading the utterances, it packages all of the utterances and any
field data (including the regular <record>, for example) into one
multipart/form-data package, and queues it to the Bandwidth Manager.
Because everything happens async, the shadow variables
(lastresult$.recording, lastresult$.recordingsize, and
lastresult$.recordingduration) are not filled in. The <fieldname>$.recording
is still valid, and it can be used in the namelist to post the recording (see the
example below).

Table 4 captures all combinations.

22 Genesys Voice Platform 7.6

Chapter 1: Overview Platform Specifics

Example of VoiceXML Application with Async Utterance Fetch

<?xml version="1.0" encoding="UTF-8"?>
<vxml xmlns="http://www.w3.org/2001/vxml"
 xmlns:telera="http://www.telera.com/vxml/2.0/ext/20020430"
 xmlns:conf="http://www.w3.org/2001/vxml-conformance" version="2.1">

<property name="recordutterance" value="true"/>
<property name="com.genesys.utterancefetchmode" value="async"/>

<form id="utterance_test">
 <field name="saywhat">
 <grammar version="1.0" root="city" type="application/srgs+xml">
 <rule scope="public" id="city">
 <one-of>
 <item>chicago</item>
 </one-of>
 </rule>
 </grammar>
 <prompt count="1">
 Say 'Chicago'.

Table 4: Sync / Async Combinations

com.genesys.
utterance
fetchmode

<submit>
Mode

Interpreter Behavior

sync (or
unspecified)

sync (and
<subdialog>)

The Interpreter downloads the utterance after each recognition.
During <submit>/<subdialog>, the Interpreter packages all
utterances and field data into one multipart/form-data, and posts
it to the VoiceXML application.

sync (or
unspecified)

async The Interpreter downloads the utterance after each recognition.
During <submit>, the Interpreter packages all utterances and
field data into one multipart/form-data, and queues it to the
Bandwidth Manager.

async sync (and
<subdialog>)

This is an invalid combination, and it is not supported. An
error.unsupported.utterancefetchmode is thrown.

async async During <submit>, the Interpreter spawns off a thread to
download all utterances so far. The Interpreter also hands off all
field data to the new thread. The Interpreter proceeds with
normal execution. The new thread, after downloading the
utterances, packages everything (utterance plus field data) into
one multipart/form-data and queues it to the Bandwidth
Manager. The shadow variables (recording, recordingsize,
and recordingduration) are not available to the VoiceXML
application.

VoiceXML 2.1—Reference Manual 23

Chapter 1: Overview Platform Specifics

 </prompt>
 <prompt count="2">
 Say 'Chicago' again.
 </prompt>
 <prompt count="3">
 Say 'Chicago' one more time.
 </prompt>
 </field>
 <filled>
 <var name="the_recording" expr="saywhat$.recording"/>
 <telera:submit method="post"
 mode="async"
 enctype="multipart/form-data"
 next="http://10.10.10.245:9810/upload_log/capture1.asp"
 asyncposturl="http://10.10.10.245:9810/upload_log/capture1.asp"
 namelist="the_recording"/>
 </filled>
</form>
</vxml>

Specifying the Media Format of Utterance Recordings

In this release, GVP does not support the recordutterancetype property. GVP
defaults the recordutterancetype property to the ASR vendor’s default
recording type.

Note: The recordutterancetype property does not affect the <record>
element.

Interaction with Existing Controls

GVP supports the following controls for utterance capture:

• The VCS/IPCS controls how many simultaneous ports can do utterance
recording.

• The Policy Manager controls how many total calls per day per application
can do utterance recording.

Note: This applies to GVP multi-tenancy only. For GVP single-tenancy,
there is no upper limit.

• The appid.xml has the $asrwavfilelog$ flag, which instructs the
VCS/IPCS to turn on/off utterance capture (no VoiceXML application
intervention is necessary).

All of these controls apply to utterance captures on MRCP ASR.

24 Genesys Voice Platform 7.6

Chapter 1: Overview Platform Specifics

Table 5 shows how recordutterance property and $asrwavfilelog$ interact.

If the application turns on the utterance recording (via recordutterance), but
the recording does not occur because of the port/Policy Manager controls, the
value of the recording variable is undefined (see Table 3 on page 19).

Adding namelist to <disconnect>

A new attribute, namelist, is available in the <disconnect> element of the
VoiceXML application:

namelist—Specifies the variable names to be returned to the Interpreter
context. The default is to return no variables; this means that the Interpreter
context receives an empty ECMAScript object. If an undeclared variable is
referenced in the namelist, an error.semantic is thrown (refer to the
VoiceXML 2.1 specification)

The namelist variables are available to the Interpreter context as part of the
session.genesys.disconnect object, and each variable can be accessed as
session.genesys.disconnect.<varname>, where <varname> can be any variable
name specified on the namelist.

Adding type to <transfer>

VoiceXML 2.1 extends the <transfer> element to support the following
additional attribute:

type—The type of transfer. The value can be bridge, blind, or consultation.

GVP supports all of the preceding transfer types.

Table 5: Interaction of recordutterance and $asrwavfilelog$

recordutterance $asrwavfilelog$ Comments

true X The utterance recording occurs subject to port/Policy
Manager controls. Recordings will be posted to the
VoiceXML application, as described in the preceding
sections.

false X The utterances will not be recorded.

unspecified true The utterance recording occurs, subject to port/Policy
Manager controls. The recordings remain on the ASR
server (GVP will not retrieve them).

false/unspecified The utterances will not be recorded.

VoiceXML 2.1—Reference Manual 25

Chapter 1: Overview Platform Specifics

Notes: For consultation transfer, transferaudio is not supported; however,
transferaudio is supported for bridge transfer.

In VoiceXML 2.0, <transfer> has a bridge attribute. With VoiceXML
2.1, exactly one of bridge or type can be specified; otherwise an
error.badfetch event is thrown.

It is common for switch vendors to describe a consultative transfer using
different terms, such as, whisper transfer, screen transfer, or consultative
transfer to mean essentially the same concept—the extension currently talking
with an incoming caller can invoke a transfer request to the switching system,
provide a new target extension, talk with the person who answers that
extension number (an agent) and then hang-up. The caller is connected to the
agent. GVP can support this using internal or external bridging methods. To
accomplish a screen transfer as described, the developer must use Genesys
TXML if they want the GVP platform to dial out to the agent and play some
information before bridging the caller and agent together while GVP stops
listening (internal bridging) or releasing the call entirely where the bridge is
external.

The function consultative transfer, defined in VoiceXML standards, is much
more restricted and takes on a narrower meaning.

VoiceXML standards define consultation transfer as similar to blind transfer
except that the outcome of the transfer call setup is known and the caller is not
dropped as a result of an unsuccessful transfer attempt. In this sense,
VoiceXML consultative transfer is about a bad outcome, not a means of talking
to the target phone first. When the browser responds to a VoiceXML
consultative transfer, if the call fails from an unsuccessful transfer attempt,
GVP will return an error response, which is an exception toward the
VoiceXML application. It is the responsibility of the application programmer
to recover from the exception if received within the application, such as trying
again.

While GVP supports VoiceXML consultative transfer requests over IP SIP and
also TDM in carrier connected environments, it has not been validated with
TDM connections, in behind-PBX environments, using the consultative
transfer tag.

GVP supports consultative transfer for the following configurations:

• SIP REFER with Replaces

• Two B-Channel Transfer (TBCT)

• Explicit Call Transfer (ECT)

• Release Link Trunking (RLT)

If the value of the type attribute is set to bridge, the Interpreter’s behavior is
identical to its behavior when the value of the bridge attribute is set to true. If
the value of the type attribute is set to blind, the Interpreter’s behavior is

26 Genesys Voice Platform 7.6

Chapter 1: Overview Platform Specifics

identical to its behavior when the bridge attribute is set to false. The behavior
of the bridge attribute is detailed in the VoiceXML specification.

The bridge attribute is maintained for backward compatibility with VoiceXML
2.0. Since all of the functionality of the bridge attribute has been incorporated
into the type attribute, VoiceXML application developers are encouraged to
use the type attribute.

The connecttimeout attribute of <transfer> applies if the type attribute is set to
bridge or consultation. The maxtime attribute of <transfer> applies if the type
attribute is set to bridge.

Accessing Additional Properties from ASR Results

If the VoiceXML application is required to access additional properties from
ASR results, use the com.genesys.accessasrresultproperties property. By
default, this property is set to false. Advanced application developers can
enable it to make use of ASR vendor-specific properties passed back from
third-party ASR servers.

Example

<result>
<interpretation grammar="session:CNGRAMMAREXPRESSION1_grammar21" confidence="29">

<input mode="speech">New York New York</input>
<instance>

<city confidence="29">NYC</city>
<state confidence="70">New York</state>

</instance>
</interpretation>

</result>

In the above grammar example, if com.genesys.accessasrresultproperties is
set to false, the application.lastresult$.interpretation would populate as:

application.lastresult$.interpretation is an object

application.lastresult$.interpretation.city = NYC

application.lastresult$.interpretation.state = New York

This is equivalent to the platform behavior prior to GVP 7.6 before the
com.genesys.accessasrresultproperties property was introduced.

On the other hand, if com.genesys.accessasrresultproperties is set to true,
additional result properties are exposed and the
application.lastresult$.interpretation would populate as:

application.lastresult$.interpretation is an object

application.lastresult$.interpretation.city is an object

application.lastresult$.interpretation.city.$ = NYC

application.lastresult$.interpretation.city.confidence = 29

VoiceXML 2.1—Reference Manual 27

Chapter 1: Overview Platform Specifics

application.lastresult$.interpretation.state is an object

application.lastresult$.interpretation.state.$ = New York

application.lastresult$.interpretation.state.confidence = 70

The $ property holds the text value of interpretation top-level properties like
city and state when sub-properties such as confidence exist. Otherwise,
without sub-properties like confidence, the text value would be assigned
directly to the top-level property without the need for the $ property. This
behavior is ASR vendor-specific, and dependent on the results received for a
given grammar. A VoiceXML application can be written to be ASR vendor-
independent by verifying that the property is an object, and by accessing the $
property accordingly.

Example

<var name="result" expr="application.lastresult$.interpretation.city" />
<if cond="typeof(result)=='object’" >

<assign name="result" expr="application.lastresult$.interpretation.city.$"/>
</if>

Support Notes

<tag> GVP does not support the use of <tag> inside a Speech Recognition Grammar
Specification (SRGS) grammar when ASR is disabled in the VoiceXML
application.

<data> The <data> element enables a VoiceXML application to fetch arbitrary XML
data from a document server without transitioning to a new VoiceXML
document. The XML data fetched by the <data> element is bound to
ECMAScript through the named variable that exposes a read-only subset of the
W3C Document Object Model (DOM).

GVP fully supports the <data> element. GVP does not support additional data
formats by recognizing additional media types (this is optional as per
VoiceXML 2.1).

GVP fully supports the <data> fetching properties.

GVP does not support the <?access-control?> processing instruction.

<grammar> Support of the weight attribute in the <grammar> element is dependent on
support by the ASR server. Do not use the weight attribute in the VoiceXML
grammars if the ASR servers that are being used do not support it.

ASR grammar
support

SRGS support is via a third-party MRCP ASR server. ABNF support is on the
IBM WVS only.

DTMF grammar
support

SRGS v1.0 support is via a third-party MRCP ASR server for ASR
applications. For non-ASR applications, GVP provides native SRGS grammar
support. Native GVP does not provide optional ABNF format support or

28 Genesys Voice Platform 7.6

Chapter 1: Overview VoiceXML Properties

optional semantic interpretation support. Native support will terminate
processing of user input when the maximum allowed DTMF string is entered,
when the interdigit timeout has expired, or when a termination character has
been entered.

VoiceXML Properties
This section provides a comprehensive list of properties defined by VoiceXML
2.1 that can be specified through the <property> element in GVP. For each
property in VoiceXML, the tables specify whether GVP supports the property.
If the property is supported, the default value is provided.

For detailed descriptions of the properties, refer to the appropriate W3C
VoiceXML specification. The VoiceXML 2.1 specification only describes the
features that are in addition to VoiceXML 2.0. Refer to the VoiceXML 2.0
specification for the base 2.0 features.

References

VoiceXML version 2.0, W3C Recommendation, 16 March 2004
VoiceXML version 2.1, W3C Candidate Recommendation, 13 June 2005

VoiceXML 2.0

Table 6: Generic Speech Recognizer Properties

Property Supported Default

confidencelevel yes 0.5

sensitivity yes 0.5

speedvsaccuracy yes 0.5

completetimeout yes 1s

incompletetimeout yes 1s

maxspeechtimeout yes 20s

Table 7: Fetching Properties

Property Supported Default

fetchaudio yes n/a

fetchtimeout yes 3s

VoiceXML 2.1—Reference Manual 29

Chapter 1: Overview VoiceXML Properties

fetchaudiodelay yes 0s

fetchaudiominimum yes 0s

audiofetchhint yes prefetch

audiomaxage yes -1s

audiomaxstale yes -1s

documentfetchhint yes safe

documentmaxage yes -1s

documentmaxstale yes -1s

grammarfetchhint yes safe

grammarmaxage yes -1s

grammarmaxstale yes -1s

objectfetchhint yes safe

objectmaxage yes -1s

objectmaxstale yes -1s

scriptfetchhint yes safe

scriptmaxage yes -1s

scriptmaxstale yes -1s

Table 8: Miscellaneous Properties

Property Supported Default

inputmodes yes "voice dtmf"

maxnbest yes 1

universals yes "none"

Table 7: Fetching Properties (Continued)

Property Supported Default

30 Genesys Voice Platform 7.6

Chapter 1: Overview VoiceXML Properties

VoiceXML 2.1

Table 9: Prompt and Collect Properties

Property Supported Default

bargein yes true

bargeintype yes speech

timeout yes 0s

Table 10: Generic DTMF Recognizer Properties

Property Supported Default

interdigittimeout yes 1s

termtimeout yes 0s

termchar yes #

Table 11: <data> Fetching Properties

Property Supported Default

datafetchhint yes -1s

datamaxage yes -1s

datamaxstale yes -1s

VoiceXML 2.1—Reference Manual 31

Chapter 1: Overview VoiceXML Properties

Table 12: Recording User Utterances While Attempting
Recognition

Property Supported Default

recordutterance yes false

recordutterancetype

Note: The MRCP protocol
does not support this
property. The type of
recording provided is
dependent on the MRCP
ASR server vendor. Consult
with the vendor regarding
which types are supported
and whether this property is
configurable on the vendor’s
MRCP server.

no

32 Genesys Voice Platform 7.6

Chapter 1: Overview VoiceXML Properties

VoiceXML 2.1—Reference Manual 33

Chapter

2 Platform Extensions
The Genesys Voice Platform (GVP) provides enhanced telephony features that
you can utilize in a voice application. This chapter describes Genesys Voice
Platform extensions to VoiceXML and is divided into the following sections:
 Platform Extensions to VoiceXML, page 33
 Call Control Elements, page 48

Platform Extensions to VoiceXML
VoiceXML platform extensions consist of:

• Element Extensions

• Property Extensions

• Error Extensions

• Platform-Specific Properties

Element Extensions

The element extensions provide the following functionality:

• Asynchronous Post of Recorded Files

• Playing Dynamic Data

• Playing DTMF (Dual-Tone Multi-Frequency) Tones

• Call Progress Analysis (CPA)

• Append attribute in <param> element

• Telera Namespace Information

• Genesys Namespace Information

• Posting <log> element Information

34 Genesys Voice Platform 7.6

Chapter 2: Platform Extensions Platform Extensions to VoiceXML

Asynchronous Post of Recorded Files

The VoiceXML <submit> element has been enhanced to allow the
asynchronous posting of recordings so that the application does not have to
wait for the transmission of the recording to be completed before proceeding to
the next element. This is enabled by the use of the mode and asynchposturl
attributes.

Table 13 lists the extended attributes.

Extended Attributes

Here is an example:

<submit xmlns="http://www.telera.com/vxml/2.0/ext/20020430"
[next="URL" | expr="script to evaluate the URL"]
namelist="variablelist"
mode="async"
method="post"
asyncposturl="URL to process the recording"
/>

Note: The encoding and method attributes can be used to control how the data is
sent to the next URL.

Playing Dynamic Data

In a voice application, there are two methods for playing information provided
by a backend database system (for example, the bank account of a person) to a
caller. One method is to use speech synthesis using text-to-speech elements;
the other method is to use snippets of recorded .vox files that are selected using
a JavaScript script. Given the current limitations in speech synthesis
technology, the caller experience may be improved when the voice application
uses pre-recorded snippets rather than speech synthesis.

Table 13: Extended Attributes

mode Specifies the mode for sending the recording. This attribute
is checked if the namelist of the <submit> element contains
record field variables. It can take one of the following
values:

• sync—The namelist is sent to the next URL.

• async—The namelist is sent to both the asyncposturl
and the next URL.

asyncposturl The URL to which the namelist is sent in case of async
mode. Data is sent to asyncposturl via HTTP POST using
multi-part/form-encoding.

VoiceXML 2.1—Reference Manual 35

Chapter 2: Platform Extensions Platform Extensions to VoiceXML

The VoiceXML standard does not support the use of prerecorded .vox files to
play currency, dates, days, numbers, digits, letters, or ordinals. You can use the
enhanced <audio> element to play an array of .vox files that have been selected
by a JavaScript script. The Telera namespace xmlns is required when you use
this extension. Here is an example:
<script src='Languages/en-US/PlayBuiltinType.js'/>
<audio expr='PlayBuiltinType(“3775”,”number”);'
xmlns='http://www.telera.com/vxml/2.0/ext/20020430'/>

<audio expr='PlayBuiltinType(“41433p”,”time”);'
xmlns='http://www.telera.com/vxml/2.0/ext/20020430'/>

<audio expr='PlayBuiltinType(“20012711”,”date”,”f.SPEAK_YEAR |
f.SPEAK_DAY | f.SPEAK_MONTH”);'
xmlns='http://www.telera.com/vxml/2.0/ext/20020430'/>

<audio expr='PlayBuiltinType(“4532.99”,”currency”);'
xmlns='http://www.telera.com/vxml/2.0/ext/20020430'/>

<audio expr='PlayBuiltinType(“21”,”ordinal”);'
xmlns='http://www.telera.com/vxml/2.0/ext/20020430'/>

<audio expr='PlayBuiltinType(“IBM 200",”alphanumeric”);'
xmlns='http://www.telera.com/vxml/2.0/ext/20020430'/>

Playing DTMF Tones

The <value> element has been enhanced to play DTMF tones. The Telera
namespace xmlns is required when you use this extension. Here is an example:
<value mode=”dtmfplay” expr=”'411#'”
xmlns='http://www.telera.com/vxml/2.0/ext/20020430'/>

Call Progress Analysis

Call Progress Analysis (CPA) determines the result of an outbound call.

For the VCS, this feature depends on the TDM trunk card vendor—for
example, Dialogic—to supply the appropriate CPA detection. Enhanced CPA
results are available when the Call Progress Detection (CPD) library is
enabled. You can enable CPD through the Element Management Provisioning
System (EMPS). Refer to the Genesys Voice Platform 7.6 Reference Manual
for instructions.

For the IPCS, this feature depends on the VoIP Media Gateway having the
appropriate signaling message, which it obtains by performing the CPA
detections. With native RTP, Far End Busy support is dependent on the far end
providing the appropriate SIP messages. The CPA is done pre-connect, before
the call is answered and is dependent on appropriate SIP protocol messages
being provided for CPA. Host Media Processing (HMP) integration provides a
rich set of CPA results through HMP technology. Operator/Network Intercept
support is dependent on Early Media being provided by the far end. With
Media Sessions Markup Language (MSML) integrations (that is, Convedia and
MRP), CPA is limited to detection of Answer and Ring No Answer. Far End

36 Genesys Voice Platform 7.6

Chapter 2: Platform Extensions Platform Extensions to VoiceXML

Busy support is dependent on the far end providing the appropriate SIP
messages. The CPA is done before the call is answered, and is dependent on
the appropriate SIP protocol messages being provided for CPA.

Genesys Voice Platform supports the following CPA features:

• Normal Answer

• Answering Machine

• Fax/Modem

• Ring No Answer

• Far End Busy

• Operator/Network Intercept

• No Ringback

• Not In Service

• No Dialtone

• Unallocated Number

• Vacant Circuit

• SIT Unknown

The return result for CPA is through a dollar variable called $_cparesult$.
Table 14 lists the various values:

Table 14: Values of CPA Features

CPA Feature $cparesult$ VCS VCS
with
CPD

IPCS
Native

IPCS
HMP

IPCS
MSML

MRP

Normal Answer CPA_NORMAL      

Answering Machine CPA_ANSWERMACHINE     

Fax/Modem CPA_FAXMODEM     

Ring No Answer CPA_NOANSWER      

Far End Busy CPA_BUSY      

Operator/Network
Intercept

CPA_OPERATOR

INTERCEPT

 

No Ringback CPA_NO_RINGBACK 

Not In Service CPA_NOT_INSERVICE 

No Dialtone CPA_NODIALTONE 

Unallocated
Number

CPA_UNALLOCATED 

VoiceXML 2.1—Reference Manual 37

Chapter 2: Platform Extensions Platform Extensions to VoiceXML

To support CPA, GVP extended the <transfer> element under the Telera
namespace with the attribute AFTERCONNECTTIMEOUT (refer to
“<CREATE_LEG_AND_DIAL>” on page 68 for additional information on
this attribute). This attribute defines the timeout, afterconnecttimeout, which
starts after the outbound call is connected. The transfer will not return until this
timeout expires.

When performing CPA with VoiceXML <transfer> on a bridge transfer, unless
there is positive voice detection on the outbound call, the outbound call will be
dropped and control returned to the application.

The following outcomes for the transfer are set by the platform:

• far_end_disconnect

• near_end_disconnect

• maxtime_disconnect

• busy

• noanswer

• answermachine

• faxmodem

The following outcomes are not set:

• network_disconnect

• network_busy

• unknown

You can also use <CREATE_LEG_AND_DIAL> to perform CPA. (See
“<CREATE_LEG_AND_DIAL>” on page 68 for more information.)

The following is a VoiceXML example with the AFTERCONNECTTIMEOUT
attribute in the transfer element under the Telera namespace.

<form id=”transfer”>
<block>

<audio src=”voxfiles/transfer_title_EN_US.vox”>I will now attempt to transfer you
to the operator</audio>
 </block>

 <transfer xmlns=”http://www.telera.com/vxml/2.0/ext/20020430”
name=”operator” dest=”4085553658” connecttimeout=”20s”
afterconnecttimeout=”10s” bridge=”true”>

Vacant Circuit CPA_VACANT_CIRCUIT 

SIT Unknown CPA_SIT_UNKNOWN 

Table 14: Values of CPA Features (Continued)

CPA Feature $cparesult$ VCS VCS
with
CPD

IPCS
Native

IPCS
HMP

IPCS
MSML

MRP

38 Genesys Voice Platform 7.6

Chapter 2: Platform Extensions Platform Extensions to VoiceXML

<filled xmlns=”http://www.w3.org/2001/vxml”>

<if cond=”operator == 'busy'”>
<audio src=”voxfiles\operator_busy.wav”>The operator is
busy</audio>
<audio src=”voxfiles\return_mainmenu.wav”>Returning to main
menu</audio>
<goto next=”#menu_options” />

 </if>
</filled>

</transfer>
</form>

Append Attribute in <param> Element

A new attribute, append, is added to <param> with Genesys namespace. This
attribute indicates whether the header should be appended to the existing
header. Refer to “Classid telephonydata:put” on page 54 for more details.

Telera Namespace Information

To use the Telera namespace for extended VoiceXML elements, use the
namespace value http://www.telera.com/vxml/2.0/ext/20020430.

For information about using the Telera namespace, refer to the extension of
<submit>, <value>, or <audio> (<audio> applies to single-tenant only) elements.

Note: The namespace that GVP defines is used solely as a unique identifier,
which is consistent with the W3C specification.

Genesys Namespace Information

To use the Genesys namespace for extended VoiceXML elements, use the
namespace http://www.genesyslab.com/vxml/2.0/ext/20020430.

All new platform extensions will be added to the Genesys namespace. For
information about using the Genesys namespace, refer to the extension of
“Classid telephonydata:put” on page 54.

Note: The namespace that GVP defines is used solely as a unique identifier,
which is consistent with the W3C specification.

VoiceXML 2.1—Reference Manual 39

Chapter 2: Platform Extensions Platform Extensions to VoiceXML

Posting <log> Element Information

A new attribute, posturl, has been added to the <log> element so that the text
within the <log> element can be posted to the URL that is specified by the
posturl attribute.

Example

<log posturl="http://.../capture.asp">This is a post text from log element</log>

Property Extensions

The Genesys Voice Platform $ variables are accessible inside VoiceXML
applications as properties. All platform $ variables are read-only. Variables
containing a hyphen (-) cannot be included in a VoiceXML page, because the
ECMA Script interprets a hyphen as a minus sign. In order to get the value of a
$ variable containing a hyphen from the list below, you can pass it as a query
string parameter as shown in “Example 2” on page 43.

Table 15 lists the platform-specific variables.

Table 15: Platform-Specific Variables

did The called telephone number that the incoming call came in on.

ani The caller’s telephone number (may not be available in certain cases).

$sessionid$ A unique identifier for this call generated by the platform.

$ivr-root-dir$ The URL of the voice application’s root directory (not including web scripts
and the query string). For example, its value may be
http://www.mycompany.com/teleb/ivr, assuming that all the web scripts and
xml pages for the voice application are under the teleb/ivr on the
www.mycompany.com website.

$ivr2-root-dir$ The URL of the backup voice application’s root directory (not including web
scripts and the query string).

$ivr-url$ The URL of the voice application’s main web script (but not including any
query strings).

$ivr2-url$ The URL of the backup voice application’s main web script (but not including
any query strings).

$start-ivr-url$ The URL of the voice application’s main web script (including any query
strings).

40 Genesys Voice Platform 7.6

Chapter 2: Platform Extensions Platform Extensions to VoiceXML

$last-error$ The last error encountered by the VCS/IPCS. Possible values are:

• BAD_XMLPAGE

• XMLPAGE_NOTFOUND

• XMLPAGE_TIMEOUT

• RESOURCE_NOTFOUND

• RESOURCE_TIMEOUT

• BAD_XMLTAGNAME

• BAD_XMLTAGVALUE

• OPSERVER_ERROR

The VCS/IPCS clears this variable after the next error-free operation.

$last-error-url$ The URL of the voice application’s XML page or resource (.vox) that caused
the last error.

$last-error-string$ A free format string filled in by the VCS/IPCS code to give diagnostic
information regarding the last error.

$toll-free-num$ The phone number that was dialed by the caller to make this call.

$application-name$ The name of the voice application for this call. The Call Flow Assistant uses
this to accept or reject the call. Also used for reporting purposes.

$customer-name$ The name of the customer to bill for this call.

$lata-name$ The local calling area where the call originated, for example, LSAN for a call
from the Los Angeles area.

$ccerror-telnum$ The outbound telephone number that the VCS/IPCS code dials if the Call Flow
Assistant and voice applications are not accessible (because of a problem with
the data network).

$callerhup$ The VCS/IPCS code sets this variable to true if the caller terminated the call.
The voice application typically uses this variable to find out whether the user
terminated the call after entering some information in the middle of a form.

Table 15: Platform-Specific Variables (Continued)

VoiceXML 2.1—Reference Manual 41

Chapter 2: Platform Extensions Platform Extensions to VoiceXML

$voicefile-
format $

The ACCEPT_CALL page sets this variable, or the first XML page sent back by
the voice application sets it. Genesys recommends that you explicitly set this
variable in the voice application’s first XML page and that you not depend on
the Call Flow Assistant to set it. The VCS/IPCS code needs this value to
properly interpret the .vox/.wav files to be played in the voice application.
This is available in TXML only.

These values are available on the VCS:

• Mu Law vox formats
VOX_MULAW_6KHZ
VOX_MULAW_8KHZ

• Mu Law wav formats
WAV_MULAW_6KHZ
WAV_MULAW_8KHZ

• A Law vox formats
VOX_ALAW_6KHZ
VOX_ALAW_8KHZ

• A Law wav formats
WAV_ALAW_6KHZ
WAV_ALAW_8KHZ

• ADPCM vox formats
VOX_ADPCM_6KHZ
VOX_ADPCM_8KHZ

• ADPCM wav formats
WAV_ADPCM_6KHZ
WAV_ADPCM_8KHZ

$voicefile-
format $

(continued)

These values are available on the IPCS:

• Mu Law vox formats
VOX_MULAW_8KHZ

• Mu Law wav formats
WAV_MULAW_8KHZ

• A Law vox formats
VOX_ALAW_8KHZ

• A Law wav formats
WAV_ALAW_8KHZ

• ADPCM vox formats
VOX_ADPCM_8KHZ

• ADPCM wav formats
WAV_ADPCM_8KHZ

$_toneinput$ The VCS/IPCS code sets this variable to contain the tone that was pressed by
the caller to exit out of a TONEMAP. A voice application can get the value of this
variable by including it as part of the target URL for a subsequent form.

Table 15: Platform-Specific Variables (Continued)

42 Genesys Voice Platform 7.6

Chapter 2: Platform Extensions Platform Extensions to VoiceXML

$telephony-port$ The VCS/IPCS code sets this variable, which contains the channel number of
the inbound call. A voice application can get the value of this variable by
including it as part of the target URL for a subsequent form.

Note: This variable will not be available for the application that is executed
from the outbound leg

$_cparesult$ The VCS/IPCS code sets this variable after a CREATE_LEG_AND_DIAL request
when the outbound leg has dialed the number. It contains the result of the call
progress analysis performed by the platform.

Possible values are:

• CPA_NORMAL

• CPA_BUSY
If an outbound ISDN PRI call is busy, the ISDN disconnect message
indicates the cause; however, if the far end is busy and ISDN signaling does
not propagate a correct cause value, Busy will not be detected.
If an outbound call is busy on a T1/E1 trunk, the far end plays a busy tone.
SIP should be able to differentiate the various busy signals used worldwide.

• CPA_NOANSWER
This indicates that an outbound call was initiated but the far end did not
answer the call. Currently, in ISDN, the call continues to ring and control is
returned to the application so it can decide whether to continue to wait. In
T1/E1, the call is dropped and the application must issue a hang up to clean
up the call.

Here is another possible value if the line is ISDN:

• CPA_OPERATORINTERCEPT

$ivr-error-url$ This variable points to a URL on the backup voice application. If the
VCS/IPCS encounters any error (not just timeout) when making an HTTP get
request from the voice application, it performs an HTTP get request to the URL
at $ivr-error-url$. The query string for this URL contains the new
NextAction = CALLINPROGRESS. Voice applications handling this NextAction
can perform a graceful transfer by playing an appropriate message, and then
transferring the call to a live agent or an alternative voice application. Existing
voice applications that do not handle this request will get the same behavior as
the current behavior—that is, the call gets dropped. If VCS/IPCS cannot access
this URL or there is an error, it dials-out $cc-error-telnum$.

sid The Call Flow Assistant sets this variable while issuing the <ACCEPT_CALL>
element. It contains the value of the ScriptID as generated by the Queue
Adapter or the IVR Server Client.

$scriptdata$ This variable contains any data specific to the ScriptID. Similarly, the Queue
Adapter or the IVR Server Client provides the value to the Call Flow Assistant
when the CFA informs the Queue Adapter or the IVR Server Client about an
incoming call.

Table 15: Platform-Specific Variables (Continued)

VoiceXML 2.1—Reference Manual 43

Chapter 2: Platform Extensions Platform Extensions to VoiceXML

Example 1

Traditional dollar variables can be used only in URLs:
<vxml ...>

<form>
<block>

<goto next=“$ivr-root-dir$/mystart.asp” />
<clock>

</form>
</vxml>

Example 2

If a dollar variable has to be accessed in the scripting engine, the variable has
to passed through server-side scripting, such as ASP:

VoiceXML document #1
<vxml ...>

<form>
<block>

<goto next=“page2.asp?IvrRootDir=$ivr-root-dir$” />
</block>

</form>
<vxml>

$scripturl$ The voice application sets this variable before sending the <SCRIPT_RESULT>
element. Its value will be the top HREF for the page that the CFA generates in
response to a RUN_SCRIPT_REQ from the Queue Adapter or the IVR Server
Client.

$playfilesize$ This predefined variable for supporting unified messaging sets the
playfilesize after each play. When the caller interrupts the play with the tone
input, the voice application knows exactly when the play was interrupted by
including the predefined variable in the URL.

$recordfilesize$ This predefined variable for supporting unified messaging sets the record
filesize after each recording. The voice application can include the predefined
variable in the URL as a querystring.

$badxmlpageposturl$ The voice application can set this variable to point to a URL (within the
application) where the teleserver, upon encountering an XML page with syntax
errors, posts the bad XML page.

$dialed-number$ GVP sets this variable when it dials the outbound number. The voice
application can access this variable to find the number being dialed. The trigger
to dial out can be from the voice application using the TXML
CREATE_LEG_AND_DIAL element, the VoiceXML transfer element, the TXML
QUEUE_CALL element, or Outbound notification service. If there is an error, GVP
transfers to $ccerror-telnum$.

Table 15: Platform-Specific Variables (Continued)

44 Genesys Voice Platform 7.6

Chapter 2: Platform Extensions Platform Extensions to VoiceXML

VoiceXML document #2—page2.asp:
<vxml ...>

<script>
var a = <%=Request(“IvrRootDir”) %>;
...
if (a == “...”)
{

...
}

</script>
</vxml>

Controlling TTS Prefetch

The TTS prefetch uses the VoiceXML property extension
com.genesys.ttsfetchhint. By default, the TTS prefetch is set to safe.

• To turn off the TTS prefetch, use the value safe as shown in the following
example:

<property name="com.genesys.ttsfetchhint" value="safe"></property>

• To turn on prefetch, use the value prefetch, as shown in the following
example:

<?xml version="1.0" encoding="UTF-8"?>
<vxml version="2.1" xmlns="http://www.w3.org/2001/vxml"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<property name="termchar" value="#"></property>
<property name="com.genesys.ttsfetchhint" value="prefetch"></property>

<menu id="sample_menu" dtmf="true">
<prompt>

<enumerate>
For <value expr="_prompt"/>, Press <value expr="_dtmf"/>

</enumerate>
</prompt>
<prompt bargein="false">

Please press the number
</prompt>
<choice next="#choiceTwo_one">

Billing Enquiry
</choice>

</menu>
<form id="choiceTwo_one" >

<field name="fld1">
<prompt>

Please enter your digit
</prompt>

<grammar src="http://.../main-menu1.grxml" />
<filled>

VoiceXML 2.1—Reference Manual 45

Chapter 2: Platform Extensions Platform Extensions to VoiceXML

<prompt>you have said <value expr="fld1"/>
</prompt>
<clear/>
<goto next="grtest.xml" />
</filled>

</field>
</form>
</vxml>

Error Extensions

The following ECMA script variables are available when an error event is
thrown.

• telera.error.name

Specifies the name of the error from a list of generic errors.

• telera.error.description

A detailed description of the error that occurred.

• telera.error.currenturl

Specifies the URL of the page on which the error occurred.

• telera.error.element

Specifies the identity of the element in which the error occurred. If this is
not available, the type of element is specified instead. For example, the
<prompt> element has no id attribute; therefore, the telera.error.element
would specify <prompt>.

The following events are thrown by the platform:

• error.com.telera.createleg

Occurs for a failure condition in the CREATE_LEG_AND_DIAL call control
element.

• error.com.telera.dial

Occurs when there is a dial error during the CREATE_LEG_AND_DIAL call
control element.

• error.com.telera.bridge

Occurs for a failure to bridge after issuing the <BRIDGE/> call control
element.

• error.com.telera.unbridge

Occurs when there is a failure to unbridge after issuing the <UNBRIDGE/>
call control element.

• error.com.telera.queue

Occurs for all ICM or URS communication and for interaction failures due
to any one of the three QUEUE control elements.

46 Genesys Voice Platform 7.6

Chapter 2: Platform Extensions Platform Extensions to VoiceXML

Platform-Specific Properties

The following platform-specific properties are available:
• com.genesys.returntermchar

Use this property to indicate whether to return the termination character in
addition to the other entered digits. For example, <property name=”com.
genesys.returntermchar” value=”true”/> causes the termination character
to be included in the result. The default value is “false”.

When setting this property to true, you must ensure the following:
 You must set the VoiceXML termchar property to the termination

character(s) that are to be accepted and returned.

If multiple termination characters are specified, any of the characters
specified could be used to terminate the input. For example, <property
name=”termchar” value=*#”> allows either * or # to mark the end of the
input.

 The grammar to be matched must allow the termination characters as
valid input. For example, if a four digit input is to be accepted,
com.genesys.returntermchar is true, and termchar is set to *#, the
grammar must also be capable of accepting * or # as its final digit.
Failure to have the grammar allow the termination character(s) results
in a nomatch being thrown. Refer to the following grammar as an
example:

<?xml version="1.0"?>

<grammar mode="dtmf" version="1.0"
 xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance
 xsi:schemaLocation="http://www.w3.org/2001/06/grammar
 http://www.w3.org/TR/speech-
grammar/grammar.xsd"
 xmlns="http://www.w3.org/2001/06/grammar">

<rule id="digit">
 <one-of>
 <item> 0 </item>
 <item> 1 </item>
 <item> 2 </item>
 <item> 3 </item>
 <item> 4 </item>
 <item> 5 </item>
 <item> 6 </item>
 <item> 7 </item>
 <item> 8 </item>
 <item> 9 </item>
 </one-of>
</rule>

<rule id="pin" scope="public">
 <one-of>

VoiceXML 2.1—Reference Manual 47

Chapter 2: Platform Extensions Platform Extensions to VoiceXML

 <item>
 <item repeat="4"><ruleref uri="#digit"/></item>
 <item repeat="0-1">*</item>
 </item>
 <item>
 <item repeat="4"><ruleref uri="#digit"/></item>
 <item repeat="0-1">#</item>
 </item>
</one-of>
</rule>
</grammar>

• com.telera.speechenabled

Use this property to define whether an ASR engine is used in the voice
application. The value is either true or false.

• com.telera.audioformat

Use the property com.telera.audioformat of the <property> element to
specify the audio format for the audio file. The default is audio/basic.

These values are available in VoiceXML on the VCS:

Mu Law .vox formats:
audio/x-mulaw-6khz
audio/basic (Raw headerless) 8kHz 8-bit mono Mu Law [PCM] (G.711)

Mu Law .wav formats:
audio/x-mulaw-6khz-wav
audio/wav 8kHz Mu Law
audio/x-wav (RIFF header) 8kHz 8-bit mono Mu Law [PCM] (G.711)
audio/x-mulaw-8khz-wav

A Law .vox formats:
audio/x-alaw-6khz
audio/x-alaw-8khz
audio/x-alaw-basic (Raw headerless) 8kHz 8-bit mono A Law
[PCM](G.711)

A Law .wav formats:
audio/x-alaw-6khz-wav
audio/x-wav (RIFF header) 8kHz 8-bit mono A Law [PCM] (G.711)

These values are available in VoiceXML on the IPCS:

Mu Law .vox formats:
audio/basic (Raw headerless) 8kHz 8-bit mono Mu Law [PCM] (G.711)

Mu Law .wav formats:
audio/wav 8kHz Mu Law
audio/x-wav (RIFF header) 8kHz 8-bit mono Mu Law [PCM] (G.711)
audio/x-mulaw-8khz-wav

48 Genesys Voice Platform 7.6

Chapter 2: Platform Extensions Call Control Elements

A Law .vox formats:
audio/x-alaw-8khz
audio/x-alaw-basic (Raw headerless) 8kHz 8-bit mono A Law
[PCM](G.711)

A Law .wav formats:
audio/x-wav (RIFF header) 8kHz 8-bit mono A Law [PCM] (G.711)

Note: The A Law values in the preceding list are for use in Europe and in
areas outside North America.

Call Control Elements
VoiceXML has been extended in the current implementation to allow the
execution of call control elements from the TXML language. These elements
provide support for the following:

• Providing caller-entered digits to the agent or to the agent’s desktop
application before transferring a caller

• Allowing the agent to transfer a call to another agent

Voice applications that require call control on different legs of the call are
beyond the scope of VoiceXML. However, call control extensions provide this
functionality in addition to dialog interaction using VoiceXML.

Call control extensions can be used for:

• Controlling multiple calls—Independently control multiple outbound
calls and optionally provide voice dialog interaction on each of them.

• Whispering transfer—Provide a message to the agent who is going to
receive the call before connecting the caller to that agent.

• Three-Way Calling—Enable more than two people to converse with each
other at the same time.

• Event Handling—Handle asynchronous events that come from the
telephony infrastructure and the VoiceXML Interpreter.

• VoiceXML Interpreter session initiation and termination—Initiate a
dialog session that is executed in a VoiceXML Interpreter and provide the
ability to start and stop a VoiceXML session at any time.

• Conditional logic—Add conditional logic to voice applications using
elements such as <if>, <else>, and <elseif>.

• Post data to a web server—Interact with a web server using elements
such as <goto> and <submit>.

VoiceXML 2.1—Reference Manual 49

Chapter 2: Platform Extensions Call Control Elements

TXML

To use the TXML call extensions, it is necessary to know the syntax and layout
of a TXML document.

The <XMLPage> element is the root element for every TXML document. Each
TXML element must be set in an XMLPage. Each XMLPage represents a unit
of work to be performed by the voice application. The unit of work consists of
a single action or a linear list of a few actions.

An XMLPage has the following syntax:

Example

<?xml version="1.0"?>
<XMLPage TYPE= "IVR" CUSTID="AcmeTeleBroker-SF"

PAGEID="0006" VERSION="2.5" SESSIONID="$sessionid$"
HREF="http://telera.net/voiceXML.vxml/url">
...content....

</XMLPage>

The first element of a TXML document is the XML declaration. This element
identifies the document as an XML document. The contents of a TXML page
are enclosed within an opening element, <XMLPage>, and a closing element,
</XMLPage>. The opening element contains the attributes listed in Table 16 on
page 49.

Table 16: Attributes

TYPE Voice applications must use the value IVR. Other platform
components use different values to identify the source of the
page.

CUSTID Identifies the customer; for example, ACME-SF.

PAGEID (Optional) A character string, which can consist of numerals, to
identify each page. (This attribute does not have a functional
purpose—it is for the convenience of the programmer only.)

VERSION Identifies the version of the TXML specification used by the
application.

SESSIONID Identifies the particular session with the caller. This is part of
the query string sent by the VCS/IPCS in the HTTP request for
each page.

HREF URI of the next XMLPage or VoiceXML document to fetch
when the voice application reaches the end of the page.

50 Genesys Voice Platform 7.6

Chapter 2: Platform Extensions Call Control Elements

Object Element Extensions

Genesys Voice Platform provides the following object extensions:

• CRData:get—to get data from Framework

• CRData:put—to send attached data to Framework

• CRData:genericAction—to perform an action on Framework

• Telephonydata:put—to send data via SIP INFO in case of IPCS

• transactionalrecord:start—to start transactional recording

• transactionalrecord:stop—to stop transactional recording

• asr:freeResource—to free an ASR resource

Classid CRData:get

Note: This object extension is only applicable for the IVR Server, URS
interaction.

The application can retrieve the data from the server by having a VoiceXML
object element with classid=“CRData:get” in the form. The param element can
specify the keys. All the param names pass to the server as a namelist (key1
key2...).

Note: You must specify expr as an empty string for the param element.

Example

<form id=”user_data”>

 <object name=”getuserdata”

 classid=”CRData:get”>

<param name=”key1” expr=”''” />

 </object>

</form>

When this <object> is executed, it returns the value of all the keys in an
XMLPage that will be set to the value of the object form item variable.

The returned XMLPage will be:
<crGetData><key name='key1' value='xyz'/><key name='key2'
value='xyz'/><key name='key3' value='xyz'/></crGetData>

The schema of this XMLPage will be:
<!--Here we are restricting @name to ID to be unique -->

<xsd:element name=”telera:key”>

VoiceXML 2.1—Reference Manual 51

Chapter 2: Platform Extensions Call Control Elements

<xsd:complexType>

<xsd:attribute name=”name” type=”xsd:ID” />

<xsd:attribute name=”value” type=”xsd:string” />

</xsd:complexType>

</xsd:element>

<!--Here we are insist that you cannot have empty tag -->

<!--If it needs to be empty then lastresult array will-->

<!--have 'undefined'set as per VoiceXML spec..........-->

<xsd:element name=”telera:crGetData”>

<xsd:complexType>

<xsd:choice minOccurs=”1” maxOccurs=”unbounded”>

<xsd:element ref=”telera:key” />

</xsd:choice>

</xsd:complexType>

</xsd:element>

Length/size limit: 2 KB

Classid CRData:put

Note: This object extension is only applicable for the IVR Server, URS
interaction.

To send the user data from the application to the server, include the
classid=“CRData:put” in the object element.

Example

<form id=”user_data”>

 <object name=”senduserdata”

 classid=”CRData:put”>

<param name=”key1” value=”value1” />

 </object>

</form>

When this <object> is executed, the value of the object form item variable will
be set to true.

Classid CRData:genericAction

You can include the classid=“CRData:genericAction” in the object element for
additional types of data.

52 Genesys Voice Platform 7.6

Chapter 2: Platform Extensions Call Control Elements

Example

<object name=‘myData’ classid=’CRData:genericAction’>
<param name=‘IServer_Action’ value=’CED’/>
<param name=‘mydata’ value=’45’/>
......
......

</object>

The preceding element shows how data is sent to and from the web server.
More than one <object/> element may be sent in a single form. The return
result will be in this format:
<crGetData>
<key name=’ResultCode’ value=’Success’/>
</crGetData>

The above item shows a successful transaction.

The @value can be:
• Success

• NoSuchStat (specific to IServer_Action: PeekStatReq and GetStatReq)
• MiscError

• Failure

A ResultCode of Success may include additional parameters that return
information requested.

The following IServer_Action values are currently supported:
• UDataDel

• UData

• CED

• ExtnsEx

• GetStatReq

• PeekStatReq

• AccessNumGet

UDataDel Example

This example deletes a list of keys.
<form>
<object name=’mydel’ classid=’CRData:genericAction’>
<param name=’IServer_Action’ value=’UDataDel’/>
<param name=’Action’ value=’DeleteKey’/>
<param name=’mykey1’ value=’’/>
<param name=’mykey2’ value=’’/>
</object>
</form>

The <param/> with @name=”IServer_Action” and @value = “UDataDel” is
mandatory. The user must then specify the @name=‘action’.

This example deletes all keys.

VoiceXML 2.1—Reference Manual 53

Chapter 2: Platform Extensions Call Control Elements

<form>
<object name=’mydel’ classid =’CRData: genericAction’>
<param name=’IServer_Action’ value=’ UdataDel’/>
<param name=’Action’ value=’ DeleteAll’/>
</object>
</form>

The <param/> with @name=”IServer_Action” and @value = “DeleteKey” is
mandatory and is the only child. The user does not send any keys.

UData, CED, ExtnsEx Example

<form>
<object name=’myUdata’ classid =’CRData:genericAction’>
<param name=’IServer_Action’ value=’ UData’/>
<param name=’GenesysRouteDN’ value=’5001’/>
<param name=’mykey2’ value=’vys’/>
</object>
<object name=’myCED’ classid =’CRData:genericAction’>
<param name=’IServer_Action’ value=’ CED’/>
<param name=’ced’ value=’567’/>
</object>
<object name=’myExtnData’ classid =’CRData: genericAction’>
<param name=’IServer_Action’ value=’ ExtnsEx’/>
<param name=’mykey4’ value=’34’/>
<param name=’mykey5’ value=’23232’/>
</object>
</form>

GetStatReq Example

<form>
<object name=’mydel’ classid =’CRData: genericAction’>
<param name=’IServer_Action’ value=’GetStatReq’/>
<param name=’RequestID’ value=’xyz’/>
<param name=’ServerName’ value=’abc’/>
<param name=’StatType’ value=’asf’/>
<param name=’ObjectId’ value=’asf’/>
<param name=’ObjecType’ value=’asf’/>
</object>
</form>

All the above parameters are mandatory.

54 Genesys Voice Platform 7.6

Chapter 2: Platform Extensions Call Control Elements

PeekStatReq Example

<form>
<object name=’mydel’ classid =’CRData:genericAction’>
<param name=’IServer_Action’ value=’PeekStatReq’/>
<param name=’RequestID’ value=’xyz’/>
<param name=’StatName’ value=’ CurrNumberWaitingCalls’/>
</object>
</form>

Note: The StatName can have one of two values: CurrNumberWaitingCalls or
ExpectedWaitTime.

AccessNumGet Example

<form>
<object name=’mydel’ classid =’CRData:genericAction’>
<param name=’IServer_Action’ value=’AccessNumGet’/>
<param name=’DestDN’ value=’xyz’/>
<param name=’XRouteType’ value=’Default’/>
</object>
</form>

The @name=DestDN is mandatory. The @name=XRouteType is optional.

The return value is either the number or the failure information.

Classid telephonydata:put

Note: This object class is supported on the IPCS only.

In the case of the IPCS, you can send user data using SIP INFO using the
telephonydata:put object class. The following syntax defines how a voice
application can send user data:
<vxml version="2.1" xmlns="http://www.w3.org/2001/vxml"
xmlns:genesys="http://www.genesyslab.com/vxml/2.0/ext/20020430"
xml:lang="en-US">
<form id="user_form">
<object name="user_data" classid="telephonydata:put">
<genesys:param name="msgtype" value="<DATA>" />
<genesys:param name="header" append="<true/false>" value="<DATA>" />
<genesys:param name="body" value="<DATA>" />
</object>
</form>
</vxml>

VoiceXML 2.1—Reference Manual 55

Chapter 2: Platform Extensions Call Control Elements

Table 17 details the contents of the telephonydata:put class.

In order to retrieve the data sent via SIP INFO header inside a VoiceXML
application, use the session.genesys.sip property.

Receiving User Data

The IPCS allows call control data to be exchanged between the SIP protocol
and the VoiceXML application. The VoiceXML application accesses all
incoming messages using the Session object, and it uses an XML object
element to send customized SIP messages.

The Genesys.protocol object indicates the protocol that is being used for call
control. For SIP, this parameter will always be set to sip. To get data from an
incoming SIP message, the VoiceXML application uses the Genesys.sip
object.

The Genesys.sip object will be an array of SIP messages. As each new SIP
message is received, it appends to the array. The application keeps track of
which messages it has processed. GVP appends each new message to the end

Table 17: Telephonydata:put Class Contents

Parameter Values Description

protocol sip Indicates telephony call control protocol. If not provided,
then the platform default is sip.

msgtype INFO Indicates the SIP request/response to send. If not
provided, then defaults to INFO.

header SIP headers with their
values

Headers to add to the protocol defaults. The append key
name will be added as a key that you can set to true or
false. If true, the header is appended to other headers.
If false, the header overwrites any existing headers with
the same name. The default is false.

The headers are not validated. The platform
appends/replaces the given headers.

If a body is given, the Content-type must be given as one
of the headers. If it is not, the default header will be
Content-Type: application/text.

body Entire body of SIP
message

Contents of the entire body portion of the SIP message.
Maximum size is 1024 bytes. Binary data is not
supported.

56 Genesys Voice Platform 7.6

Chapter 2: Platform Extensions Call Control Elements

of the array of messages. GVP does not maintain a history, nor does it
reference new updates. Table 18 summarizes the objects:

The following example shows how the Session object represents a given SIP
INFO message.

Note: Currently, only SIP INFO messages are appended to the Session
objects.

INFO sip:10.10.10.113:5060 SIP/2.0
From: <sip:6261395@10.10.16.28>;tag=ds-29-59c189c8
To: <sip:301681@10.10.10.113>;tag=2289469511802061817
Contact: <sip:User_Name@10.10.16.28:5060;transport=udp>
Max-Forwards: 70
Call-ID: A9AC79A0-1DD1-11B2-A433-916D5613A99E@10.10.10.113
CSeq: 4 INFO
Content-Length: 30
Via: SIP/2.0/UDP 10.10.16.28:5060;branch=z9hG4bKc5b0352a-05f4-11da-
8029-8f471417ffe9
Content-Type: application/text
Supported: timer

My account number is 123457890

The preceding SIP message is represented using application objects as follows:
session.genesys.protocol="sip"

Table 18: Objects

Field Data
Type

Values Description

Genesys.protocol string SIP Indicates call control protocol. Currently
only SIP is supported.

Genesys.sip array of
sip objects

This is an array of sip objects. Each inbound
SIP message is appended to the array.

sip.msgtype string INFO Indicates the SIP message type. Currently
only INFO messages will be added to the
array.

sip.header array of
strings

SIP header with
their values

Contents of the entire header portion of the
SIP message. Each header has a separate
entry in the array. The first index (zero)
contains the request URI followed by
individual headers, in the order in which
they appear in the message.

sip.body string Entire body of
SIP message

Contents of the entire body portion of the
SIP message. Maximum size is 1024 bytes.
Binary data is not supported.

VoiceXML 2.1—Reference Manual 57

Chapter 2: Platform Extensions Call Control Elements

session.genesys.sip[0].msgtype="INFO"
session.genesys.sip[0].header[0] = "INFO sip:10.10.10.113:5060 SIP/2.0"
session.genesys.sip[0].header[1] = "From:
<sip:6261395@10.10.16.28>;tag=ds-29-59c189c8"
session.genesys.sip[0].header[2] = "To:
<sip:301681@10.10.10.113>;tag=2289469511802061817"
session.genesys.sip[0].header[3] = "Contact:
<sip:User_Name@10.10.16.28:5060;transport=udp'
session.genesys.sip[0].header[4] = "Max-Forwards: 70"
session.genesys.sip[0].header[5] = "Call-ID: A9AC79A0-1DD1-11B2-A433-
916D5613A99E@10.10.10.113"
session.genesys.sip[0].header[6] = "CSeq: 4 INFO"
session.genesys.sip[0].header[7] = "Content-Length: 30"
session.genesys.sip[0].header[8] = "Via: SIP/2.0/UDP
10.10.16.28:5060;branch=z9hG4bKc5b0352a-05f4-11da-8029-8f471417ffe9 "
session.genesys.sip[0].header[9] = "Content-Type: application/text"
session.genesys.sip[0].header[10] = "Supported: timer"

session.genesys.sip[0].body="
My account number is 123457890

Classid transactionalrecord:start

Transactional recording can be started by having an object element with the
attribute classid transactionalrecord:start. This element cannot be used
multiple times, which means that transactional recording can be started only
once during the call. If the application attempts to start transactional recording
multiple times, an error event is thrown. Also, if the old style controls are in
place (for example, turned on in appid.xml), and the application attempts to
start the recording using the object element, the same error event will be
thrown. Both posturl and the mode of posting should be specified at the start,
using the param element.

If the transactionalrecord:stop is not specified, the posting will be done at
the end of the call to the posturl specified at the start. Therefore, posturl is a
mandatory parameter, and an error event is thrown if it missing. If the mode of
post is specified as async, the posting is done using BWM, and the application
is not guaranteed to get the recording during the call. If, for some reason, the
post to BWM is not successful (for example, if the BWM is down), the
recording is posted synchronously. If the mode is sync, the recording is posted
directly to the application (without using BWM) and the application is
guaranteed to get the recording after the stop is done.

When this <object> is executed successfully, the value of the object form item
variable will be set to true.

58 Genesys Voice Platform 7.6

Chapter 2: Platform Extensions Call Control Elements

Example:
<object classid="transactionalrecord:start">

<param name="posturl" value="http://... " />

<param name="mode" value="async" />

<param name=”type” value=””/>

</object>

Classid transactionalrecord:stop

Transactional recording can be stopped by having an object element with the
attribute classid transactionalrecord:stop. This element cannot appear
without a corresponding object element with the attribute
transactionalrecord:start. If it appears without this corresponding object
element, an error event will be thrown.

The posturl and mode are optional parameters in transactionalrecord:stop. If
specified, they override the corresponding parameters that were specified in
transactionalrecord:start.

When this <object> is executed successfully, the value of the object form item
variable will be set to true. The recording and the variables present in the
namelist parameter will be posted to the posturl that is specified in the stop
(or start, if not specified in stop), and using the appropriate mode, as
specified in the stop (or start, if not specified in stop). The namelist
parameter is optional.

Example:
<object name="TestRecStop" classid="transactionalrecord:stop">
 <param name="posturl" value="http://dev-
transrec/upload/capture1.asp" />
 <param name="mode" value="sync" />
 <param name="namelist" value="mainmenu_input" />
 </object>

Note: Sometimes the <prompt> fails to record, even though it is placed ahead
of the <transactionalrecord:stop> element in the voice application.
This behavior occurs because the prompt is queued for playing only
when <transactionalrecord:stop> is executed. The prompt is played
later (when the user needs to provide input or because of call
termination; see Section 4.1 in the VoiceXML 2.0 specification).

VoiceXML 2.1—Reference Manual 59

Chapter 2: Platform Extensions Call Control Elements

Transactional Recording Error Events

The errors in Table 19 could be thrown by GVP to the application depending
on the scenario:

Transactional Recording and Regular Recording

GVP supports transactional recording and regular recording (that is,
VoiceXML input of type="voice") at the same time.

Table 19: Transactional Recording Error Events

Scenario Error Event Error Event Message

Transactional recording is
already started, by an appid
control or by a previous
transactionalrecord:start,
and the application attempts to
start recording again.

error.semantic.transrec.
oneallowed

Duplicate transactionrecord:start
encountered.

One transactional recording is
done in the call, and the
application attempts to start
recording again.

error.semantic.transrec.
oneallowed

Only one transactional recording
per call is allowed.

The posturl is not specified in
transactionalrecord:start.

error.semantic.posturl The transactional recording does
not specify where the recording
should be posted. Recording will
not be started.

Transactional recording is not
started and stop is issued.

error.semantic.transrec.
notstarted

Transaction record should be
started using
transactionrecord:start, before
stop is issued.

Transactional recording is
already stopped and another
stop is issued.

error.semantic.transrec.
oneallowed

Duplicate
transactionalrecord:stop
encountered.

The application attempts to start
transactional recording in the
IPCS.

error. unsupported.
object.transrec

Transactional recording is not
supported in IP Communication
Server.

Transactional recording is
started on more than one leg—
for example, a bridged call
scenario.

error.semantic.transrec.
notallowed.multiplelegs

Transactional recording can only
be started on one leg per call.

60 Genesys Voice Platform 7.6

Chapter 2: Platform Extensions Call Control Elements

Transactional Recording and Media Types

GVP supports transactional recording with media formats. If the specified
media format is not supported by the Media Server, GVP will generate the
following event: error.unsupported.transrec.type.

The following code snippet is an example of how to specify the media format:
<vxml version="2.1" xmlns="http://www.w3.org/2001/vxml"

xmlns:genesys="http://www.genesyslab.com/vxml/2.0/ext/20020430" xml:lang="">
<form>
<var name=”GS_callerleg_callrecording_filename”/>
<var name=”GS_agentleg_callrecording_filename”/>
<object name=”StartTrxnRecording” classid=”transactionalrecord:start”>
<param name=”posturl”value=”AutoGenerateCapture.jsp?SESSIONID=$sessionid$”/>
<param name=”mode” value=”async”/>
<param name=”type” value=”audio/basic”/>
</object>
<block>
<if cond=”session.genesys.agent_leg_flag==’true’”>
<assign name=”GS_agentleg_callrecording_filename” expr=”’C.\\\\Program Files\\\\VOice

Platform Studio\\\\TEMP\\\\TRANSACTION-RECORDS\\\\ivronly-recording.vox’”/>
<submin next=”startrecord_PROMPT.jsp” method=”post”

namelist=”GS_agentleg_callrecording_filename”/>
<else/>
<assign name=”GS_callerleg_callrecording_finleman” expr=”’C:\\\\Program Files\\\\Voice

Platform Studio\\\\TEMP\\\\TRANSACTION-RECORDS\\\\ivronly-recording.vox’”/>
<submit next=”startrecord_PROMPT.jsp” method=”post”

namelist=”GS_callerleg_callrecording_filename”/>
</if>
</block>
</form>
</vxml>

Classid asr:freeResource

GVP enables VoiceXML applications to free an ASR resource on demand. You
can use the asr:freeResource classid in the VoiceXML <object> element to
instruct the VCS/IPCS to free the MRCP ASR session that is currently being
used for the call. This can have the effect of freeing the associated ASR license
on the MRCP Server. Check with your MRCP ASR vendor for details on how
licenses are freed and whether this is compliant with the vendor license
agreements.

When the <object> element with classid asr:freeResource is issued, GVP
tears down the MRCP session for the call. If there is a subsequent recognition
in the call after classid asr:freeResource is issued, GVP implicitly sets up a
new MRCP ASR session. It is not necessary to issue a separate classid to
allocate the ASR resource.

The following is an example VoiceXML application that uses the <object>
element with classid asr:freeResource.

VoiceXML 2.1—Reference Manual 61

Chapter 2: Platform Extensions Call Control Elements

<form id="user_form">
<object name="freeResource" classid="asr:freeResource">
</object>

</form>

When this <object> is executed, the value of the object form item variable is
set to true.

If asr:freeResource is used in an ASR disabled VoiceXML application, the
execution of <object> throws
error.semantic.ASRFreeResource.notapplicable.

If TXML is used to control multiple legs that are to be bridged and recognition
has already taken place on both legs, specify asr:freeResource separately on
both legs.

Additionally, the VCS/IPCS shall implicitly free the MRCP session when
bridging a call if there are no active grammars. The MRCP session is freed
from both legs of the bridged calls.

session.genesys Object

All of the TXML $ variables can be accessed using the VoiceXML
session.genesys object. For example, $application-name$ maps to
session.genesys.application_name. Note that all hyphens (-) are converted to
underscores (_).

Universal Connection ID

GVP fetches the universal connection ID in the behind-the-switch and in-front-
of-the-switch modes. In the Network mode, the universal connection ID is not
available to GVP at call setup time. The universal connection ID is exposed to
the voice application through a session variable—session.genesys.connid.

The universal connection ID will be passed to the MRCP server through the
logging MRCP element. The logging element format looks like this:

GenesysLab_<ResellerName>_<CustomerName>_<ApplicationName>_<ConnectionID>_<SessionID>

If the universal connection ID is not available, GVP fetches the connection ID.

Redirecting Number

When an incoming call that is to be transferred lands on GVP, and the
Redirecting Number IE is available from the network, GVP captures the
Redirecting Number, stores it as part of the call set-up data, and makes it
available to the VoiceXML applications for further processing.

GVP stores the information in the following VoiceXML extension object:

session.connection.inboundcalldata.redirectingnumber

62 Genesys Voice Platform 7.6

Chapter 2: Platform Extensions Call Control Elements

The VoiceXML application can retrieve the information as follows:
<prompt>

<expr="session.connection.inboundcalldata.redirectingnum"/>
</prompt>

Note: The information is read-only and cannot be set by the VoiceXML
application.

When the Redirecting Number IE is not available from the network, GVP
returns an empty string to the VoiceXML application.

Presentation and Screening Indicators

GVP extracts the presentation and screening indicators from the Calling Party
Number IE of an inbound leg, and transfers them to the VoiceXML application
as call set-up data. The VoiceXML application then transmits the indicators to
Calling Party Number IE of the ISDN set-up message of the outbound leg
during call transfer.

GVP stores the information in the following VoiceXML extension objects:
session.connection.inboundcalldata.screeningIndicator
session.connection.inboundcalldata.presentationIndicator

The VoiceXML application can retrieve the information as follows:
<prompt>

<expr="session.connection.inboundcalldata.screeningIndicator "/>
<expr="session.connection.inboundcalldata.presentationIndicator "/>

</prompt>

Note: The information is read-only and cannot be set by the VoiceXML
application.

VoiceXML 2.1—Reference Manual 63

Chapter

3 Reference for Call Control
Elements
This chapter describes the call-control-extension elements supported by the
Genesys Voice Platform (GVP). Elements and their attributes are described
together with their parent/child relationship to other elements. Note that the
elements are described according to their implementation in Genesys Voice
Platform only.

The Call Control Elements described in this chapter are the only TXML
elements that can be used in a GVP 7.6 VoiceXML application. Note that the
TXML elements cannot be mixed with VoiceXML elements in a VoiceXML
page, and must exist on a separate XMLPage as described in “TXML” on
page 49. The VoiceXML page can transition to a XMLPage and a XMLPage
can transition back to a VoiceXML page during the execution of an IVR
application.

This chapter covers the following topics:
 Call Control Elements, page 64
 <ALERT_LEG>, page 65
 <BRIDGE_CALL>, page 66
 <CREATE_LEG_AND_DIAL>, page 68
 <HANGUP_AND_DESTROY_LEG>, page 73
 <END_SESSION>, page 74
 <LEG_WAIT>, page 75
 <ON_LEGHUP>, page 77
 <QUEUE_CALL>, page 78
 <REXFER>, page 82
 <SCRIPT_RESULT>, page 84
 <SET>, page 87
 <UNBRIDGE_CALL>, page 88
 Treatments, page 90

64 Genesys Voice Platform 7.6

Chapter 3: Reference for Call Control Elements Call Control Elements

Call Control Elements
Table 20 lists the call control elements and their attributes. The subsequent
sections of this chapter describe each element’s syntax, attributes, and
child/parent elements, and provide an example of how the voice application
uses the element.

Table 20: Call Control Elements

Element Attribute Non-settable
Attributes

<ALERT_LEG> LEG_ID
IVRURL

<BRIDGE_CALL> LEG_ID

<CREATE_LEG_AND_DIAL> TELNUM
IVRURL
BRIDGE
ENDSESSIONONHUP
URL_ONLEG2HUP
CPATIMEOUT
AFTERCONNECTTIMEOUT
ANI
CALLTRIGGEREVENT

<END_SESSION>

<HANGUP_AND_DESTROY_LEG> REASON

<LEG_WAIT> TIMEOUT
HREF

<ON_LEGHUP> ENDSESSION
OTHER_LEG_URL

<QUEUE_CALL> AGENTGRP
USR_PARAMS AGENT_URL

<REXFER> TELNUM
IVRURL
LEG_ID

<SCRIPT_RESULT> USR_PARAMS

<SET> VARNAME
VALUE

<UNBRIDGE_CALL> LEG_ID
OTHER_LEG_URL

VoiceXML 2.1—Reference Manual 65

Chapter 3: Reference for Call Control Elements <ALERT_LEG>

<ALERT_LEG>
Use the <ALERT_LEG> element after unbridging a call to alert the other leg and
direct it to a specified URL. The <ALERT_LEG> element interrupts an interpreter
in a <LEG_WAIT> state and asks it to send an HTTP GET request to the specified
URL.

Syntax

<ALERT LEG
LEG_ID="name"
IVRURL="URL"
/>

Attributes

Child/Parent Elements

Example

<?xml version="1.0"?>
<XMLPage TYPE="IVR" PAGEID="Alert1" SESSIONID="" HREF="$ivr-root-
dir$/BRIDGE1.ASP?PAGEID=Alert1">

<ALERT_LEG LEG_ID="ALL" IVRURL="$ivr-root-dir$/
PROMPT1.ASP?PAGEID=Alert1" />

</XMLPage>

Table 21: Attributes

LEG_ID Identifies other leg(s) to alert. These other legs normally sit
in a LEG_WAIT state. If the value is ALL, all other legs of this
session are alerted.

IVRURL URL from which to execute the next document for the
other legs after they have been alerted.

Table 22: Child/Parent Elements

Child Elements (can contain) none

Parent Elements (used in) <XMLPage>

66 Genesys Voice Platform 7.6

Chapter 3: Reference for Call Control Elements <BRIDGE_CALL>

<BRIDGE_CALL>
This element bridges the current call with another call on the same
PopGateway. When the voice application executes the <BRIDGE_CALL> element,
it interrupts the leg of the bridged call and aborts any messages being played
on the leg.

Syntax

<BRIDGE_CALL
LEG_ID="NAME"
/>

Attribute

Child/Parent Elements

A <LEG_WAIT> element in the XMLPage must follow the <BRIDGE_CALL>
element; otherwise, the interpreter looks for an XML element after the
<BRIDGE> element, and if there are no more elements, it will try to get the next
document from the HREF specified at the top of the XML page.

If there is an error in bridging the calls, the voice application raises an error.
See the “Error Extensions” on page 45 for details. It is important to note that
the appropriate error extensions must be placed in the VoiceXML 2.1 root
document.

Examples

Caller Document

<?xml version="1.0"?>
<vxml version="2.1" application="app-root.vxml">

Table 23: Attributes

LEG_ID The ID of the leg whose call is to be bridged with the call
on this leg. The ALL value bridges the call on this leg with
all other calls associated with the various legs of the
session. Bridging three or more calls (a conference)
requires specific hardware (a conference board) on the
VCS.

Table 24: Child/Parent Elements

Child Elements (can contain) none

Parent Elements (used in) <XMLPage>

VoiceXML 2.1—Reference Manual 67

Chapter 3: Reference for Call Control Elements <BRIDGE_CALL>

<form id="customer_service">
<field name="agent_transfer">

<prompt>
Please wait while we are transferring you to an agent

</prompt>
<goto next="http://cld.xml"/>

</field>
</form>

</vxml>

CLD Document

<?xml version="1.0"?>
<XMLPageTYPE= "IVR" CUSTID="bridge_call" VERSION="2.5"

SESSIONID="$sessionid$" HREF="http://Telera.net/
agent.xml">

<CREATE_LEG_AND_DIAL/>
<LEG_WAIT/>
<!-- BRIDGE_CALL must be followed by LEG_WAIT -->

</XMLPage>

Agent Document

<?xml version= "1.0"?>
<vxml version="2.1 application= "app-root2.vxml">

<form id="agent">
<field name="call_transfer">

<prompt>
You are getting a call from
<var name="customer" expr="name"/>

</prompt>
</field>

<goto next="bridge_call.xml"/>
</form>

</vxml>

Bridge_Call Document

<?xml version=”1.0”?>
< XMLPageTYPE= "IVR" CUSTID="caller" VERSION="2.5"

SESSIONID="$sessionid$" HREF="http://Telera.net/
caller.vxml">

<BRIDGE_CALL LEGID=”ALL”/>
<LEG_WAIT/>

</XMLPage>

68 Genesys Voice Platform 7.6

Chapter 3: Reference for Call Control Elements <CREATE_LEG_AND_DIAL>

<CREATE_LEG_AND_DIAL>
The <CREATE_LEG_AND_DIAL> element enables a voice application to make
outbound calls. Using this element, instead of the VoiceXML <transfer>
element, enhances call control of the outbound call.

Syntax

<CREATE_LEG_AND_DIAL
TELNUM="telephone number to be dialed"
IVRURL="URL"
ANI="Callers phone number"
BRIDGE="YES | NO"
ENDSESSIONHUP="YES | NO"
URL_ONLEG2HUP="URL"
CPATIMEOUT=”timeinsecs”
AFTERCONNECTTIMEOUT=”timeinsecs”
CALLTRIGGEREVENT=”connected,alerting,callproceeding,100-199,1xx”
/>

Attributes

Table 25: Attributes

TELNUM The telephone number that the Telephony server needs
to call.

Note: The TELNUM attribute specifies the phone
number. Additional characters sent as in-band
DTMF (dual-tone multi-frequency) tones optionally
follow the phone number. The optional additional
characters can contain the 12 keypad characters as
well as pause characters (commas, each of which is
treated as a 1-second pause). The phone number
itself cannot contain any pause characters. The first
pause character indicates the end of the phone
number. For example,
TELNUM=12159090,,,**,90061234# instructs the
telephony server to dial 12159090 to establish the
call, pause 3 seconds, send ** tones, pause 1
second, and send 90061234# tones.

The processing of the additional characters begins
immediately after the phone number is dialed; it does
not wait for an answer. The number of pauses may
have to be tuned before obtaining the correct pause for
the ACD/CTI application.

VoiceXML 2.1—Reference Manual 69

Chapter 3: Reference for Call Control Elements <CREATE_LEG_AND_DIAL>

IVRURL The URL of the document to execute after the
outbound call is made and the call is answered. The
voice application uses this attribute to play an audio
message or carry out other VoiceXML commands.
This attribute can also carry a value of LEG_WAIT, in
which case the new VoiceXML interpreter goes into an
interruptible Wait state. The caller hears silence until
an interrupt causes the interpreter to bridge the call.

The IVRURL must be equal to LEG_WAIT, in case the
BRIDGE attribute is set to YES.

BRIDGE (Optional) YES or NO. If YES, the new call bridges
with the call on the current leg as soon as the new call
is dialed and answered.

ENDSESSIONON
HUP

(Optional) YES or NO. Default value is YES. If YES or
absent, a hangup on the new leg ends the session and
destroys all the legs in the session. If the value is NO,
a hangup on the outbound leg only destroys that leg.
The URL_ONLEG2HUP attribute determines the behavior
of the inbound leg.

URL_ONLEG2HUP (Optional) This attributes specifies the URL where the
inbound leg should fetch its next XML page if the
outbound leg hangs up and ENDSESSIONONHUP=NO.

If ENDSESSIONONHUP=NO and this attribute is missing,
the inbound leg continues in the current state
(LEG_WAIT if it was previously bridged) after the
hangup occurs on the outbound leg.

CPATIMEOUT (Optional) The maximum time, in seconds, before the
VCS/IPCS returns the Call Progress Analysis result.
The default value = 0 (do not perform call progress
analysis). The CPA result is set in $_cparesult$. The
voice application should include $_cparesult$ in the
IVRURL of <CREATE_LEG_AND_DIAL>. The $_cparesult$
should also be included in the exception event URL of
DIAL_ERROR.

AFTERCONNECT
TIMEOUT

(Optional) This is in seconds. This timeout is set when
the application needs to detect an answering machine
or fax. If this timeout is set, after the outbound call is
answered, it will wait for specified
afterconnecttimeout seconds to detect a fax or
answering machine.

Table 25: Attributes (Continued)

70 Genesys Voice Platform 7.6

Chapter 3: Reference for Call Control Elements <CREATE_LEG_AND_DIAL>

CallTriggerEvent

Table 26 on page 71 indicates the value of the CPA_RESULT that will be available
in the application under different scenarios. The voice application can access
this CPA_RESULT using the $_cparesult$ variable, for example, as query string
variable in the IVRURL. The transient CPA_RESULT indicates the value when
CREATE_LEG_AND_DIAL gives control back to the application after receiving the
specified call trigger event. Based on the final disposition of the call, this value
can change. The application can check the final cap result at the end of the call
(the hangup event handler URL can carry the $_cparesult$ variable).The final
value will change only in case of BUSY when the CALLTRIGGER event is not
“connected.” If the voice application wants to access the CPA_RESULT prior to
the end of the call, it can do so by having a LEG_WAIT with a timeout and HREF
with CPA_RESULT $ variable.

ANI This is the Caller ID sent out for the outbound call.
The T1 or E1 carrier must also support this feature.

CALLTRIGGER
EVENT

This attribute specifies at which call state the voice
application regains control when generating outbound
calls. The call trigger can be a comma separated list of
the following values:

• connected—The voice application gains control
after the outbound call has been answered. This is
the default value.

• alerting—The voice application gains control after
the far end sends the VCS/IPCS alerting indication
or the VCS/IPCS detects ring back tones. Alerting
in the IPCS is the same as 180.

• callproceeding—The voice application gains
control after the far end sends the VCS/IPCS a call
proceeding message. Callproceeding in the IPCS is
the same as 100.

• 100–199—The voice application gains control after
the IPCS receives the specific provisional message.
Note that the 100 response and 180 response is the
same as callproceeding.

• 1xx—The voice application gains control after the
VCS/IPCS receives any 1xx message. The far ends
sends the VCS/IPCS a call proceeding message.

Table 25: Attributes (Continued)

VoiceXML 2.1—Reference Manual 71

Chapter 3: Reference for Call Control Elements <CREATE_LEG_AND_DIAL>

Child/Parent Elements

Normally, a <LEG_WAIT> element follows the <CREATE_LEG_AND_DIAL> element.
This method is used to wait for the other leg to synchronize with this leg. In the
case of errors, the voice application throws an error. See the “Error
Extensions” on page 45 for details. It is important to note that the appropriate
error extensions must be placed in the VoiceXML 2.1 root document.

How It Works

When the voice application first presents the request to the Interpreter Context,
it immediately receives a <RESPONSE> element with RESULT=SUCCESS. Depending
upon the HREF at the top of the XML page containing the
<CREATE_LEG_AND_DIAL> element or the elements following that element, the
Interpreter Context instructs the voice application to fetch its next page from
the HREF (it could be “<LEG_WAIT>” on page 75).

For example, if the Interpreter Context discovers later that the new leg was
created but the dial out failed, the voice application raises the
error.com.telera.dial exception if this error exception is placed in the
VoiceXML 2.1 root document. The URL that handles this exception destroys
the second leg and can send an interrupt to the first leg. This forces the voice
application to raise the exception on the first leg. The voice application then
consults the voice application exception map to find the URL to consult for the
exception.

Table 26: CPA_RESULT with CallTriggerEvent

CallTriggerEvent Final
Call
Result

Transient
CPA_RESULT

Final CPA_RESULT

connected answered CPA_NORMAL CPA_NORMAL

busy CPA_BUSY CPA_BUSY

alerting

callproceeding

100–199

1xx

answered CPA_NORMAL CPA_NORMAL

busy CPA_NORMAL CPA_BUSY

Table 27: Child/Parent Elements

Child Elements (can contain) none

Parent Elements (used in) <XMLPage>

72 Genesys Voice Platform 7.6

Chapter 3: Reference for Call Control Elements <CREATE_LEG_AND_DIAL>

In the following example, when the caller requests the customer service option,
the <CREATE_LEG_AND_DIAL> element connects the caller with an agent. The
TELNUM attribute specifies the number to dial. The BRIDGE attribute is set to YES
so that the caller is immediately connected with the agent. The IVRURL specifies
the document to execute for the second leg once the call has been connected.
ANI=ani specifies that the original caller’s ANI will be sent out as the caller
ID on the outbound call.

This document can “whisper” information about the caller to the agent before
using the <BRIDGE> element to bridge the agent with that caller.

Example

<XMLPage TYPE=”IVR” CUSTID=”VVAA” PAGEID=”2” VERSION=”0.72” SESSIONID=”$sessionid$”
HREF=”<%=m_onholdURL%>”>
<ON_LEGHUP ENDSESSION="NO" OTHER_LEG_URL="<%=m_agentafterURL%>" />
<CREATE_LEG_AND_DIAL TELNUM=”<number>”

BRIDGE=”NO”
CPATIMEOUT=”20”
AFTERCONNECTTIMEOUT=”10”
IVRURL=”<%=m_AgentStartURL%>”
URL_ONLEG2HUP=”<%=m_callerafterURL%>”
ENDSESSIONONHUP=”NO” />
ANI=did

</XMLPage>

Document 1

<?xml version= "1.0"?>
<vxml version="2.1" application="app-root.vxml">

<menu>

<prompt>Welcome to Banking 24. Say one of:
<enumerate/>
</prompt>

<choice next="http://www.personal_options.vxml">
Personal Options

</choice>

<choice next="http://www.pay_bill.vxml">
Bill Payment

</choice>

<choice next="customer_service">
Register with Banking 24

</choice>
</menu>

<form id="customer_service">
<field name="agent_transfer">

<prompt>Please wait while we are transferring you

VoiceXML 2.1—Reference Manual 73

Chapter 3: Reference for Call Control Elements <HANGUP_AND_DESTROY_LEG>

to an agent
</prompt>
<goto next="http://customer_service.xml"/>

</field>
</form>

</vxml>

Document 2 (customer_service.xml)

<?xml version="1.0"?>
<XMLPageTYPE= "IVR" CUSTID="customer_service" VERSION="2.5"

SESSIONID="$sessionid$"
HREF="http://Telera.net/tele/menu.vxml">

<CREATE_LEG_AND_DIAL TELNUM="4082159090" BRIDGE="NO" ANI=”4081234567”
IVRURL="http://acme.Telera.net/tele/agent.asp"/>

<LEG_WAIT/>
<!-- waiting for other leg at agent.asp to bridge

with this leg -->
</XMLPage>

Route-Based Dialing

GVP supports route-based dialing on the IPCS. The following is an example of
the TXML control:
<CREATE_LEG_AND_DIAL TELNUM=”ROUTE:N<number>” BRIDGE=”YES”/>

Where N is the route number. The key word ROUTE is case sensitive, and it must
be in uppercase. The route number specified must have been configured with
outbound ports.

<HANGUP_AND_DESTROY_LEG>
The <HANGUP_AND_DESTROY_LEG> element instructs the application to terminate
the call on this leg and to destroy the interpreter leg receiving this element.

Syntax

<HANGUP_AND_DESTROY_LEG
REASON="NORMAL | ERROR | CALLERHUP"
/>

74 Genesys Voice Platform 7.6

Chapter 3: Reference for Call Control Elements <END_SESSION>

Attribute

Child/Parent Elements

Example

<?xml version="1.0"?>
<XMLPage TYPE="IVR" PAGEID="KillLeg1" SESSIONID="" HREF="http://mypage.foo.com/exit.asp">

<HANGUP_AND_DESTROY_LEG REASON="CALLERHUP" />
</XMLPage>

<END_SESSION>
The <END_SESSION> element destroys all legs of the session, and hangs up all of
the associated calls.

Syntax

<END_SESSION/>

The <END_SESSION> element has no attributes.

Child/Parent Elements

The following example illustrates the use of the <END_SESSION> element to
terminate the session.

Table 28: Attribute

REASON Reserved for future use.

Table 29: Child/Parent Elements

Child Elements (can contain) none

Parent Elements (used in) <XMLPage>

Table 30: Child/Parent Elements

Child Elements (can contain) none

Parent Elements (used in) <XMLPage>

VoiceXML 2.1—Reference Manual 75

Chapter 3: Reference for Call Control Elements <LEG_WAIT>

Example

<?xml version="1.0"?>
<vxml version="2.1" application="app-root.vxml">

<form>

<field name="add_services" type="Boolean">

<prompt>
would you like any additional services

</prompt>

<if cond="add_services=='yes'">
<goto next="main_menu.vxml"/>

<elseif cond="add_services=='no'"/>
<goto next="goodbye.vxml"/>

</if>
</field>

<field name="goodbye">
<audio src="http//bank_services/goodbye.vox">

Good bye and have a nice day
</audio>

<goto next="http://bank_services/
end_session.xml"/>

</field>
</form>

</vxml>

Document 2

<?xml version="1.0"?>
<XMLPageTYPE= "IVR" CUSTID="end_session" VERSION="2.5"

SESSIONID="$sessionid$" HREF="http://acme.Telera.net/tele/
exit.xml">
<END_SESSION/>

</XMLPage>

<LEG_WAIT>
The <LEG_WAIT> element places the Interpreter Context receiving this element
into a Wait state. The conversation controller then waits for one of the
following:

• An event from the voice application (for example, caller hangup)

• An interrupt from the interpreter

• An <ALERT_LEG> element from the voice application

76 Genesys Voice Platform 7.6

Chapter 3: Reference for Call Control Elements <LEG_WAIT>

Syntax

<LEG_WAIT
TIMEOUT="time in seconds"
HREF="URL"
/>

Attributes

Child/Parent Elements

In case an unexpected event occurs while waiting and no event handler is
defined for that event, the HREF in the XMLPage root element at the top of the
page is an error-handling URL.

The following example illustrates the use of the <LEG_WAIT> element. In this
example, the <LEG_WAIT> element puts the voice application into a Wait state
while the call is being bridged. The TIMEOUT attribute specifies the Wait state of
60 seconds. After this period, the voice application executes the services
document.

Example

<?xml version="1.0"?>
<XMLPageTYPE= "IVR" CUSTID="transfer" VERSION="2.5"
SESSIONID="$sessionid$" HREF="http://.../next.xml">
<CREATE_LEG_AND_DIAL TELNUM="<number>" BRIDGE="NO" IVRURL="<http://...bridge.xml ...>"

/>
<LEG_WAIT TIMEOUT="20" HREF="http://... /
error.xml"/>
</XMLPage>

Table 31: Attributes

TIMEOUT Specifies the time, in seconds, after which control comes
back to the voice application, unless interrupted by another
leg before the timeout expires.

HREF Specifies the URL of the next document to execute after
the timeout expires.

Table 32: Child/Parent Elements

Child Elements (can contain) none

Parent Elements (used in) <XMLPage>

VoiceXML 2.1—Reference Manual 77

Chapter 3: Reference for Call Control Elements <ON_LEGHUP>

When an outbound call is successful, the outbound leg will go to the IVR URL
that is specified in the CREATE_LEG_AND_DIAL element.

Sample of bridge.xml
<XMLPageTYPE= "IVR" CUSTID="bridge_call" VERSION="2.5"
SESSIONID="$sessionid$" >
<BRIDGE_CALL LEG_ID="ALL" />
<ALERT_LEG LEG_ID="ALL" IVRURL="<http://...infinitelegwait.xml" />
<LEG_WAIT/>
</XMLPage>

Example of infinitelegwait.xml:

<XMLPageTYPE= "IVR" CUSTID="bridge_call" VERSION="2.5"
SESSIONID="$sessionid$" >

<LEG_WAIT/>
</XMLPage>

Use Cases for LEG_WAIT Timeout

After issuing a CREATE_LEG_AND_DIAL or QUEUE_CALL, if the application is
waiting for the outbound call to be made, it can use LEG_WAIT with the TIMEOUT.

If the TIMEOUT attribute is not used, and there is no response from the CTI or
there is an outbound failure, the inbound caller would wait indefinitely.

If the TIMEOUT attribute is used, the application should calculate the
approximate time for the outbound call to be made, and it should take care of
the successful call scenario.

This means that even if the outbound call is successful and bridged, with a
timeout set, the inbound leg will always timeout after the specified timeout,
and the application cannot distinguish between the failure and success
scenarios.To avoid this issue, when the call is bridged on the outbound call, the
VoiceXML application should alert the inbound leg and the inbound leg should
go to an infinite leg wait state (which means a LEG_WAIT with no TIMEOUT
attribute).

<ON_LEGHUP>
The ON_LEGHUP element can be used by the application to specify whether
the session should be ended when the leg hangs up. The default behavior is to
end the session when any of the legs hang up the call. However, if you set the
ENDSESSION attribute, the application can control whether the entire session
should be ended, or whether only that call leg goes down. If the endsession
attribute is set to false, the OTHER_LEG_URL can be specified so that the inbound
leg is informed when the current leg, which set endsession to false, is going
down.

78 Genesys Voice Platform 7.6

Chapter 3: Reference for Call Control Elements <QUEUE_CALL>

This element can be used in any of the legs, which means that it can be in the
inbound leg or outbound leg. However, the design of the application should
take into account that the session will not be ended if ENDSESSION is set to
false, and it should handle different scenarios in which the other leg is active,
without being informed if OTHER_LEG_URL is not specified.

Attributes

Example:

<XMLPage TYPE="IVR" CUSTID="VVAA" PAGEID="2" VERSION="0.72" SESSIONID="$sessionid$"
HREF="<%=m_onholdURL%>">

<ON_LEGHUP ENDSESSION="NO" OTHER_LEG_URL="<%=m_agentafterURL%>" />
<CREATE_LEG_AND_DIAL TELNUM="<number>" BRIDGE="NO" CPATIMEOUT="20" AFTERCONNECTTIMEOUT="10"

IVRURL="<%=m_AgentStartURL%>" URL_ONLEG2HUP="<%=m_callerafterURL%>" ENDSESSIONHUP="NO"
/>

</XMLPage>

<QUEUE_CALL>
When the voice application executes this element, it sends a QUEUE_CALL_REQ
request to the Interpreter Context. The Interpreter Context calls the Call Router
to queue the call.

Syntax

<QUEUE_CALL USR_PARAMS=”comma separated key-value pairs” AGENT_URL=”URL”
/>

Table 33: Attributes

ENDSESSION Default is true. When it is set to false, only that leg goes
down and the session is still active.

OTHER_LEG_URL This is an optional attribute. This URL indicates whether
the other leg should be informed when the current leg
goes down. Then, the other leg will be interrupted, and it
will go to the URL specified.

VoiceXML 2.1—Reference Manual 79

Chapter 3: Reference for Call Control Elements <QUEUE_CALL>

Attributes

USR_PARAMS

IVR Server Client Details

If you are using the IVR Server Client, then USR_PARAMS must consist of one
parameter called GenesysRouteDN. Therefore, USR_PARAMS is mandatory.
<QUEUE_CALL USR_PARAMS=”GenesysRouteDN:9001” AGENT_URL=”URL” />

Queue Adapter Details

If Queue Adapter is used for Cisco, then USR_PARAMS is limited to 10 variables
with 40 characters each. Variables are named CallVar1, CallVar2, ...
CallVar10. These variables can be populated using ICMVarMappingMode in
USR_PARAMS.

1. <QUEUE_CALL USR_PARAMS=”ICMVarMappingMode:MAP_INORDER AcctNum:1234,

Amount: 500" />

In this example, CallVar1 will be populated with 1234 and CallVar2 will be
populated with 500.

2. <QUEUE_CALL USR_PARAMS=”ICMVarMappingMode:MAP_SPECIFICVARS,
CallVar1:1234, CallVar6:500, CallVar7:Valid />

In this example, CallVariable1 will be set to 1234, CallVariable6 set to
500 and CallVariable7 set to Valid. All other ICM variables will not be set.

Table 34: Attributes

USR_PARAMS (Optional) Information that the caller enters into the
Genesys Voice Platform system before requesting
transfer to an agent. This field contains
subparameters and values separated by a colon (:),
with the different parameter-value pairs separated by
commas. For example,
PARAM1:25,PARAM2:busy,PARAM3:411. The Queue
Adapter or IVR Server Client forwards the values of
the subparameters to the Call Router.

AGENT_URL (Optional) This is the URL from which the leg of the
Telephony server with the outbound call to the ACD
fetches its XML page after the agent is connected.
This can be used for “whispering” some caller-
related information into the agent's telephone before
bridging the agent with that caller.

TELNUM Reserved for future use.

80 Genesys Voice Platform 7.6

Chapter 3: Reference for Call Control Elements <QUEUE_CALL>

Note: The variable name must be one of CallVar1,
CallVar2,...CallVar10.

3. <QUEUE_CALL USR_PARAMS= AcctNum:1234, Amount: 500 />

In this Example, since ICMVarMapping mode is not used, CallVar3 will be
populated with 1234 and CallVar4 will be populated with 500. CallVar1
and CallVar2 are reserved for internal use.

4. <QUEUE_CALL
USR_PARAMS="ICMVARMappingMode:MAP_INORD,ECC.AcstNum:123,ECC.Amount:
500" />

In this example the, the AcctNum and Amount variables are passed as ECC
variables to the ICM.

Encoding Data

If a ‘%’, ‘:’ or ‘,’ is present as part of the data, that data needs to be encoded
using the URL encoding scheme. The Genesys component Voice Platform
Queue Adapter decodes the data and presents it to the ICM. Table 35 gives the
details.

Child/Parent Elements

The following example illustrates the use of the <QUEUE_CALL> element to put a
call on hold while transferring the call to another agent. In this example, when
the voice application attempts to transfer a call and detects that the line is busy,

Table 35: Encoding Data

User Data Encoded Data to
Interpreter Context

Encoded Data to
Queue Adapter

Data Passed to Call
Router

CallVariable1:
123,456

CallVariable1:
123%2C456

CallVariable1:
123%2C456

CallVariable1:
123,456

CallVariable1:
123,456:78%9

CallVariable1:
123%2C456%3A78%
259

CallVariable1:
123%2C456%3A78%
259

CallVariable1:
123,456:78%9

CallVariable1:
123,456,
CallVariable2:
1234

CallVariable1:
123%2C456,
CallVariable2:1234

CallVariable1:
123%2C456,
CallVariable2:1234

CallVariable1:
123,456,
CallVariable2:1234

Table 36: Child/Parent Elements

Child Elements (can contain) none

Parent Elements (used in) <XMLPage>

VoiceXML 2.1—Reference Manual 81

Chapter 3: Reference for Call Control Elements <QUEUE_CALL>

it executes the <QUEUE_CALL> element. The AGENT_URL attribute specifies the
document to execute once the call is connected.

It is important to note that the error exception error.com.telera.queue,
described in “Error Extensions” on page 45, must be placed in the VoiceXML
2.1 root document.

Example

<?xml version="1.0"?>
<vxml version="2.1">

<form id="welcome">
<block>

<prompt>
Welcome to Telera

</prompt>
</block>

<transfer name="newcall" dest="phone://4168592"
connecttimeout="10s" bridge="true">

<filled>
<if cond="newcall='busy'">

<prompt>
All our customer care agents are
currently busy; please hold while we
try to connect your call

</prompt>

<goto next="http://queue_call.xml"/>
</if>

</filled>
</transfer>

</form>
</vxml>

QUEUE_CALL.xml

<?xml version="1.0"?>
<XMLPageTYPE= "IVR" CUSTID="queue_call" VERSION="2.5"

SESSIONID="$sessionid$" HREF="http://Telera.net/tele/
agent_sales.xml">
<QUEUE_CALL AGENT_URL=”agent_sales.vxml”/>

</XMLPage>

82 Genesys Voice Platform 7.6

Chapter 3: Reference for Call Control Elements <REXFER>

<REXFER>
The <REXFER> element transfers a call from one agent to another. This involves
unbridging the inbound and outbound legs, dropping the current outbound leg,
creating a new outbound leg, dialing a new phone number on the new
outbound leg, and, finally, bridging the inbound and new outbound legs.

The <REXFER> element provides the voice application with a convenient macro
to perform all these tasks with one element. However, you can also execute
this operation by issuing all the elements separately.

Upon executing a <REXFER> element, the voice application sends a REXFER_REQ
Next action to the Interpreter Context. The REXFER_REQ is divided into several
subtasks, as listed above. To perform the required subtasks, REXFER_REQ then
issues interrupts or elements to the different legs.

Syntax

<REXFER
TELNUM="telephone number"
LEG_ID="name"
IVRURL="URL
/>

Attributes

Table 37: Attributes

TELNUM The telephone number to be dialed on the new leg.

IVRURL (Optional) The URL from which the document for the new
outbound leg is executed. This element can be used to
“whisper” a message to the new agent. If this attribute is
missing, the inbound and new outbound legs are bridged as
soon as the dialed call is answered on the outbound leg,
otherwise, the XMLPage generated by IVRURL bridges the
call after the “whispering” is complete.

LEG_ID (Optional) The identity of the inbound leg to which the
new outbound leg should be bridged. A value of ALL
bridges the new leg with all other legs associated with the
call/session.

VoiceXML 2.1—Reference Manual 83

Chapter 3: Reference for Call Control Elements <REXFER>

Child/Parent Elements

After the agent interrupts the outbound leg (for example, by pressing a specific
key for which a global tonemap exists on the outbound leg), the outbound leg
must issue the <REXFER> element.

Notes About the <REXFER> Element

1. <REXFER> must be followed by LEG_WAIT in the XMLPage. Otherwise, after
executing the <REXFER> element, control passes to the HREF specified at the
top of the XMLPage.

2. Using <REXFER> has this limitation: no message can be played on the
inbound leg while transferring the agent leg. If control is given to the voice
application on the inbound leg, it can result in a race condition where the
Interpreter Context and the voice application both try to issue
elements/interrupts to the inbound leg. The subsequent order of execution
is unpredictable.

3. For the inbound leg to have full control while the agent leg is being
destroyed and transferred, do not use the <REXFER> element.

In the following example, the <REXFER> element transfers the caller to an agent.
The TELLNUM attribute specifies the number to dial. The <IVURL> element
executes the agent1.vxml file. This document “whispers” to the agent that a
call is coming. The wait.xml file allows the agent to wait before the call is
transferred.

Examples

Document 1

<?xml version="1.0"?>
<vxml version="2.1" application="app-root.vxml">

<form id="customer_service">
<field name="agent_transfer">

<prompt>
Please wait while we are transferring you to an
agent

</prompt>

<goto next="http://customer_service/rexfer.xml"/>
</field>

</form>
</vxml>

Table 38: Child/Parent Elements

Child Elements (can contain) none

Parent Elements (used in) <XMLPage>

84 Genesys Voice Platform 7.6

Chapter 3: Reference for Call Control Elements <SCRIPT_RESULT>

Document 2 rexfer.xml

<?xml version="1.0"?>
<XMLPageTYPE= "IVR" CUSTID="rexfer" VERSION="2.5"

SESSIONID="$sessionid$" HREF="http://Telera.net/
cust_service/agent1.asp">

<REXFER TELNUM="<%= NumToDial%>" LEG_ID="ALL"
IVURL="http://Telera.net/cust_service/agent1.vxml"/>

<LEG_WAIT />
</XMLPage>

Document 3 Agent1.vxml

<?xml version="1.0"?>
<vxml version="2.1" application="app-root2.vxml">

<form id="agent">
<field name="call_transfer">

<prompt>
This is an incoming call from
<var name="customer" expr="name"/>

</prompt>

<goto next="http://customer_service/wait.xml"/>
</field>

</form>
</vxml>

Document 4 Wait.xml

<?xml version="1.0"?>
<XMLPageTYPE= "IVR" CUSTID="rexfer" VERSION="2.5"

SESSIONID="$sessionid$">
<LEG_WAIT/>

</XMLPage>

<SCRIPT_RESULT>
The voice application executes this element in response to the Call Router’s
RUN_SCRIPT_REQ to the voice application. When the voice application executes
this element, it sends a SCRIPT_RESULT request to the Interpreter Context. The
Interpreter Context presents the data to the Call Router as a response to the
previous request.

VoiceXML 2.1—Reference Manual 85

Chapter 3: Reference for Call Control Elements <SCRIPT_RESULT>

Syntax

<SCRIPT_RESULT
USR_PARAMS="CDATA"
/>

Attribute

Note: Before sending this element, specify a dollar variable called
$scripturl$ in the voice application. This is the top HREF for the page
that Interpreter Context generates in response to a RUN_SCRIPT_REQ from
the Queue Adapter or IVR Server Client.

USR_PARAMS

IVR Server Client Details

None.

Queue Adapter Details

If the Queue Adapter is used for Cisco, then USR_PARAMS is limited to 10
variables with 40 characters each. Variables are named CallVar1,
CallVar2,...CallVar10. These variables can be populated using
ICMVarMappingMode in USR_PARAMS.

1. <SCRIPT_RESULT USR_PARAMS=”ICMVarMappingMode:MAP_INORDER
AcctNum:1234, Amount: 500" />

In this example, CallVar1 will be populated with 1234 and CallVar2 will be
populated with 500.

2. <SCRIPT_RESULT USR_PARAMS=”ICMVarMappingMode:MAP_SPECIFICVARS,
CallVar1:1234, CallVar6:500, CallVar7:Valid />

In this example, CallVariable1 will be set to 1234, CallVariable6 set to
500 and CallVariable7 set to Valid. All other ICM variables will not be set.

Table 39: Attribute

USR_PARAMS Information that the caller enters is provided to the voice
application before requesting transfer to an agent. This
field contains subparameters and values separated by a
colon (:), with the different parameter-value pairs
separated by commas. For example,
PARAM1:25,PARAM2:busy,PARAM3:411. The Queue Adapter
or IVR Server Client translates the names and values of
the subparameters for interpretation by the Call Router.

86 Genesys Voice Platform 7.6

Chapter 3: Reference for Call Control Elements <SCRIPT_RESULT>

Note: The variable name must be one of CallVar1,
CallVar2,...CallVar10.

3. < SCRIPT_RESULT USR_PARAMS= AcctNum:1234, Amount: 500 />

In this example, since ICMVarMapping mode is not used, CallVar3 will be
populated with 1234 and CallVar4 will be populated with 500. CallVar1
and CallVar2 are reserved for internal use. Table 40 provides the details.

Child/Parent Elements

Example

<?xml version="1.0"?>
<XMLPage TYPE="IVR" PAGEID="Script_Result1" SESSIONID="" HREF="" >
<SET VARNAME="$scripturl$" VALUE="$start-ivr-url$"/>
<SCRIPT_RESULT
USR_PARAMS=”ICMVarMappingMode:MAP_SPECIFICVARS
CallVar1:APPID:,CallVar2:LOG_MODE:,CallVar3:APPLICATIONVERSION:,CallVar4:VOXFILEDIR:,CallVa
r5:VRCLVER:” >
</SCRIPT_RESULT>
<LEG_WAIT/>
</XMLPage>

Table 40: Encoding Data

User Data Encoded Data to
Interpreter Context

Encoded Data to
Queue Adapter

Data Passed to
Call Router

CallVariable1:
123,456

CallVariable1:
123%2C456

CallVariable1:
123%2C456

CallVariable1:
123,456

CallVariable1:
123,456:78%9

CallVariable1:
123%2C456%3A78%
259

CallVariable1:
123%2C456%3A78%
259

CallVariable1:
123,456:78%9

CallVariable1:
123,456,
CallVariable2:
1234

CallVariable1:
123%2C456,
CallVariable2:1234

CallVariable1:
123%2C456,
CallVariable2:1234

CallVariable1:
123,456,
CallVariable2:1234

Table 41: Child/Parent Elements

Child Elements (can contain) none

Parent Elements (used in) <XMLPage>

VoiceXML 2.1—Reference Manual 87

Chapter 3: Reference for Call Control Elements <SET>

<SET>
The <SET> element provides stateless voice applications with the mechanism to
maintain state and use session variables for any web server environment. Voice
applications can use the <SET> element to define session variables (variables
that last the lifetime of the current session/call). The <SET> element is also used
to set certain standard variables for the TXML interpreter.

Syntax

<SET
VARNAME="name"
VALUE="value"
/>

Attributes

Child/Parent Elements

Voice applications use the <SET> element to set the value of a user definable
variable for later substitution by the VCS/IPCS. The <SET> element tells the
VCS/IPCS to associate a particular value with a variable name. When the
voice application uses the specified variable in a document, the VCS/IPCS
substitutes the variable name with the value. To retrieve the value of the
session variable, put the variable in the query string of the voice application
URI that must use the value of the variable.

Table 42: Attributes

VARNAME The name of the variable. The name must start and end
with a dollar sign ($). Within the enclosed dollar signs, it
can have up to 30 letters, digits, underscores, or hyphens in
any combination.

VALUE The value to assign to the variable. The value can have any
printable ASCII characters. The maximum length allowed
for a value is 255 characters.

Table 43: Child/Parent Elements

Child Elements (can contain) none

Parent Elements (used in) <XMLPage>

88 Genesys Voice Platform 7.6

Chapter 3: Reference for Call Control Elements <UNBRIDGE_CALL>

Example

<?xml version="1.0"?>
<XMLPage TYPE="IVR" PAGEID="Start1" SESSIONID="" HREF="http://mypage.foo.com/start1.asp">
<!--Set the $badxmlpageposturl$ value by using the set tag -->
<SET VARNAME="$badxmlpageposturl$"
VALUE="http://mypage.foo.com/handleErrot.asp?NextAction=BadPage& LASTERROR=$last-
error$&LASTERRSTR=$last-error-string$&LASTERRURL=$last-error-url$/>

<HANGUP_AND_DESTROY_LEG REASON="CALLERHUP" />
 </XMLPage>

<UNBRIDGE_CALL>
The <UNBRIDGE_CALL> element breaks the bridge between designated legs of a
call. After the calls are unbridged, the voice application executes the element
following the <UNBRIDGE_CALL> element. If there is no element following the
<UNBRIDGE_CALL> element, the voice application executes the next document
from the HREF specified in the XMLPage root element at the top of the page.

Syntax

<UNBRIDGE_CALL
LEG_ID="name"
OTHER_LEG_URL="URL"
/>

Attributes

It is assumed that one of the legs is implicitly the one receiving this
<UNBRIDGE_CALL> element. If there is an error in unbridging the calls, the voice
application raises an error. See the “Error Extensions” on page 45 for details. It
is important to note that the appropriate error extensions must be placed in the
VoiceXML 2.1 root document.

Table 44: Attributes

LEG_ID (Required) Specifies the leg whose call is to be unbridged.
A value of ALL breaks the bridge between the current leg’s
call and all other calls bridged with this call.

OTHER_LEG_
URL

(Optional) The URL from where the other leg(s) should
fetch their next XML page after being unbridged. If this
attribute is omitted, the other leg(s) remain in LEG_WAIT
state until the voice application executes an <ALERT_LEG>
element.

VoiceXML 2.1—Reference Manual 89

Chapter 3: Reference for Call Control Elements <UNBRIDGE_CALL>

Child/Parent Elements

The following example illustrates the use of the <UNBRIDGED> element. In this
example, a hang-up event executes the <UNBRIDGE_CALL> element. The LEG_ID
attribute specifies which leg of the call to unbridge, and control of the voice
application returns to the caller.vxml document.

Examples

Caller Document

<?xml version="1.0"?>
<vxml version="2.1" application="app-root.vxml">

<form id="customer_service">
<field name="agent_transfer">

<prompt>
Please wait while we are transferring you to an agent

</prompt>

<goto next="http://bridge_call.xml"/>
</field>

<catch event="hangup">
<goto next="http://unbridge_call.xml"/>

</catch>
</form>

</vxml>

Bridge_Call.xml

<?xml version="1.0"?>
<XMLPageTYPE= "IVR" CUSTID="bridge_call" VERSION="2.5"

SESSIONID="$sessionid$" HREF="http://Telera.net/
agent.xml">

<BRIDGE_CALL LEG_ID="ALL" />
<LEG_WAIT/>
<!-- BRIDGE_CALL must be followed by LEG_WAIT -->

</XMLPage>

Agent Document

<?xml version="1.0"?>
<vxml version="2.1" application="app-root2.vxml">

Table 45: Child/Parent Elements

Child Elements (can contain) none

Parent Elements (used in) <XMLPage>

90 Genesys Voice Platform 7.6

Chapter 3: Reference for Call Control Elements Treatments

<form id="agent">
<field name="call_transfer">

<prompt>
You are getting a call from
<var name="customer" expr="name"/>

</prompt>
</field>

<throw event="hangup">
<goto next="http://unbridge_call.xml"/>

</throw>
</form>

</vxml>

Unbridge_Call.xml

<?xml version="1.0"?>
<XMLPageTYPE= "IVR" CUSTID="unbridge_call" VERSION="2.5"

SESSIONID="$sessionid$" HREF="http://Telera.net/
customer_service.vxml">

<UNBRIDGE_CALLLEG_ID="agent.xml"/>
</XMLPage>

Treatments
All of the parameters for the treatments are transparent to the Genesys Voice
Platform (GVP). The interpretation of these parameters is entirely within the
context of the voice application and the URS strategy.

Note: The APP_ID parameter in the URS Strategy is passed as the sid
variable to GVP.

PlayAnnouncement

This treatment is used to play an announcement block to the calling party. The
entire announcement block can consist of a series of Announcement Elements
pieced together. Each Announcement Element can be described as interruptible
or non interruptible.

VoiceXML 2.1—Reference Manual 91

Chapter 3: Reference for Call Control Elements Treatments

Parameters

PlayAnnouncementandCollectDigits

This treatment is used to play an announcement block and collect digits from
the caller. Typically, the announcement includes instructions requesting
information from the caller.

Parameters

All of the parameters of PlayAnnouncement are recognized.

Table 46: Parameters

PROMPT Contains 10 possible sublists, numbered 1–10. Each
sublist contains entries describing an announcement
element, which are as follows:

• Interruptible (boolean)—Indicates whether the caller
can interrupt the announcement.

Specify one of the following options:

• ID (integer)—ID of a message to play.

• Digits—Number to pronounce. The first digit defines
how the number should be pronounced:

 0—One at a time (For example, 411 will be
pronounced as four-one-one)

 1—Date (For example, the eleventh of April)
 2—Time (For example, four eleven AM)
 3—Phone number (For example, four-one-

one)
 4—Money (For example, four dollars and

eleven cents)
 5—Number (For example, four hundred and

eleven)

• User_Ann_ID (integer)—User Announcement ID as
returned after a successful RecordUserAnnouncement
request.

• Text (ASCII text)—Pronounce using text-to-speech
technology (if supported by the IP equipment).

LANGUAGE (Optional) Language indicator. Contains a string
specifying the language in which the announcement
should be made. The valid languages include, but are not
limited to, English (US), Spanish, Mandarin, Cantonese,
Vietnamese, French, French (Canada), German, Italian,
Japanese, Korean, and Russian.

92 Genesys Voice Platform 7.6

Chapter 3: Reference for Call Control Elements Treatments

PlayApplication

This treatment is used to execute a voice application or a script on the voice
application. It is possible to pass parameters to the voice application and get
return values.

Parameters

Music

This treatment is used to connect the interaction to a music source.

Parameters

Retransfer

Retransfer is the mechanism by which a user is transferred from one agent to
another agent. Currently, reroute is the only retransfer option available.

The voice application should be coded to support treatments because after the
reroute has been initiated by the first agent, the user leg can be issued
treatments before retransferring to a new agent.

Note: The Genesys IVR Server supports reroute in Network mode only.

Table 47: Parameters

APP_ID Application ID (integer). Specifies the voice application to
be run.

LANGUAGE Language specifier (string).

Table 48: Parameters

MUSIC_DN Directory number of the music source.

DURATION Music duration in seconds. This parameter is optional.

VoiceXML 2.1—Reference Manual 93

Appendix

A Transfer Scripts with
DTMF Base
This appendix provides information on how to develop transfer scripts to
support the TransferConnect feature.

This appendix includes the following sections:
 Overview, page 93
 Configuring TransferConnect in GVP, page 93
 Examples of Transfer Scripts, page 93

Overview
This appendix explains how to write VoiceXML control scripts to support
TransferConnect with DTMF base. It contains sample scripts that support ATT
TransferConnect. You can use these sample scripts as templates to create your
own scripts to support MCI TakeBackAndTransfer (TNT), Sprint Transfer
release, or GVP Hook-flash Transfer.

Configuring TransferConnect in GVP
To use the TransferConnect feature, you need to provision both the VCS/IPCS
and a voice application. Refer to the GVP Transfers section in the Genesys
Voice Platform 7.6 Reference Manual, which describes transfer configurations.

Examples of Transfer Scripts
This section provides example transfer scripts. These scripts are found in the
<GVP Install Folder>\CN\Web\XferConnect directory.

94 Genesys Voice Platform 7.6

Appendix A: Transfer Scripts with DTMF Base Examples of Transfer Scripts

Converted XML Script for XferConnect

GVP provides default scripting for these transfer options:

• “ATTCourtesy”

• “ATTConference”

• “ATTConsultative”

ATTCourtesy

<?xml version="1.0" encoding="UTF-8" ?>
<vxml version="2.0" xmlns="http://www.w3.org/2001/vxml"
xmlns:telera="http://www.telera.com/vxml/2.0/ext/20020430"
xmlns:genesys="http://www.genesyslab.com/vxml/2.0/ext/20020430"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.w3.org/2001/vxml
http://www.w3.org/TR/voicexml20/vxml.xsd">
 <property name="com.telera.speechenabled" value="false" />
 <property name="timeout" value="5s" />
<catch>
 <goto next="http://localhost:9810/XferConnect/error.xml" />
</catch>
<form id="att_courtesy">
<block>
<prompt bargein="false">
 <telera:value mode="dtmfplay" expr="'*8'" />
 <audio src="silence1000ms.wav" />
 </prompt>
 </block>
<field name="returncode">
<prompt bargein="false">
 <telera:value mode="dtmfplay"
expr="session.genesys.transferscript_number" />
 <telera:value mode="dtmfplay" expr="'#'" />
 </prompt>
<grammar version="1.0" xml:lang="en-US"
xmlns="http://www.w3.org/2001/vxml" type="application/srgs+xml"
root="rootdtmf" mode="dtmf">
<rule id="rootdtmf" scope="public">
<one-of>
 <item>**6</item>
 <item>**5</item>
 <item>**7</item>
 <item>**8</item>
 <item>**1</item>
 </one-of>
 </rule>
 </grammar>
<filled>
<if cond="returncode == '**6'">

VoiceXML 2.1—Reference Manual 95

Appendix A: Transfer Scripts with DTMF Base Examples of Transfer Scripts

 <goto next="http://localhost:9810/XferConnect/hangup.xml" />
 <elseif cond="returncode == '**5'" />
 <goto next="http://localhost:9810/XferConnect/error.xml" />
 <elseif cond="returncode == '**7'" />
 <goto next="http://localhost:9810/XferConnect/error.xml" />
 <elseif cond="returncode == '**8'" />
 <goto next="http://localhost:9810/XferConnect/error.xml" />
 <elseif cond="returncode == '**1'" />
 <goto next="http://localhost:9810/XferConnect/hangup.xml" />
 </if>
</filled>
<noinput>
 <goto next="http://localhost:9810/XferConnect/error.xml" />
 </noinput>
 </field>
 </form>
 </vxml>

ATTConference

<?xml version="1.0" encoding="UTF-8" ?>
<vxml version="2.0" xmlns="http://www.w3.org/2001/vxml"
xmlns:telera="http://www.telera.com/vxml/2.0/ext/20020430"
xmlns:genesys="http://www.genesyslab.com/vxml/2.0/ext/20020430"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.w3.org/2001/vxml
http://www.w3.org/TR/voicexml20/vxml.xsd">
 <property name="com.telera.speechenabled" value="false" />
 <property name="timeout" value="5s" />
<catch>
 <goto next="http://localhost:9810/XferConnect/error.xml" />
 </catch>
<form id="att_conference">
<block>
<prompt bargein="false">
 <telera:value mode="dtmfplay" expr="'*8'" />
 <audio src="silence1000ms.wav" />
 </prompt>
 </block>
<field name="returncode">
<prompt bargein="false" timeout="5s">
 <telera:value mode="dtmfplay"
expr="session.genesys.transferscript_number" />
 <telera:value mode="dtmfplay" expr="'#'" />
 </prompt>
<grammar version="1.0" xml:lang="en-US"
xmlns="http://www.w3.org/2001/vxml" type="application/srgs+xml"
root="rootdtmf" mode="dtmf">
<rule id="rootdtmf" scope="public">
<one-of>

96 Genesys Voice Platform 7.6

Appendix A: Transfer Scripts with DTMF Base Examples of Transfer Scripts

 <item>**6</item>
 <item>**5</item>
 <item>**7</item>
 <item>**8</item>
 <item>**1</item>
 </one-of>
 </rule>
 </grammar>
<filled>
<if cond="returncode == '**6'">
 <goto next="http://localhost:9810/XferConnect/conf.xml" />
 <elseif cond="returncode == '**5'" />
 <goto next="http://localhost:9810/XferConnect/error.xml" />
 <elseif cond="returncode == '**7'" />
 <goto next="http://localhost:9810/XferConnect/error.xml" />
 <elseif cond="returncode == '**8'" />
 <goto next="http://localhost:9810/XferConnect/error.xml" />
 <elseif cond="returncode == '**1'" />
 <goto next="http://localhost:9810/XferConnect/hangup.xml" />
 </if>
 </filled>
<noinput>
 <goto next="http://localhost:9810/XferConnect/error.xml" />
 </noinput>
 </field>
 </form>
</vxml>

ATTConsultative

<?xml version="1.0" encoding="UTF-8" ?>
<vxml version="2.0" xmlns="http://www.w3.org/2001/vxml"
xmlns:telera="http://www.telera.com/vxml/2.0/ext/20020430"
xmlns:genesys="http://www.genesyslab.com/vxml/2.0/ext/20020430"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.w3.org/2001/vxml
http://www.w3.org/TR/voicexml20/vxml.xsd">
 <property name="com.telera.speechenabled" value="false" />
<catch>
 <goto next="http://localhost:9810/XferConnect/error.xml" />
 </catch>
<form id="att_consultative">
<block>
<prompt bargein="false">
 <telera:value mode="dtmfplay" expr="'*8'" />
 <audio src="silence1000ms.wav" />
 </prompt>
 </block>
<field name="returncode">
<prompt bargein="false" timeout="3s">

VoiceXML 2.1—Reference Manual 97

Appendix A: Transfer Scripts with DTMF Base Examples of Transfer Scripts

 <telera:value mode="dtmfplay"
expr="session.genesys.transferscript_number" />
 <telera:value mode="dtmfplay" expr="'#'" />
 </prompt>
<grammar version="1.0" xml:lang="en-US"
xmlns="http://www.w3.org/2001/vxml" type="application/srgs+xml"
root="rootdtmf" mode="dtmf">
<rule id="rootdtmf" scope="public">
<one-of>
 <item>**6</item>
 <item>**5</item>
 <item>**7</item>
 <item>**8</item>
 <item>**1</item>
 </one-of>
 </rule>
 </grammar>
<filled>
<if cond="returncode == '**6'">
 <goto next="http://localhost:9810/XferConnect/return.xml" />
 <elseif cond="returncode == '**5'" />
 <goto next="http://localhost:9810/XferConnect/error.xml" />
 <elseif cond="returncode == '**7'" />
 <goto next="http://localhost:9810/XferConnect/error.xml" />
 <elseif cond="returncode == '**8'" />
 <goto next="http://localhost:9810/XferConnect/error.xml" />
 <elseif cond="returncode == '**1'" />
 <goto next="http://localhost:9810/XferConnect/hangup.xml" />
 </if>
 </filled>
<noinput>
 <goto next="http://localhost:9810/XferConnect/error.xml" />
 </noinput>
 </field>
 </form>
</Vxml>

98 Genesys Voice Platform 7.6

Appendix A: Transfer Scripts with DTMF Base Examples of Transfer Scripts

VoiceXML 2.1—Reference Manual 99

Appendix

B UTF-8 Support for
Attached Data
This appendix describes UTF-8 support for attached data.

This appendix contains the following sections:
 Overview, page 99
 Application to IVR Server, page 99
 IVR Server to Application, page 100
 Double-Byte Character, page 101

Overview
Attached data can be passed from the VoiceXML application to the IVR Server
and vice versa. GVP supports attached data in UTF-8 encoding in both
directions.

Application to IVR Server
The Call Flow Assistant accepts the following HTTP POST requests from the
Conversation Controller.
• QUEUE_CALL_REQ

• EXECUTE_IVR_SCRIPT_RESULT

• ATTACH_CRDATA

• GET_CRDATA

• EXECUTE_GENERIC_ACTION_REQ

100 Genesys Voice Platform 7.6

Appendix B: UTF-8 Support for Attached Data IVR Server to Application

IVR Server to Application
To support UTF-8, the following occurs:

• When setting the $script-data$, the Call Flow Assistant specifies the
enctype as utf8 in the XML page.

• The Conversation Controller accepts the $script-data$ UTF-8 data from
the Call Flow Assistant. The Conversation Controller makes the script data
available in a VoiceXML session variable: session.genesys.script_data.

If the VoiceXML application does not need to process UTF-8 data, or if it is
not expected to receive UTF-8 data from the IVR Server, no change is required
in the application.

If the VoiceXML application is required to handle UTF-8 data, the VoiceXML
application should access the VoiceXML session variable.

Example

<?xml version="1.0" ?>
<vxml version="2.1" xmlns="http://www.w3.org/2001/vxml">
<property name="termchar" value="D" />
<property name="com.telera.speechenabled" value="false" />
<form>

<var name="ScriptData" expr="Session.scriptData"/>
<block>
<submit next="Branching1%2Easp method="post" namelist="ScriptData"/>
</block>

</form>

When setting the $scripturl$, the VoiceXML application should remove
$script-data$ from the query string.

Example

<?xml version="1.0" ?>
<XMLPage TYPE="IVR" PAGEID="" SESSIONID=""

HREF="http://localhost/VXMLStudioSimulation/LegWait1.asp">
<SET VARNAME="$scripturl$"
VALUE="http://localhost/VXMLStudioSimulation/START.asp?ScriptID=$sid" />
<QUEUE_CALL USR_PARAMS="GenesysRouteDN:1111" />
</XMLPage>

VoiceXML 2.1—Reference Manual 101

Appendix B: UTF-8 Support for Attached Data Double-Byte Character

Double-Byte Character
To support the UTF-8 double-byte character:

1. In Framework, set the application type T-Server option
[XmlSap]:target-encoding to Chinese.

2. Restart IVR Server.

102 Genesys Voice Platform 7.6

Appendix B: UTF-8 Support for Attached Data Double-Byte Character

VoiceXML 2.1—Reference Manual 103

Appendix

C Passing MRCP Vendor
Specific Parameters
This appendix describes how to pass MRCP vendor–specific parameters.

This appendix contains the following sections:
 Overview, page 103
 Hotword Support, page 103
 Passing Parameters to ASR Servers, page 104
 Passing Parameters to TTS Servers, page 105

Overview
GVP supports the sending of application-provided vendor-specific parameters
to MRCP ASR and TTS servers.

Note: GVP does not support sending vendor-specific parameters from the
MRCP ASR or TTS server back to the VoiceXML application.

Hotword Support
You can enable hotword support by using the Hotword Support parameter on
the EMPS > Servers > MRCP ASR server. Set the value of the Hotword
Support parameter to Vendor Specific Parameters for MRCP servers (for
example, Nuance SWMS) that support hotword by the vendor-specific
parameter Recognition-Mode on MRCPv1. For all other servers, set the value of
the Hotword Support parameter to None.

104 Genesys Voice Platform 7.6

Appendix C: Passing MRCP Vendor Specific Parameters Passing Parameters to ASR Servers

When configuring a SWMS server in GVP, you can use the
SampleASRServerSWMS sample server, in which Hotword Support is already set to
Vendor Specific Parameters by default.

Using Nuance SWMS, you can use Nuance MRCPv1 extensions to perform
hotword recognition. To enable hotword, use standard VoiceXML and set the
bargeintype property to hotword in the VoiceXML application. As per the
VoiceXML specification, hotword is enabled by default during transfer.

If hotword is not configured on the MRCP ASR server using the Hotword
Support parameter, and bargeintype is set to hotword, the error.noresource
error is returned to the VoiceXML application. For VoiceXML transfer,
hotword will not be activated if it is not configured on the MRCP ASR server.

Refer to the Nuance SWMS documentation for details on the parameters that
you can optionally set on SWMS to fine-tune hotword recognitions.

Note: The SWMS vendor-specific parameter Recognition-Mode must not be
set by the VoiceXML application; it is controlled by GVP through the
VoiceXML bargeintype.

Bridged Transfers
On IPCS/VCS, if the com.telera.speechenabled parameter is set to true, and if
the ASR server supports hotwords, the termination of the called party leg
during a bridged transfer by matching the caller’s voice or DTMF input to a
grammar is supported.

On VCS only, if com.telera.speechenabled is set to false, matched DTMF
input can terminate the called party leg of the call.

Passing Parameters to ASR Servers
To pass vendor-specific parameters in the application, use the VoiceXML
<property> element.

Example

<property name="swi.rec.channelName" value="FooChannel"> </property>
<property name="swi.rec.applicationName" value="FooApp"> </property>

GVP, in turn, sends the vendor-specific parameter to the MRCP server in an
MRCP SET-PARAMS message.

Example

ANNOUNCE rtsp://dev-fry:4900/media/speechrecognizer RTSP/1.0
CSeq: 3
Session: ECKPFCGLAAAHFFAJAAAAAAAA

VoiceXML 2.1—Reference Manual 105

Appendix C: Passing MRCP Vendor Specific Parameters Passing Parameters to TTS Servers

Content-Type: application/mrcp
Content-Length: 481
SET-PARAMS 3 MRCP/1.0
dtmf-term-timeout:0
speed-vs-accuracy:50
sensitivity-level:50
recognition-timeout:20000
n-best-list-length:1
speech-incomplete-timeout:3000
confidence-threshold:50
speech-complete-timeout:1000
dtmf-interdigit-timeout:2000
dtmf-term-char:#
no-input-timeout:10000
logging-tag:GenesysLab_Wesley_Wesley_MyApplication_5B93DC84-015C-460F-A944-9AA877AD61C1
vendor-specific-

parameters:swi.rec.channelName="FooChannel";swi.rec.applicationName="FooApp"

Passing Parameters to TTS Servers
To pass vendor-specific parameters in the application, use the VoiceXML
<property> element and prepend the vendor specific parameter with
com.genesys.tts.

Example

<property name="com.genesys.tts.FooParameter1" value="FooValue1"> </property>
<property name="com.genesys.tts.FooParameter2" value="FooValue2"> </property>

GVP, in turn, sends the vendor-specific parameter in an MRCP SET-PARAMS
message to the MRCP TTS server.

Example

ANNOUNCE rtsp://dev-fry:4900/media/speechsynthesizer RTSP/1.0
CSeq: 3
Session: ECKPFCGLAAAHFFAJAAAAAAAA
Content-Type: application/mrcp
Content-Length: 481

SET-PARAMS 3 MRCP/1.0
vendor-specific-parameters: FooParameter1="FooValue1"; FooParameter2=" FooValue2"

106 Genesys Voice Platform 7.6

Appendix C: Passing MRCP Vendor Specific Parameters Passing Parameters to TTS Servers

VoiceXML 2.1—Reference Manual 107

Appendix

D Key Ahead
This appendix describes Key Ahead with Automatic Speech Recognition
(ASR).

This appendix contains the following sections:
 Overview, page 107
 Clearing Key Ahead Buffer, page 108

Overview
The Key Ahead feature enables the user to terminate the multiple recognitions
by sending a DTMF sequence.

Note: The Key Ahead feature is supported on MRCP only.

DTMF tones will be sent to the ASR server until a recognition result is
received. Any remaining digits will be passed on to later recognitions, until no
DTMF tones are left.

Key Ahead digits will not be passed on when the VoiceXML application
transitions from a page with speech recognition enabled to a page with speech
recognition disabled.

The Key Ahead buffer is flushed if any of the following occur:

• A grammar is not matched.

• A spoken grammar is matched.

• A prompt that does not allow the user to barge-in is played.

The following example describes the caller experience with Key Ahead.

108 Genesys Voice Platform 7.6

Appendix D: Key Ahead Clearing Key Ahead Buffer

Example

grammar: 1
grammar: 2
grammar: 1 3
<press 1 for weather, press 2 for sports>
<input>

grammar: 1
grammar: 2
<press 1 for san jose, press 2 for campbell>
<input>

Previously, the caller would have pressed 1, paused, and then pressed 2 for
Campbell weather. With Key Ahead enabled, the caller would press [1 2] and
expect to jump to Campbell weather. That scenario will not work, because the
[1 2] input will not match the [1 3] grammar on the first page, and as a result,
a no-match will be thrown. Therefore, the application developer must make
sure that he or she designs fixed-length DTMF sequence grammars.

Clearing Key Ahead Buffer
GVP enables VoiceXML applications to control when they clear the Key
Ahead buffer.

Note: Clearing Key Ahead buffer is applicable to both ASR and non-ASR.

The VoiceXML interpreter supports Genesys extensions to all of the
VoiceXML input elements. An attribute—clearbuffer—can be included as
part of an input element, to suggest that the VoiceXML application should
clear the buffer before executing that input element.

The clearbuffer attribute is supported in the following VoiceXML input
elements:
• <field>

• <record>

• <transfer>

• <menu>

The following examples demonstrate how to use the clearbuffer attribute in
each of the preceding input elements.

VoiceXML 2.1—Reference Manual 109

Appendix D: Key Ahead Clearing Key Ahead Buffer

Example 1

<?xml version="1.0" encoding="UTF-8"?>

<!--
CallFlow:

C (Computer): This is field 1. Please press 1 to go to field 2.

H (Human): (Press 1 2 3)

C: This is field 3. Please press 3. (Note that prompt in "field2"
 is skipped because of the buffering of digit 2, while the prompt in

"field3" is not skipped because the attribute "clearbuffer" is set to "true")

H (Human): (Press 3)

C (Computer): You have pressed 3.
-->

<vxml xmlns="http://www.w3.org/2001/vxml"
xmlns:telera="http://www.telera.com/vxml/2.0/ext/20020430"
xmlns:genesys="http://www.genesyslab.com/vxml/2.0/ext/20020430"
xmlns:conf="http://www.w3.org/2001/vxml-conformance" version="2.1">

 <form id="form1">
 <field name="field1" type="digits?length=1">
 <prompt>
 This is field 1. Please press 1 to go to field 2.
 </prompt>
 </field>
 <filled>
 <if cond="field1 == '1'">
 <prompt>
 You have pressed 1
 </prompt>
 <goto next="#form2"/>
 </if>
 </filled>
 </form>

 <form id="form2">
 <field name="field2" type="digits?length=1">
 <prompt>
 This is field 2. Please press 2 to go to field 3.
 </prompt>
 </field>
 <filled>
 <if cond="field2 == '2'">
 <prompt>
 You have pressed 2
 </prompt>

110 Genesys Voice Platform 7.6

Appendix D: Key Ahead Clearing Key Ahead Buffer

 <goto next="#form3"/>
 </if>
 </filled>
 </form>

 <form id="form3">
 <genesys:field name="field3" clearbuffer="true" type="digits?length=1">
 <prompt>
 This is field 3. Please press 3.
 </prompt>
 </genesys:field>
 <filled>
 <if cond="field3 == '3'">
 <prompt>
 You have pressed 3
 </prompt>
 </if>
 </filled>
 </form>
</vxml>

Example 2

<?xml version="1.0" encoding="UTF-8"?>
<vxml version="2.1" xmlns="http://www.w3.org/2001/vxml"
 xmlns:genesys="http://www.genesyslab.com/vxml/2.0/ext/20020430"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.w3.org/2001/vxml
 http://www.w3.org/TR/voicexml20/vxml.xsd">

<!--
CallFlow:

C (Computer): For sports press 1, For weather press 2, For movies press 3.

H (Human): (Press 1 2 3)

C: You have selected movies. Finally, for sports press 1, For
 weather press 2, For movies press 3. (Note that prompt in
 "menu1.vxml" and "menu2.vxml" is skipped because of the
 buffering of digit 2, while the prompt in "menu3.vxml" is not skipped
 because the attribute "clearbuffer" is set to "true")

H (Human): (Press 3)

C (Computer): You have selected movies.

-->

 <menu>

VoiceXML 2.1—Reference Manual 111

Appendix D: Key Ahead Clearing Key Ahead Buffer

 <property name="inputmodes" value="dtmf"/>
 <prompt>
 For sports press 1, For weather press 2, For movies press 3.
 </prompt>
 <choice dtmf="1" next="menu1.vxml"/>
 <choice dtmf="2" next="menu2.vxml"/>
 <choice dtmf="3" next="menu3.vxml"/>
 </menu>
</vxml>

menu1.vxml

<?xml version="1.0" encoding="UTF-8"?>
<vxml version="2.1" xmlns="http://www.w3.org/2001/vxml"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.w3.org/2001/vxml
 http://www.w3.org/TR/voicexml20/vxml.xsd">
 <menu>
 <property name="inputmodes" value="dtmf"/>
 <prompt>
 You have selected sports. For sports press 1, For weather press 2, For

movies press 3.
 </prompt>
 <choice dtmf="1" next="menu1.vxml"/>
 <choice dtmf="2" next="menu2.vxml"/>
 <choice dtmf="3" next="menu3.vxml"/>
 </menu>
</vxml>

menu2.vxml

<?xml version="1.0" encoding="UTF-8"?>
<vxml version="2.1" xmlns="http://www.w3.org/2001/vxml"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.w3.org/2001/vxml
 http://www.w3.org/TR/voicexml20/vxml.xsd">
 <menu>
 <property name="inputmodes" value="dtmf"/>
 <prompt>
 You have selected weather. For sports press 1, For weather press 2, For

movies press 3.
 </prompt>
 <choice dtmf="1" next="menu1.vxml"/>
 <choice dtmf="2" next="menu2.vxml"/>
 <choice dtmf="3" next="menu3.vxml"/>
 </menu>
</vxml>

112 Genesys Voice Platform 7.6

Appendix D: Key Ahead Clearing Key Ahead Buffer

menu3.vxml

<?xml version="1.0" encoding="UTF-8"?>
<vxml version="2.1" xmlns="http://www.w3.org/2001/vxml"
 xmlns:genesys="http://www.genesyslab.com/vxml/2.0/ext/20020430"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.w3.org/2001/vxml
 http://www.w3.org/TR/voicexml20/vxml.xsd">
 <catch event="event.sports">
 <prompt>
 You have selected sports
 </prompt>
 <exit/>
 </catch>
 <catch event="event.weather">
 <prompt>
 You have selected weather
 </prompt>
 <exit/>
 </catch>
 <catch event="event.movies">
 <prompt>
 You have selected movies
 </prompt>
 <exit/>
 </catch>
 <genesys:menu clearbuffer="true">
 <property name="inputmodes" value="dtmf"/>
 <prompt>
 You have selected movies. Finally, for sports press 1, For weather press 2,

For movies press 3.
 </prompt>
 <choice dtmf="1" event="event.sports"/>
 <choice dtmf="2" event="event.weather"/>
 <choice dtmf="3" event="event.movies"/>
 </genesys:menu>
</vxml>

Example 3

<?xml version="1.0" encoding="UTF-8"?>

<!--
CallFlow:

C (Computer): This is field 1. Please press 1 to go to field 2.

H (Human): (Press 1 2 3)

C: You have pressed 2. Please record message 3 and then press 3.

VoiceXML 2.1—Reference Manual 113

Appendix D: Key Ahead Clearing Key Ahead Buffer

 (Note that prompt in "field2" is skipped because of the buffering
 of digit 2. While the prompt in "record3" is not skipped because the
 attribute "clearbuffer" is set to "true")

H (Human): (Press 3)

C (Computer): You have pressed 3.
-->

<vxml xmlns="http://www.w3.org/2001/vxml"
xmlns:telera="http://www.telera.com/vxml/2.0/ext/20020430"
xmlns:genesys="http://www.genesyslab.com/vxml/2.0/ext/20020430"
xmlns:conf="http://www.w3.org/2001/vxml-conformance" version="2.1">

 <form id="form1">
 <field name="field1" type="digits?length=1">
 <prompt>
 This is field 1. Please press 1 to go to field 2.
 </prompt>
 </field>
 <filled>
 <if cond="field1 == '1'">
 <prompt>
 You have pressed 1
 </prompt>
 <goto next="#form2"/>
 </if>
 </filled>
 </form>

 <form id="form2">
 <field name="field2" type="digits?length=1">
 <prompt>
 This is field 2. Please press 2 to go to field 3.
 </prompt>
 </field>
 <filled>
 <if cond="field2 == '2'">
 <prompt>
 You have pressed 2
 </prompt>
 <goto next="#form3"/>
 </if>
 </filled>
 </form>

 <form id="form3">
 <genesys:record name="record3" clearbuffer="false">
 <prompt>
 Please record message 3 and then press 3.
 </prompt>
 </genesys:record>

114 Genesys Voice Platform 7.6

Appendix D: Key Ahead Clearing Key Ahead Buffer

 <filled>
 <if cond="lastresult$.interpretation == '3'">
 <prompt>
 You have pressed 3
 </prompt>
 </if>
 </filled>
 </form>
</vxml>

Example 4

<?xml version="1.0" encoding="UTF-8"?>

<!--
CallFlow:

C (Computer): This is field 1. Please press 1 to go to field 2.

H (Human): (Press 1 2 3)

C: You have pressed 2. This is transfer 3. Please press 3.
 (Note that prompt in "field2" is skipped because of the buffering
 of digit 2. While the prompt in "transfer3" is not skipped because
 the attribute "clearbuffer" is set to "true")

H (Human): (Press 3)

C (Computer): You have pressed 3.
-->

<vxml xmlns="http://www.w3.org/2001/vxml"
xmlns:telera="http://www.telera.com/vxml/2.0/ext/20020430"
xmlns:genesys="http://www.genesyslab.com/vxml/2.0/ext/20020430"
xmlns:conf="http://www.w3.org/2001/vxml-conformance" version="2.1">

 <form id="form1">
 <field name="field1" type="digits?length=1">
 <prompt>
 This is field 1. Please press 1 to go to field 2.
 </prompt>
 </field>
 <filled>
 <if cond="field1 == '1'">
 <prompt>
 You have pressed 1
 </prompt>
 <goto next="#form2"/>
 </if>
 </filled>
 </form>

VoiceXML 2.1—Reference Manual 115

Appendix D: Key Ahead Clearing Key Ahead Buffer

 <form id="form2">
 <field name="field2" type="digits?length=1">
 <prompt>
 This is field 2. Please press 2 to go to field 3.
 </prompt>
 </field>
 <filled>
 <if cond="field2 == '2'">
 <prompt>
 You have pressed 2
 </prompt>
 <goto next="#form3"/>
 </if>
 </filled>
 </form>

 <form id="form3">
 <genesys:transfer name="xfer3" type="bridge" dest="123" clearbuffer="true">
 <grammar type="application/srgs+xml" root="r2" version="1.0" mode="dtmf">
 <rule id="r2" scope="public">
 <one-of>
 <item>1</item>
 <item>2</item>
 <item>3</item>
 </one-of>
 </rule>
 </grammar>
 <prompt>
 This is transfer 3. Please press 3.
 </prompt>
 </genesys:transfer>
 <filled>
 <if cond="lastresult$.interpretation == '3'">
 <prompt>
 You have pressed 3
 </prompt>
 </if>
 </filled>
 </form>
</vxml>

116 Genesys Voice Platform 7.6

Appendix D: Key Ahead Clearing Key Ahead Buffer

VoiceXML 2.1—Reference Manual 117

Appendix

E SIP Headers
This appendix describes how to propagate SIP Header values to the VoiceXML
application on IP Communication Server (IPCS).

This appendix contains the following section:
 Propagation of Headers, page 117

Propagation of Headers
IPCS passes certain SIP headers to the VoiceXML application when required.

P-Asserted-Identity

The P-Asserted-Identity header is used when a SIP server (proxy server)
asserts the private identity of a user. When receiving an INVITE that contains
the P-Asserted-Identity header, IPCS passes the value to the VoiceXML
application.

Note: IPCS only checks for this header in an incoming INVITE message.

Call-ID

Every INVITE message must have a Call-ID header. When IPCS receives an
INVITE with this header, IPCS passes it to the VoiceXML application.

Accessing Header Values

IPCS collects all the values for the SIP headers and presents it as a comma
separated list to the VoiceXML application. The VoiceXML application will
access the headers using the session.connection variables.

118 Genesys Voice Platform 7.6

Appendix E: SIP Headers Propagation of Headers

To access the P-Asserted-Identity header, use
session.connection.protocol.sip.headers[“p-asserted-identity”].

To access the Call-ID header, use
session.connection.protocol.sip.headers[“call-id”].

If these headers are not available in the INVITE message, or the IPCS is not
configured to present the headers to the VoiceXML application, the
session.connection variables are set to undefined.

Example VoiceXML

<?xml version=”1.0” encoding=”UTF-8”?>
<vxml xmlns=”http://www.w3.org/2001/vxml”
xmlns:conf=”http://ww.w3.org/2002/vxml-conformance” version=”2.1”>

<form>
<block>

<prompt>
The P-Asserted-Identity header value is
<value expr=’session.connection.protocol.sip.headers[“p-asserted-identity”]’/>.
The Call-ID header value is
<value expr=’session.connection.protocol.sip.headers[“call-id”]’/>.

</prompt>
</block>

</form>

</vxml>

The VoiceXML application can also access these headers using the following
$variables:

• P-Asserted-Identity—$sip.p-asserted-identity

• Call-ID—$sip.call-id

These $variables are available in the VoiceXML application’s first page, and
can be accessed by the $start-ivr-url$ query string variable.

For information about configuring the IPCS for SIP headers, see the Genesys
Voice Platform 7.6 Deployment Guide.

VoiceXML 2.1—Reference Manual 119

Appendix

F Application Developer Note
This appendix contains information that is useful to application developers.

This appendix has one section:
 Transferring Calls Using GVP, page 119

Transferring Calls Using GVP
When transferring Voice over IP (VoIP) calls using IPCS, the destination
number must be entered in the SIP URI format:
sip:<application-name>@<destination-host-ip-address>:<port-number>

For example:
sip:bankingapplication@10.10.10.100:9810

where

bankingapplication is the <application-name>

10.10.10.10 is the <destination-host-ip-address>

9810 is the <port-number>

The port number is required only if the SIP Server on the destination host is
listening on a port other then 5060. If the voice application in this example was
listening on port 5060, the SIP URI would be
sip:bankingapplication@10.10.10.100. The destination host can be the local
GVP server or a remote server. The destination host also can be any SIP
Server—for example, a softphone or a Media Gateway.

When you use Genesys Studio to create your voice applications, there are two
blocks that you can use to enable call transfers in a voice application:
CONNECT block and TRANSFER block.

120 Genesys Voice Platform 7.6

Appendix F: Application Developer Note Transferring Calls Using GVP

Using TRANSFER Block

When using the TRANSFER block, enter the destination number in SIP URI
format in the Destination field under the Transfer tab (see Figure 2).

Figure 2: TRANSFER Block

VoiceXML 2.1—Reference Manual 121

Appendix F: Application Developer Note Transferring Calls Using GVP

Using CONNECT Block

When using the CONNECT block, in the START block of the voice
application, a new variable under the Application Settings tab must be defined.
The new variable should have a name such as MySIPNumber with either an
explicit SIP address or as a placeholder value such as dummy (see Figure 3).

Figure 3: START Block

If the variable is a place holder, in the CONNECT block under the Standard
tab, the Custom Code must be modified to include a new value for the
mySIPNumber variable defined in the START block (see Figure 4 on page 122).
The value of the mySIPNumber must be the destination number in SIP URI
format.

122 Genesys Voice Platform 7.6

Appendix F: Application Developer Note Transferring Calls Using GVP

Figure 4: CONNECT Block Custom Code

In either the case of an explicit SIP address or a placeholder replaced by
custom coding, in the CONNECT block under the Transfer_Properties tab,
select the Use Data From Previous Nodes check box and select the variable
defined in START block (in this example mySIPNumber) in the pull-down list,
see Figure 5 on page 123.

VoiceXML 2.1—Reference Manual 123

Appendix F: Application Developer Note Transferring Calls Using GVP

Figure 5: Connect Block Transfer Properties

124 Genesys Voice Platform 7.6

Appendix F: Application Developer Note Transferring Calls Using GVP

VoiceXML 2.1—Reference Manual 125

Appendix

G Best Practices
This appendix summarizes some of the techniques that can be used to develop
efficient VoiceXML applications.

This appendix contains the following sections:
 Overview, page 125
 Application Guidelines, page 126

Overview
The following is a high-level list of recommended best practices:

• Careful caching of resources.

• Reduce the number of page transitions (that do not collect any caller
inputs).

• Reduce the number of ECMAScripts used.

• Reduce the number of global variables.

• Reduce the usage of inline ECMAScripts.

• Reduce the time required to compile the VoiceXML page.
 Keep the root document size small.

• Use fetchhint values (safe or prefetch) properly.

• During production deployment:
 Disable <log> tag.
 Disable ASR wave capture.
 Use full duplex recording with care.

• Avoid using local resources on the GVP server.

• Ensure that Expires header is present for all external grammars used by
Nuance OSR.

• Avoid using inline grammars.

126 Genesys Voice Platform 7.6

Appendix G: Best Practices Application Guidelines

• Pre-compile grammars when possible.

• Avoid frequently changing the application root.

• Avoid keeping audio files on the GVP servers.

• Down sample audio files to 8K samples, 1 byte Mono.

• Use asynchronous mode for posting recordings.

• Adjust timeout to a reasonable amount depending upon the data being
collected.

• Resolve ambiguity—ideally one call input should match only one
grammar.

• Renew the Expires time for resources when If-Modified-Since request
made.

• Avoid using the <break> tag for pause between audio prompts.

• Avoid interleaving of small TTS prompts with audio prompts.

• Understand prompt queuing.

• Use of grammars inside transfers.

• Tune grammars and prompts for speech applications.

• Load test applications before going live.

Each of these recommendations is explained in detail in the following sections.

Note: Certain techniques will be more effective than others depending upon
the nature of the application being developed. Genesys highly
recommends that early benchmarking of smaller representative
applications be conducted, which will indicate the kind of performance
improvements that can be achieved.

Application Guidelines
This section explains the best practice recommendations in detail.

Careful Caching of Resources

Caching can improve application performance because it avoids sending extra
HTTP fetch requests for resources that have not changed since the last time
they were fetched.

Many times it is necessary during the development of applications to ensure
that the resources on the application servers (for example, grammars, prompts,
ECMAscripts, static VoiceXML scripts, and so on) are fetched every time
since they are likely to change. Once the application development is complete
and has gone through rigorous testing, these resources are much less likely to

VoiceXML 2.1—Reference Manual 127

Appendix G: Best Practices Application Guidelines

change. This is the right time to examine the settings that control whether or
not a resource is cached and for how long.

VoiceXML 2.0 (RFC 2616) describes the manner in which HTTP 1.1 caching
behaves. The maxage and maxstale attributes of some of the selected
VoiceXML tags control the manner in which cached copy is used. The
Expires: header plays an important role indicating to the GVP VoiceXML
platform about when this resource can be considered stale.

Genesys recommends that the Expires: header be set to a large value (for
example, 86400) for certain types of resource such as prompt files, grammar
files (compiled or static source files), static VoiceXML files, and ECMAScript
files. This ensures that the users of these resources avoid fetching potentially
large resources from the network; therefore, improving application
performance.

Reduce Number of Page Transitions

Each time a VoiceXML page is received by the VoiceXML interpreter, it is
compiled and transformed into a state machine representation before it can be
interpreted. It is important to avoid unnecessary page transitions, especially if
the pages do not collect any inputs from the caller.

For example, consider the following VoiceXML page:

<?xml version="1.0"?>
<vxml version="2.0">
<form id="menu">
 <block>
<submit next= "http://1.2.3.4:8080/app/jsp/aLocal.jsp?key1= val1&key2=val2&key3=val3"/>
 </block>
</form>
</vxml>

It may be possible to invoke the aLocal.jsp while on the application server
with the right parameters instead of delivering to the VoiceXML interpreter,
having it compile the VoiceXML page and then eventually do a HTTP submit
request. This not only saves valuable system resources on the GVP VoiceXML
platform, but it also improve the latencies experienced by the caller.

Reduce Number of ECMAScripts

Although the ability to use ECMAScript inside VoiceXML is appropriate for
executing data driven application logic without leaving the VoiceXML
browser, it does create overhead because GVP uses a third party ECMAScript
engine. Reduce the number of ECMAScripts used in an application, as overuse
of ECMAScripts can adversely affect the performance of the VoiceXML
interpreter impacting the application performance.

128 Genesys Voice Platform 7.6

Appendix G: Best Practices Application Guidelines

The application must be tuned to optimally balance the processing between the
VoiceXML browser and the Web server. In order to use the VoiceXML browser
resources efficiently, logic that can be handled on the server should be
controlled in the dynamic web pages instead of executing them on the
VoiceXML browser.

There is no additional ECMAScript overhead when the VoiceXML page is
compiled; however, each individual request to an ECMAScript (either as a
condition, expression or actual script) is sent to the ECMAScript engine for
processing. The ECMAScript engine does not maintain internal cache of its
own, and the script is compiled and executed each time it is invoked. For
example, if an expression is executed more than once in an application flow,
the expression will be evaluated each time.

When using ECMAScripts, it is recommended to define local variables to hold
the expression variables. Use these variables if the same expression is
computed multiple times. Use functions for commonly used operations instead
of using inline scripts.

Reduce Number of Global Variables

All VoiceXML variables are ECMAScript definitions defined inside the
ECMAScript engine. Memory is consumed for each variable created. Each
time a variable is created, or a new value is assigned to it, ECMAScript
overhead is incurred. Too many global variables defined in the application root
increases the memory requirements which impacts application performance,
and the total number of concurrent calls that GVP can handle.

Reduce Usage of Inline ECMAScripts

Internal and external ECMAScripts are executed in the same way. However,
using Expires headers will help reduce the size of the VoiceXML page
resulting in faster page fetches.

Reduce Time Required to Compile VoiceXML Page

When a VoiceXML page is fetched, the entire page is compiled even if a single
line of a ten thousand line page is executed. Therefore, avoid having multiple
forms within the same page as they may not all be used. However, having
forms on separate pages can introduce fetch delays.

Genesys recommends that the maximum size of VoiceXML pages be under
100K for optimal performance of the platform.

The following code snippet shows an inefficient application design. There are
six forms on the same page but only three will be used in a call. The rest are
compiled but not used resulting in wasted CPU time.

VoiceXML 2.1—Reference Manual 129

Appendix G: Best Practices Application Guidelines

<?xml version="1.0"?>
<vxml version="2.0">
<form id="menu">
 <field name="course">
 <prompt>
 Pick a course for its description.
 Example CS 100.
 </prompt>
 <grammar>
 CS 100 {course:cs100} | CS 121 {course:cs121} |
 CS 122 {course:cs122} | CS 123 {course:cs123} |
 CS 124 {course:cs124}
 </grammar>
 <filled>
 <goto expr="'#'+course"/>
 </filled>
 </field>
</form>
<form id="cs100">
 <block>
 CS 100.
 Introduction to Computer Usage. This course gives an introduction
 to using personal computer hardware and software...
 <!-- loop back -->
 <goto next="#menu"/>
 </block>
</form>
<form id="cs121">
 <block>
 CS 121.
 Introduction to Object-Oriented Programming. This course teaches
 the fundamental concepts of problem solving using a computer...
 </block>
</form>
<form id="cs122">
 <block>
 CS 122.
 Principles of Program Design. This course teaches the fundamental
 concepts of object-oriented analysis and design...
 </block>
</form>
<form id="cs123">
 <block>
 CS 123.
 Developing Programming Principles. This course gives a review of
 fundamental programming concepts and their application in Java...
 </block>
</form>
<form id="cs124">
 <block>

130 Genesys Voice Platform 7.6

Appendix G: Best Practices Application Guidelines

 CS 124.
 Introduction to Software Development. This course is an introduction
 to basic concepts of computer science, including the paradigms of
 theory, abstraction, and design...
 </block>
</form>
</vxml>

The following code snippet shows a more efficient application. By moving
each form into its own page, a form will only be compiled if it is going to be
executed. The other unused forms will not be compiled eliminating
unnecessary CPU cycles.

It is more efficient to use <subdialog> and <return> tags rather than <goto>
tags to avoid transitioning back to the main menu for it to be recompiled. With
a <subdialog>, the main menu page is preserved and upon return will not be
recompiled.

<?xml version="1.0"?>
<vxml version="2.0">
<form id="menu">
 <field name="course">
 <prompt>
 Pick a course for its description.
 Example CS 100.
 </prompt>
 <grammar>
 CS 100 {course:cs100} | CS 121 {course:cs121} |
 CS 122 {course:cs122} | CS 123 {course:cs123} |
 CS 124 {course:cs124}
 </grammar>
 <filled>
 <if cond="course=='cs100'">
 <goto nextitem="loop"/>
 <else/>
 <goto expr="course+'.vxml'"/>
 </if>
 </filled>
 </field>
 <subdialog name="loop" src="cs100.vxml">
 <filled>
 <clear/>
 <goto next="#menu"/>
 </filled>
 </subdialog>
</form>
</vxml>

[cs100.vxml]

VoiceXML 2.1—Reference Manual 131

Appendix G: Best Practices Application Guidelines

<?xml version="1.0"?>
<vxml version="2.0">
<form id="cs100">
 <block>
 CS 100.
 Introduction to Computer Usage. This course gives an introduction
 to using personal computer hardware and software...
 <!-- loop back -->
 <return/>
 </block>
</form>
</vxml>

[cs121.vxml]

<?xml version="1.0"?>
<vxml version="2.0">
<form id="cs121">
 <block>
 CS 121.
 Introduction to Object-Oriented Programming. This course teaches
 the fundamental concepts of problem solving using a computer...
 </block>
</form>
</vxml>

Use fetchhint Values (safe or prefetch) Properly

Fetching unnecessary resources is expensive. You can greatly improve the
performance of your system and applications by fetching resources that are
actually used.

The default value for the fetchhint property (for audio/scripts/grammars) is
prefetch which means that all resources on the page start to be fetched when
the page starts. The page runs concurrently although certain fetched resources
are not required due to the call flow. For example, error message audio files are
rarely used since errors are not normally expected. In this case, setting
fetchhint to safe would be a better choice.

When fetchhint is set to safe, resources are fetched when they are needed. In
this case, fetching is not concurrent with the page, so there is the potential for
latency. However, if the resource is not very large, this delay will not be
noticeable to the caller. Using values of prefetch and safe appropriately can
improve the performance of an application dramatically.

The following code snippet is an example of a inefficient application:

<?xml version="1.0"?>
<vxml version="2.0">
<!--All audio resources are loaded at the begining of the page-->
<property name="audiofetchhint" value="prefetch"/>

132 Genesys Voice Platform 7.6

Appendix G: Best Practices Application Guidelines

<form>
 <field name="question" type="digits">
 <prompt>
 <audio src="prompt.wav">
 Please say a number.
 </audio>
 </prompt>
 <!--Most of these audio files are not used-->
 <noinput>
 <audio src="noinput.wav">
 I did not hear you.
 </audio>
 </noinput>
 <nomatch>
 <audio src="nomatch.wav">
 That is not a number.
 </audio>
 </nomatch>
 <help>
 <audio src="help.wav">
 Please say a number.
 </audio>
 </help>
 <filled>
 You said <value expr="question"/>.
 </filled>
 </field>
</form>
</vxml>

Example 3b is an example of a more efficient application:

<?xml version="1.0"?>
<vxml version="2.0">
<form>
 <field name="question" type="digits">
 <prompt>
 <audio src="prompt.wav">
 Please say a number.
 </audio>
 </prompt>
 <!--Most of these audio files are not used-->
 <noinput>
 <audio src="noinput.wav" fetchhint="safe">
 I did not hear you.
 </audio>
 </noinput>
 <nomatch>
 <audio src="nomatch.wav" fetchhint="safe">
 That is not a number.

VoiceXML 2.1—Reference Manual 133

Appendix G: Best Practices Application Guidelines

 </audio>
 </nomatch>
 <help>
 <audio src="help.wav" fetchhint="safe">
 Please say a number.
 </audio>
 </help>
 <filled>
 You said <value expr="question"/>.
 </filled>
 </field>
</form>
</vxml>

Production Deployment

Normally, during development logging levels will be configured in the
platform or application to provide the most detailed information for debugging.
This may be detrimental to the platform and/or application performance
though is not considered an issue. In a production environment, the
performance impact of those logging levels could be considered unacceptable
as large amounts of data will be written to files. Genesys recommends that the
<log> tag should be used minimally in production, and turned on only for
collecting speech tuning metrics. In addition, the platform logging levels must
be kept at the minimum level, no greater than WARNING during normal
operations of a live deployment.

Sometimes, detailed logging is required for debugging, tuning, monitoring, or
for other reasons. When using higher log levels, try to localize their use, rather
than enabling them globally throughout an entire application. When using full-
duplex recording for monitoring, use in a limited (spot check) fashion. In any
case, collected files should be deleted when they are no longer required, or
moved to another server or SAN as soon as possible if they need to be
archived.

In a production environment, the following is also recommended to avoid use
of significant system resources that may adversely affect system performance:

• Disable ASR wave capture.

• Use full duplex (transactional) recording with caution.

In case of whole-call recording and using Bandwidth Manager (BWM) for
asynchronous posting, make sure that failure in posting of the recorded audio
files is monitored. Failure in the receiving web server could cause the queuing
of file to reach the maximum directory size (especially Windows) which will
either degrade system performance or cause undefined behavior in the
application.

134 Genesys Voice Platform 7.6

Appendix G: Best Practices Application Guidelines

Ensure That Expires Header is Present

ASR Engines are responsible for fetching all of the external grammars. They
maintain their own cache and depend on the Expires header to determine how
long to use the cached copy. If the Expires header is not set, or set incorrectly,
the ASR Engine will continue to re-fetch the external grammar causing
unnecessary use of system and network resources.

Avoid Using Inline Grammars

When using an inline grammar a VoiceXML interpreter has to generate a
temporary grammar that is eventually passed on to the ASR for recognizing
caller inputs. Even though the VoiceXML page may be cached, the generation
of the temporary grammar has to be repeated each time that page is executed.

Construct an external grammar and use that instead of the inline grammar. This
will not only reduce the load on VoiceXML interpreter, but also will cause the
ASR to use a cached copy (if the Expires header is set correctly).

Precompile Grammars When Possible

Before a grammar can be executed, the ASR engine first compiles the
grammar and caches for all subsequent requests for that grammar. Most ASR
engines provide an option for pre-compiling the grammar files. If the
application is using large static grammar files, it will be better to pre-compile
the grammars and place the pre-compiled version on the web server. This will
help in speeding up the response time from the ASR engine when the calls are
made.

Do not generate unnecessary dynamic grammars. If the grammar will not
change, develop it as a static grammar (and precompile if large) and reference
via URL.

Avoid Frequent Modification of Application Root Document

When the application root of the VoiceXML dialog is modified, a new
application context is created. To reduce the overhead of creating this context,
change the application root document only when absolutely required, (for
example, when a subdialog is created or when control is transferred from one
application to another).

If the application design is using a root document, ensure that it is applied to all
pages. A compilation penalty occurs if the application fetches pages that have
application root document and pages that do not.

VoiceXML 2.1—Reference Manual 135

Appendix G: Best Practices Application Guidelines

Avoid Keeping Audio Files on GVP Servers

GVP does not offer a performance improvement when the audio files are kept
locally on the GVP platform. GVP uses HTTP to fetch the audio files and
fetching audio files from the same GVP machine will place additional burden
on the platform due to processor resource competition.

Reduce Sample Audio Files to 8K Samples/Sec, 8bit Mono

Reducing the audio file type to 8000 samples/second, 8 bits Mono reduces the
amount of data that needs to be fetched by the GVP. Using this format, less
work needs to be done by GVP for processing the audio file due to the
headerless format. For all audio formats with headers, GVP first reads the
header for each audio file before playback, thereby adding more processing
overhead.

Use Asynchronous Mode for Posting Audio Recordings

Posting of recorded files to the web application server can have an impact on
the network bandwidth especially for applications that need to post large
recording files such as the full duplex recording of long calls. GVP provides an
option for asynchronous posting for recordings done by the <record> tag,
VoiceXML 2.1 utterance capture feature, and for the full-duplex transactional
recording.

The Bandwidth Manager (BWM) component of GVP manages the posting of
asynchronous recordings from the Voice Communication Server (VCS) or IP
Communication Server (IPCS) to the web server. The BWM queues the
recordings and posts them to the web server at a fixed transfer rate. This is so
that one application does not take too much of the network resources impacting
other applications running on the same network. The recordings will remain
queued with BWM until they are successfully posted to the web server.

Use the asynchronous mode of posting by default. For GVP deployments that
do not contain the BWM component, the recording will get posted
synchronously during the call.

In the event of failures, BWM will continuously retry to post the recordings. If
you are using the asynchronous mode of posting and do not see the recording
files on the web application server side after a reasonable period, review the
BWM logs for transmission errors.

Adjust Timeout to a Reasonable Amount Depending on Data
Being Collected

It may be necessary to allow callers extra time to say long input strings such as
credit card numbers. It is therefore a good practice to use a different timeout
value for such cases. Make sure that timeout is not set to zero for user input

136 Genesys Voice Platform 7.6

Appendix G: Best Practices Application Guidelines

fields, as in this case the caller will not be able to enter user input at all. This
could result in difficult to troubleshoot problems especially for speech
applications.

Resolve Grammar Ambiguity

The ASR engine will work efficiently if the grammars are designed in a
manner where there is no ambiguity, that is, a caller utterance matches only
one item in the active grammar at any given point in time. This will also
simplify the VoiceXML application since it does not have to handle any
ambiguous recognition results.

Renew Expires Time for Resources When If-Modified-Since
Request Made

It may be possible to renew the Expires header value when an If-Modified-
Since query is made for the proxy after a resource is considered STALE. This
will extend the time after which the resource is considered STALE.

Avoid Using <break> tag for Pause Between Audio Prompts

The <break> tag is used for introducing pauses in prompts. It uses the TTS
engine to generate a small silence or cadence break. If the break tag is
interspersed with audio file playback, each request is sent as a separate request
to the TTS engine and this increases the processing overhead. Use a
prerecorded silence audio file instead of <break> tag for pauses between audio
prompts.

Avoid Interleaving of Small TTS Prompts with Audio Prompts

SSML tags inside a <prompt> are batched and sent to the TTS engine. If a
prompt or set of consecutive prompts contain interleaving of SSML and
<audio> tag for playing pre-recorded audio files, each section of SSML is sent
to TTS engine separately. This may result in a larger number of TTS licenses
being used than expected and will result in processing latencies. Avoid
intermixing small TTS and pre-recorded audio prompts.

The following is an example of a non-efficient application:

<?xml version="1.0"?>
<vxml version="2.0">
<block>
 <prompt>
 <audio src="TransactionHistory.vox"/>

<audio src="credit.vox"/>
500 dollars
<audio src="on.vox"/>

VoiceXML 2.1—Reference Manual 137

Appendix G: Best Practices Application Guidelines

Jan 20, 2007.
<audio src="debit.vox"/>
400 dollars
<audio src="on.vox"/>
Jan 21, 2007.
<audio src="debit.vox"/>
700 dollars
<audio src="on.vox"/>
Jan 22, 2007.
<audio src="credit.vox"/>
345 dollars
<audio src="on.vox"/>
Jan 25, 2007.

 </prompt>
 </block>
</form>
</vxml>

In this case each SSML snippet like 700 dollars Jan 25, 2007 is sent as
separate request to the TTS Engine and eight TTS Engine licenses will be used
for converting text to audio for playback.

The following is an example of a more efficient application:

<?xml version="1.0"?>
<vxml version="2.0">
<block>
 <prompt>
 <audio src="TransactionHistory.vox"/>

Credit 500 dollars on Jan 20, 2007.
Debit 400 dollars on Jan 21, 2007.
Debit 700 dollars on Jan 22, 2007.
Credit 345 dollars on Jan 25, 2007.

 </prompt>
 </block>
</form>
</vxml>

Licenses for TTS engine can be further tuned by setting the GVP property
com.genesys.ttsfetchhint to safe or prefetch. In the case of prefetch, all
SSML text inside a prompt and alternative text inside audio are sent to TTS
engine immediately and multiple TTS license can get used as seen in the
preceding example. As in case of VoiceXML fetchhint property, setting the
ttsfetchhint to safe, would result in TTS being generated only when the
prompt will be actually played back to the caller.

138 Genesys Voice Platform 7.6

Appendix G: Best Practices Application Guidelines

Understand Prompt Queuing

At any given time, the VoiceXML interpreter is in one of two states, waiting
for input in a field item, or transitioning between field items in response to an
input. The interpreter is in the transitioning state during a <block>, <catch>,
<filled> or other non-field element as well as while it is transitioning between
elements (even across pages).

Prompts are queued while the interpreter is in the transitioning state.

Queued prompts are played either:

• when the interpreter reaches the next waiting state (for example, a <field>,
<initial>, or <choice>/<menu>), at which point all queued prompts are
played and the interpreter listens for input simultaneously—
PromptAndCollect.

• when the interpreter reaches an <exit>, <transfer>, <record>, or
<object>, at which point all queued prompts are played before the element
is executed—PromptOnly.

• when the interpreter begins fetching a resource (such as a document) using
<submit>, <goto>, or <subdialog>, with fetchaudio specified. In this case,
all queued prompts are played—PromptOnly—and then the fetchaudio is
played until the fetch completes.

Note: In the PromptOnly state, no speech input is accepted. DTMF input is
allowed, provided that prompt barge-in is enabled.

If multiple prompts are queued before a field input, the timeout/bargeintype of
the last prompt is used.

Grammars Inside Transfers

All editions of GVP may not support grammar recognition on bridged
conversations. Use this feature carefully being cognizant of any limitations for
your specific configuration.

Tune Grammars and Prompts for Speech Applications

Compared to DTMF applications, speech applications are considerably more
complex and require different techniques. For successful voice applications,
grammar tuning is essential after representative call data has been collected. If
the grammars are not properly tuned, it can result in poor customer experience
with high opt-out or drop rates. Use utterance capture recording for the call
data capture to identify application areas with high amount of misrecognitions.
The utterances may uncover input that callers are frequently saying but are not
covered in the grammars. You may also have to take caller accents into account
and add alternative pronunciations for some grammar items. Additionally,

VoiceXML 2.1—Reference Manual 139

Appendix G: Best Practices Application Guidelines

confidence levels may need to be adjusted to reduce both false recognitions
and high rejection rates.

Similarly prompts also need to be well designed so that they guide the callers
to say the correct input. If callers are getting stuck in the call-flow causing high
misrecognition rates, evaluate the prompts to make sure they are intuitively
directing the callers to speak the words as expected by the grammar.

Load Test Applications Before Production Operations

A GVP server is configured to service a calculated number of concurrent
callers. This affects the number of ports that are in a single server before
callers perceive latency or the expected duration of the call time lengthens. The
more the latencies and durations increase, the less servicing ports available can
deliver the expected call volumes. Undersized ports could lead to busy signals
turning away business opportunity or affecting customer satisfaction.

The port calculations take into consideration the application design,
component distribution, platform characteristics, web-server performance and
other external dependencies. Each of these variables could greatly vary the
ports supported by an individual GVP server.

All calculations are theory and produce theoretical results. There is no
replacement for not evaluating the true potential of the GVP server by load
testing. Use a bulk call generation testing service like Empirix that will
exercise both the GVP and the Web server application design and
configuration.

Additionally, monitor the memory and CPU utilization on the GVP platform,
web server, and if implemented, the speech server. For most application you
will have to tune the web server for performance. Typically you will have to
tune the worker threads/process pool, memory size, session timeout,
connection recycle time.

If the application is experiencing memory leaks, consider recycling the
threads/processors of the web server at periodic intervals. Do not enable
excessive log levels on the web server side as that will impact overall
performance of the web server. For logging, if possible, write the logs on a
separate disk to reduce overall impact on disk I/O for the primary disk from
which the web server pages will be served. When using Tomcat with Apache,
take special care to tune the Apache Tomcat Connector (mod_jk or AJP) as the
default settings for the connector do not perform well under load. Refer to the
third-party web server documentation for details on performance tuning
aspects.

If using databases or backend enterprise services, consider the performance of
the database and Enterprise servers under load. Typically you will have to tune
the connection pool size for the databases. If the database requests are taking
long time, consider SQL query and database indexing optimizations. Work
with your database administrator for these changes.

140 Genesys Voice Platform 7.6

Appendix G: Best Practices Application Guidelines

In addition to the automated load tests, perform actual human load tests with
live people making simultaneous calls or do both. This will help in identifying
areas in the application where caller perceived latencies are high and pin point
locations that need to be optimized.

VoiceXML 2.1—Reference Manual 141

Index

Symbols
$_cparesult$ 42
$_toneinput$ 41
ani . 39
$application-name$ 40
$asrwavfilelogs$ 24
$badxmlpageposturl$ 43
$callerhup$ 40
$ccerror-telnum$ 40
$customer-name$ 40
$dialed-number$ 43
did . 39
$ivr2-root-dir$ 39
$ivr2-url$ 39
$ivr-error-url$. 42
$ivr-root-dir$ 39
$ivr-url$. 39
$last-error$ 40
$last-error-string$ 40
$last-error-url$ 40
$lata-name$ 40
$playfilesize$ 43
$recordfilesize$ 43
$scriptdata$ 42
$scripturl$ 43
$sessionid$. 39
sid . 42
$start-ivr-url$ 39
$telephony-port$ 42
$toll-free-num$ 40
$voicefile-format $ 41

A
accessing asr results 26
adjusting timeout 135
AFTERCONNECT TIMEOUT 69
AGENT_URL 79
alert leg element 65
alerting70, 71

append attribute38
application guidelines 126

adjusting timeout 135
avoiding modifications 134
caching 126
deploying 133
expire header 134
grammar ambiguity 136
grammar transfers 138
inline grammars 134
interleaving 136
keeping audio files 135
load testing applications 139
posting audio recordings 135
precompiling grammars 134
prompt queuing 138
reducing audio file samples 135
reducing compile time. 128
reducing ecmascripts 127
reducing global variables 128
reducing inline ecmascripts 128
reducing page transition 127
tuning 138
using tag 136
using fetchhint 131

appllication guidelines
expire times 136

async combinations 22
asynchronous post. 34
asyncposturl attribute 34
audience

defining .7
audio element 35
avoiding frequent modifications 134

B
bargein . .18
best practices

application guidelines 126
BRIDGE .69

Index

142 Genesys Voice Platform 7.6

bridge call element 66

C
caching resources 126
call control data 55
call control elements48, 64
call progress analysis 35
call progress detection 35
call-id . 117
callproceeding 70, 71
calltriggerevent 70
chapter summaries

defining 8
classid 50, 51, 54, 57, 58, 60
clearbuffer attribute. 108
com.genesys.accessasrresultproperties . . . 26
com.genesys.returntermchar. 46
com.genesys.utterancefetchmode 21
com.telera.audioformat. 47
com.telera.speechenabled 47
commenting on this document 12
configuring TransferConnect 93
connected 70, 71
connection ID. 61
consultative transfer 25
CPATIMEOUT 69
create leg and dial element 68

D
data element 27
data, encoding 80, 86
deploying 133
disconnect element. 24
document

conventions 8
errors, commenting on 12
version number 8

DTMF tones 35
dynamic data 34

E
element extensions. 33
end session element 74
ENDSESSION 78
ENDSESSIONON HUP 69
error extensions 45
error.com.telera.bridge 45
error.com.telera.createleg 45
error.com.telera.dial 45
error.com.telera.queue 45
error.com.telera.unbridge 45

expire header 134
expire times 136
extensions

error . 45
object element 50
property 39

F
foreach element 16

G
Genesys namespace 38
grammar ambiguity 136
grammar transfers 138
grammars, referencing dynamically 16

H
hangup and destroy leg element. 73
HREF .76

I
inline grammars 134
interleaving 136
IVRURL 65, 69, 82

K
keeping audio files 135
key ahead 107
key ahead buffer, clearing 108

L
leg wait element 75
LEG_ID 65, 66, 82, 88
load testing applications 139

M
mark element 18
mode attribute34
MRCP vendor specific parameters, passing. 103
music treatment 92

N
namelist .24
namespace, Genesys 38

Index

VoiceXML 2.1—Reference Manual 143

namespace, Telera 38

O
object element extensions 50
on leghup element 77
OTHER_LEG_URL. 78, 88

P
p-asserted-identity 117
platform specific properties. 46
platform specifics. 15
play announcement 90
play announcement and collect digits 91
play application. 92
posting audio recordings 135
posturl attribute. 39
precompiling grammars 134
presentation indicators 62
prompt queuing. 138
prompts, concatenating dynamically 16
propagation

SIP headers 117
property element 104, 105
property extensions 39

Q
queue call element 78

R
recording shadow variable 19
recordingduration shadow variable. 19
recordingsize shadow variable 19
recordutterance property19, 24
redirecting number 61
reducing audio file samples 135
reducing compile time 128
reducing ecmascripts. 127
reducing global variables. 128
reducing inline ecmascripts 128
reducing page transitions 127
retransfer 92
rexfer element 82
route based dialing 73

S
schemas, supported 15
screen transfer 25
screening indicators 62

screxpr attribute 16
script result element84
scripts, referencing dynamically16
session.genesys61
session.genesys.connid61
set element 87
shadow variables, recordutterance related . .19
SIP headers 117

call-id 117
p-asserted-identity 117

submit element. 34
sync combinations22

T
tag element 27
Telera namespace38
telera.error.currenturl 45
telera.error.description45
telera.error.element 45
telera.error.name. 45
TELNUM 68, 79, 82
TIMEOUT 76
transactional recording errors 59
transfer element 24, 37
transfer outcomes 37
transfer scripts, examples 93
transferconnect 93
transferring calls 119

CONNECT block 121
connect block 121
transfer block 120

treatments 90
TTS prefetch44
tuning . 138
txml .49
typographical styles 9

U
unbridge call element 88
URL_ONLEG2HUP 69
user data, receiving 55
using tag 136
using fetchhint 131
USR_PARAMS 79, 85
UTF-8 .99
utterance capture controls23
utterance recordings, media format 23
utterances, posting 20
utterances, recording 19

Index

144 Genesys Voice Platform 7.6

V
VALUE . 87
value element 35
VARNAME 87
version numbering

document 8
VoiceXML

architecture 14
introducing. 13

VoiceXML properties 28

W
whisper transfer 25

	Table of Contents
	Preface
	Intended Audience
	Chapter Summaries
	Document Conventions
	Related Resources
	Making Comments on This Document
	Document Change History
	Release 7.6.4

	Overview
	Introducing VoiceXML
	VoiceXML Platform Architecture
	Supported Schemas
	Platform Specifics
	Referencing Grammars Dynamically
	Referencing Scripts Dynamically
	Concatenating Prompts Dynamically Using <foreach>
	Using <mark> to Detect Bargein During Prompt Playback
	Recording User Utterances While Attempting Recognition
	Adding namelist to <disconnect>
	Adding type to <transfer>
	Accessing Additional Properties from ASR Results
	Support Notes

	VoiceXML Properties
	VoiceXML 2.0
	VoiceXML 2.1

	Platform Extensions
	Platform Extensions to VoiceXML
	Element Extensions
	Property Extensions
	Error Extensions
	Platform-Specific Properties

	Call Control Elements
	TXML
	Object Element Extensions

	Reference for Call Control Elements
	Call Control Elements
	<ALERT_LEG>
	<BRIDGE_CALL>
	<CREATE_LEG_AND_DIAL>
	How It Works
	Route-Based Dialing

	<HANGUP_AND_DESTROY_LEG>
	<END_SESSION>
	<LEG_WAIT>
	<ON_LEGHUP>
	<QUEUE_CALL>
	<REXFER>
	<SCRIPT_RESULT>
	<SET>
	<UNBRIDGE_CALL>
	Treatments
	PlayAnnouncement
	PlayAnnouncementandCollectDigits
	PlayApplication
	Music
	Retransfer

	Transfer Scripts with DTMF Base
	Overview
	Configuring TransferConnect in GVP
	Examples of Transfer Scripts
	Converted XML Script for XferConnect

	UTF-8 Support for Attached Data
	Overview
	Application to IVR Server
	IVR Server to Application
	Double-Byte Character

	Passing MRCP Vendor Specific Parameters
	Overview
	Hotword Support
	Passing Parameters to ASR Servers
	Passing Parameters to TTS Servers

	Key Ahead
	Overview
	Clearing Key Ahead Buffer

	SIP Headers
	Propagation of Headers
	P-Asserted-Identity
	Call-ID
	Accessing Header Values

	Application Developer Note
	Transferring Calls Using GVP
	Using TRANSFER Block
	Using CONNECT Block

	Best Practices
	Overview
	Application Guidelines
	Careful Caching of Resources
	Reduce Number of Page Transitions
	Reduce Number of ECMAScripts
	Reduce Number of Global Variables
	Reduce Usage of Inline ECMAScripts
	Reduce Time Required to Compile VoiceXML Page
	Use fetchhint Values (safe or prefetch) Properly
	Production Deployment
	Ensure That Expires Header is Present
	Avoid Using Inline Grammars
	Precompile Grammars When Possible
	Avoid Frequent Modification of Application Root Document
	Avoid Keeping Audio Files on GVP Servers
	Reduce Sample Audio Files to 8K Samples/Sec, 8bit Mono
	Use Asynchronous Mode for Posting Audio Recordings
	Adjust Timeout to a Reasonable Amount Depending on Data Being Collected
	Resolve Grammar Ambiguity
	Renew Expires Time for Resources When If-Modified-Since Request Made
	Avoid Using <break> tag for Pause Between Audio Prompts
	Avoid Interleaving of Small TTS Prompts with Audio Prompts
	Understand Prompt Queuing
	Grammars Inside Transfers
	Tune Grammars and Prompts for Speech Applications
	Load Test Applications Before Production Operations

	Index

