S

GENESYS

AN ALCATEL-LUCENT COMPANY

IVR SDK 7.5 XML

Developer’s Guide

The information contained herein is proprietary and confidential and cannot be disclosed or duplicated without the
prior written consent of Genesys Telecommunications Laboratories, Inc.

Copyright © 2000-2007 Genesys Telecommunications Laboratories, Inc. All rights reserved.

About Genesys

Genesys Telecommunications Laboratories, Inc., a subsidiary of Alcatel-Lucent, is 100% focused on software for call centers.
Genesys recognizes that better interactions drive better business and build company reputations. Customer service solutions
from Genesys deliver on this promise for Global 2000 enterprises, government organizations, and telecommunications service
providers across 80 countries, directing more than 100 million customer interactions every day. Sophisticated routing and
reporting across voice, e-mail, and Web channels ensure that customers are quickly connected to the best available resource—
the first time. Genesys offers solutions for customer service, help desks, order desks, collections, outbound telesales and
service, and workforce management. Visit www. genesys lab. com for more information.

Each product has its own documentation for online viewing at the Genesys Technical Support website or on the Documentation
Library CD, which is available from Genesys upon request. For more information, contact your sales representative.

Notice

Although reasonable effort is made to ensure that the information in this document is complete and accurate at the time of
release, Genesys Telecommunications Laboratories, Inc., cannot assume responsibility for any existing errors. Changes and/or
corrections to the information contained in this document may be incorporated in future versions.

Your Responsibility for Your System’s Security

You are responsible for the security of your system. Product administration to prevent unauthorized use is your responsibility.
Your system administrator should read all documents provided with this product to fully understand the features available that
reduce your risk of incurring charges for unlicensed use of Genesys products.

Trademarks

Genesys, the Genesys logo, and T-Server are registered trademarks of Genesys Telecommunications Laboratories, Inc. All
other trademarks and trade names referred to in this document are the property of other companies. The Crystal monospace
font is used by permission of Software Renovation Corporation, www.Sof twareRenovation.com.

Technical Support from VARs
If you have purchased support from a value-added reseller (VAR), please contact the VAR for technical support.

Technical Support from Genesys

If you have purchased support directly from Genesys, please contact Genesys Technical Support at the following regional
numbers:

Region Telephone E-Mail

North and Latin America +888-369-5555 or +506-674-6767 support@genesyslab.com
Europe, Middle East, and Africa +44 (0) 118 974 7002 support@genesyslab.co.uk
Asia Pacific +617 3368 6868 support@genesyslab.com.au
Japan +81-3-5649-6871 support@genesyslab.co.jp

Prior to contacting technical support, please refer to the Genesys Technical Support Guide for complete contact information
and procedures.

Ordering and Licensing Information

Complete information on ordering and licensing Genesys products can be found in the Genesys 7 Licensing Guide.

Released by
Genesys Telecommunications Laboratories, Inc. www. genesyslab.com
Document Version: 75sdk_dev_ivr-xml_02-2007_v7.5.001.00

http://www.genesyslab.com
http://www.genesyslab.com
http://genesyslab.com/support/kb/browse/Default.asp?type=1&fmly=158&suit=0&show=item&item=8BCF0D6945317D39754186C5094C92B9
http://genesyslab.com/support/dl/retrieve/default.asp?item=B6C52FB62DB42BB229B02755A1D12650&view=item
mailto:support@genesyslab.com.au
mailto:support@genesyslab.com
mailto:support@genesyslab.co.uk
mailto:support@genesyslab.co.jp

S

GENESYS
AN ALCATEL COMPANY Table of contents

Preface

Part 1

Chapter 1

Chapter 2

Developer’s Guide

... 11
Intended AUdIENCE..........coiiiiiiiiieieeeeee e 12
Usage GUIAEIINESeeiiiieiiiiiiee e 12
Chapter SUMMAIIES.o aseanees 14
Document ConNVENLIONScouuiiiiii e 15
Related RESOUICESuuuiiiiiiiiiiiiiiiieeieeee ettt 16
Making Comments on This Documentccccoiiiiiiiiniiiiniiieeeeeen 17
Part One: Use of XML and Modes of Operation........ 19
How IVRS Use XIML ... rrcess s e e e e e mmm s s e e s 21
HOW VR USES XML ...ttt e e e eeeeeeeeeas 21
DY/ I 0o oY o] £ P 21
IVR AFCRItECIUIE ... 22
STACK LAYETS ... 22
The GDI Specification...........coooeeiiiiiii e, 23
The GLI Specification.............ccccoooo i, 23
XML Message GUIAEIINES.........ooiiiiiiiiiiiiiie e 24
Attached Data ..., 25
Sockets, Ports, Channels, and DNS........coooeniieeeeeee e 26
Modes of Operation for IVR...........ee e 27
IVR Server Operational MOdES.........cccoeiiiiiiiiiiiiiiiiic e, 27
Implications of the Different Modescccc e, 28
Determination of Modeoeiiiiiiiiiii e 29
Individual Message Support and Behavior..........ccccccvvvvvivviiiiiiiiin, 31
SUPPOrted MESSAQESo 31
Mode Behavioral Differences...........coccvviiiieeeiiiiiceeee e 32

3

Table of Contents

Part 2

Chapter 3

Chapter 4

Chapter 5

Part Two: IVR Server In-Front and Behind Mode...... 35
IVR In-Front and Behind State Machine Diagrams...............cccecuueenen. 37
OVEIVIBW. ...ttt e e et e e e e e e e e e e e e e e enneneeees 37
Call RoUtiNg Statescuiiiiiiiie e 38
Transfer Stateseee i 39
Conference States ... 40
Call Treatment Statescoviiiiiiii e 41
Make Call States.......ccoiiiiiii e 43
Additional EVeNnt MESSAgESuuiiiiiiiiiieiiiiiis et 43
ANYHIME MESSAQES ...vvviiii it 43
After CallStatus(Ringing) Messagesccccvviiiiiiiiiiiiiiiiiiieee e 44
ErrOr IMESSAQJES ...ttt ettt e e e e e e e e e e e e e e eees 45
Configuring Stat Server StatistiCs ... 45
In-Front and Behind Call Flow Diagramscccoocmmmeniinniiisnnnnnnenns 47
OVEIVIBW. ...ttt e et e e e e e e et e e e e e e e enneeeeees 47
Call Routing Call FIOWueiiiiiiiiieieeee e 48
Call TreatMeNnto 49
Call Treatment Failed ..., 50
Call Treatment Interrupted............ccoo i, 51
MakeCall Call FIOWccooiiiiee e 52
MaKeCall (BUSY) ...ccooeeeiiei oot 52
Conference Call Flow Diagrams...........ccooouiiiiiiiiiiiiiniiieee e 53
One-step CoNfErencCecooooeeieeiiii i, 53
One-step Conference, SCenario 2oocccveeiiieieeiiiiiiiiieeeee e 54
Conference Consult Call ..o, 55
Conference Consult Call, Scenario 2..........cccueveeeiiiiiiiiiiiiieeeeee 56
Conference Consult Call (BUSY)cueveiiiiiiiiiiiiiiiieeeeeeeeee e 57
Conference Consult Call (Failed)...........cooooiiiiiiiii 58
Transfer Call FIoOw Diagramscoeeeviiiiiiiiiiiiieiiieeieeeeeeeeeeeeeeeeeee e 59
Transfer to Remote Site...........oooiiiiiiiiiii e 59
Single-Step Transfer ... 60
Transfer Consult Call ..., 61
Transfer Consult Call (BUSY)......coooooiiiiiii, 62
Transfer Consult Call (Failed)ooeviiiiiie s 63
IVR XML Protocol Messages and Parameters...............cccevrcinnnnnnnnn. 65
OVEIVIBW. ...ttt e et e e e e e e e e e e e e e e enneeeeees 65
Important Message Constraints...........c.ceevvveiiiiiiiiiiiiiiiiiiiiieeeee 65
GENEral MESSAUEScueeiiieiiee et 67

IVR SDK 7.5 XML @

Table of Contents

Developer’s Guide

LOGINREQ ..t 67
LOGINRESP ...ttt 68
LOGMSG e ———— 69
RESEY ..ttt e e e e e e e aaeeaes 70
MONItOIINTO ... 70
Server SUbLYPe ..., 70
POrt SUDLYPE ..o 71
AGENt SUDLYPE ... 72
e 1= (@ TH =T o SRR 72
AGENTLOGIN ...t 73
AGENTLOGOUL ... 74
AGENTREAAY e, 74
AGENINOIREAAYoeiiiiiiiiiie e 75
FIOWCONTIOL.....oeeee et e 75
New Call and Call Routing MeSSagesccuuvviiiiieiiiiiiiiiieeec e 76
NEWEC ANl ... 76
ROUIEREQUEST ... e 77
ROULERESPONSE ... 78

= aTo [| PRSP SSURRPPR 79
Call Treatment MeSSages.........ccoeeviiiiiiiiiiieee e, 79
TreatCall ..., 80
TreatStatus. ... 80

(O o OO 81
CancelCompleted ... 81
External Routing MeSSages.......uuuiiiiiiiiiieiiiiiie e 82
ACCESSNUMGEL ...ttt 82
ACCESSNUMCANCEIoovviiiiiiiiiiieeeeeeeeee e 83
ACCESSNUMRESD ...ttt e e e e e 84
Transfer/Conferencing MesSages............ccoiiiiiiiiiiiiiiiiiiiii e 84
ONESIEPXIEN ., 84
ONEeStEPCONT ..., 85
a1 =T PR 85

[a1 (@7 0] o | PRSP 85
CompleteXfer........ooooiiiiii 86
CompleteConf ... 86
REtEVECAIluueieiiiiiiiiiiieiiiie e e e e e e e e e e eeeees 86
(072 1115 = | (1 OO PRRR 87
CallErTOr . e, 87
Call Information MeSSagescooiiuiiiiiiiee e 88
(07111 191 {0] x{=To [F 88
CalllNfORESP ..o, 88
Statistics MeSSagESccoooiiiiiiiii 89
PeeKStatReqcceviieiee s 90
GetStAtREQ ... e 90

5

Table of Contents

Chapter 6

StAtRESD oo 90
User Data MeSSagESoccvviieeiiiie et 91
UD@AIAGETcoi i it 91
W= = I 1= PP 91
= =1 I L PP 92
UDAtaRESD ..o 92
OUutboUNd MESSAJESeeeiiiiiieiiiie e 93
DialOUIREGISIIY 93
DialOUtREQGISIIYRESD ... 93
DIalOULo 94
D=1 (@ 10 = 4 o S SEEETP 94
DialOULINIL ... 95
Message Parameterscoiiiiiii e 95
D= = PP 96
(] = PP 96
Using the IVR XML Protocol: Examples..........ccccvvmmmrriiinniissnnnnnnnnnns 97
L€ I I 1= o =T PSR PP 97
Call-Scenario EXamples ..., 99
Interaction FOrmMat............oeviiiiiiiiiiiiieieeeeeee e 99
Further Information ... 100
A Typical Call FIOWeeiiiiiiiiiiieieeee s 100
NEWECAIL ... e e e 101
CallStatus(Ringing) and CallStatus(Established) Messages............. 102
CallinfoReq and CallinfoResp Messagesccccceeeiieinninnnnnnnnnnnnnns 102
10T SR 103
CallStatus(Held), CallStatus(Dialing), and CallStatus(Established) .. 104
CompleteXIer. ..o 105
CallStatus(XferComplete)oooeeeeiiiiiiieieee e 105
ENACAIl ... 106
ROULING e 106
ROULEREQUEST ... e 107
ROULERESPONSE ...t 108
CONNECLEA ... 109
Call Treatment Operation ... 110
TreatCalloooovviieee 110
TreatStatus(Started) and TreatStatus(Completed)..........cccceeeeennnnnnnns 111
MakeCall Operation.........ooooieiiiii e 112
MaKECAIL ... 112
CallStatus(Dialing)coooeeiiiiiii s 113
CallStatus (Established)...........cooiiiiiiii e 113
One-Step Conference Operation............cccccooeeiiiii 114
ONeStePCONT ... 115

IVR SDK 7.5 XML @

Table of Contents

Part 3

Chapter 7

Developer’s Guide

CallStatus(ConfPartyAdd)cooiiiiiiiiiiiiieeiie e 115
Conference Consult Operation..............ccooooei . 116
INIECONT L. 117
CallStatusS(Held)cooiiiieeeeee e 117
CallStatus(Dialing)ccoooeeiiiiii i 118
CallStatus(Established)..............cooooiiiiiiiii e, 118
CompleteCont ... s 119
CallStatus(Retrieved) ... 119
CallStatus(ConfPartyAdd) ... 120
Transfer to Remote Site Operation...........ccccooeeii 121
ACCESSNUMGEL ... 121
ACCESSNUMRESD ...ttt eee e e e e e eeeeeeeeeeeees 122
One-Step Transfer Operationccccoooeeiiiii 123
ONES P XIEr e 123
CallStatus(XferComplete)oooiiviiiiiiiiiiiee e 124
Transfer Consult Operationccccccoo 125
ROULEREQUEST ... 126
ROULERESPONSE ... e e e enees 126

T 0 SRR 127
CallStatus(Held)coooiieeeeee e 127
CallStatus(Dialing)ccoooeiiiiiiii s 128
CallStatus(Established)..............cooooiiiiiiii e, 128
CompleteXfer. ... 129
CallStatus(XferComplete)oooeeeeiiiiiiie e 130
Agent Login INterface ... 130
Server Side MOodel ... 130
Client Side MOdEl........c.oooiiiiiiiii e 131

o o | o IO PPPPPPPPPI 131
POrt Status ... 132
Agent State QUETYcoooiiiiiee e 133
AGENT CONLIOL ... 134

[ro] g 0= 1 SRR 135
Outbound Dialing......cccooviiiiiiii 136
REGISIratioN ... 136
Request TIMEOUL.........eeiiiiiiiiiiieeeeeeeeeeeeee e 137

[1= 1= e o) PP 138
Connection Failure.............oooiiiiiiii e 138
Successful Call FIOW..........ooooiiiiiii e 139
Part Three: IVR Server Network Mode 141
IVR Network State Machine Diagrams............ceemrrmmmremreeereeeeenennnnns 143
Call CoNIOl ..o 143
7

Table of Contents

Chapter 8

Chapter 9

Call INformation ... 147
oo o [Vo 148
StAtISHCS oo 148
User Data CoNtrol..........ooueeiiiiiiieiieecee e 149
ErrOor RESPONSES. ...ttt eeeeeeeeees 149
Network Call Flow Diagramscccccoiiiiinmmmmmsennnssssns s ssssssssnnnnes 151
OVEIVIEW......c.cieeeeeeeeeee e 151
Simple Routing (Network Control).............cccc 152
Simple Routing (Genesys COoNtrol)coooiuiiiiiiiiiniiiieeeee e 153
= T11=To I U | 1] o [154
Routing TIMEOULuiiiiiieii e 154
Simple Treatment ... 156
Failed Treatment............uuiiiiiiiiiiiie e 157
Treatment Interrupted by a Routing Requestcooovvviciiinnnen, 158
Treatment Interrupted by Another Treatmentl. 159
Unsolicited CONNECL.........ooiiiiiiiieee e 160
IVR XML Protocol Messages and Parametersc...ccccoeerrvrecmnnnnne. 161
OVEIVIEW......ciiiieeee e 161
New Call and Call-Routing Messages..........ccoooeeeeiiiiiiciieeiicnas 162
NEW Al ...ttt e 162
ROULEREQUESTeeiiiiiiiiiiiiei e 163
ROULERESPONSE ...t 164
CONNECLEA ... 164
ENACall ... 165
=T U PP 166
Call Treatment MeSSages.......ccooviiiiiiiiiiiiee e 167
TreatCall ... 167
TreatStatus. ... 168
CaANCEL... - 168
CancelCompleted ... 168
Call Information MeSSagesoocuiiiiiiiiiiiii e 168
(0711|191 {0] =T o [P 168
CalllNfORESP ... 169
StatistiCS MESSAGES ... 170
GetStatReq ..o 170
PeeKSIatREG 171
SHAtRESP oo ——————- 172
User Data MESSagESoooeiiiiieeiiiiee et 172
0= =1 = PR 172
IVR SDK 7.5 XML @

Table of Contents

0= =1 L o P 173

UDAASEL ... 173

Transfer/Conferencing Messages..........cccccovvvveiiiiiiii 174

CaAllEITOr ... e 174

General MEeSSAagESooeeveeiiieiieeee 175

LOGIMSG ..ttt 175

The IVR Server DTD..... s e e s e s e s e e 177

3 T = 185

Developer’s Guide 9

Table of Contents

©

10 IVR SDK 7.5 XML &=

S

GENESYS

AN ALCATEL COMPANY

Preface

Welcome to the IVR SDK 7.5 XML Developer s Guide. This guide introduces
you to the concepts, terminology, and procedures relevant to the Genesys IVR
SDK XML, the tool for building drivers that allow your IVR (Interactive Voice
Response Unit) to communicate with the Genesys IVR Server.

This document is valid only for the 7.5 release(s) of this product.

Note: For releases of this document created for other releases of this product,
please visit the Genesys Technical Support website, or request the
Documentation Library CD, which you can order by e-mail from
Genesys Order Management at ordermanegenesyslab.com.

This chapter provides an overview of this document, identifies the primary
audience, introduces document conventions, and lists related reference
information:

+ Intended Audience, page 12

« Usage Guidelines, page 12

« Chapter Summaries, page 14

+ Document Conventions, page 15

+ Related Resources, page 16

« Making Comments on This Document, page 17

In brief, this guide includes the following information:

* Anoverview of how IVR Server implements the Extensible Markup
Language (XML) and of IVR architecture as it pertains to an XML-based
client application.

* Sample call flows indicating request-response interactions for a variety of
transaction types.

* Diagrams displaying client states and the transitions from each state to all
other possible states.

* Detailed explanations of all Genesys IVR-specific XML messages and
parameters.

* A step-by-step analysis of several common interaction types showing call
flows and sample XML messages used to communicate between your IVR
driver application and the Genesys IVR Server.

Developer’s Guide 11

mailto:orderman@genesyslab.com

Preface

Intended Audience

The complete text of the IServer.dtd file.

Intended Audience

This document, primarily intended for [IVR driver developers, assumes that
you have a basic understanding of:

Computer-telephony integration concepts, processes, terminology, and
applications.

Network design and operation.

Your own network configurations.

You should also be familiar with the Extensible Markup Language (XML).

Usage Guidelines

The Genesys developer materials outlined in this document are intended to be
used for the following purposes:

12

Creation of contact-center agent desktop applications associated with
Genesys software implementations.

Server-side integration between Genesys software and third-party
software.

Creation of a specialized client application specific to customer needs.

The Genesys software functions available for development are clearly
documented. No undocumented functionality is to be utilized without
Genesys’s express written consent.

The following Use Conditions apply in all cases for developers employing the
Genesys developer materials outlined in this document:

1.

Possession of interface documentation does not imply a right to use by a
third party. Genesys conditions for use, as outlined below or in the Genesys
Developer Program Guide, must be met.

This interface shall not be used unless the developer is a member in good
standing of the Genesys Interacts program or has a valid Master Software
License and Services Agreement with Genesys.

A developer shall not be entitled to use any licenses granted hereunder
unless the developer’s organization has met or obtained all prerequisite
licensing and software as set out by Genesys.

A developer shall not be entitled to use any licenses granted hereunder if
the developer’s organization is delinquent in any payments or amounts
owed to Genesys.

IVR SDK 7.5 XML @

Preface

Developer’s Guide

Usage Guidelines

S. A developer shall not use the Genesys developer materials outlined in this
document for any general application development purposes that are not
associated with the above-mentioned intended purposes for the use of the
Genesys developer materials outlined in this document.

6. A developer shall disclose the developer materials outlined in this
document only to those employees who have a direct need to create, debug,
and/or test one or more participant-specific objects and/or software files
that access, communicate, or interoperate with the Genesys API.

7. The developed works and Genesys software running in conjunction with
one another (hereinafter referred to together as the “integrated solutions”)
should not compromise data integrity. For example, if both the Genesys
software and the integrated solutions can modify the same data, then
modifications by either product must not circumvent the other product’s
data integrity rules. In addition, the integration should not cause duplicate
copies of data to exist in both participant and Genesys databases, unless it
can be assured that data modifications propagate all copies within the time
required by typical users.

8. The integrated solutions shall not compromise data or application security,
access, or visibility restrictions that are enforced by either the Genesys
software or the developed works.

9. The integrated solutions shall conform to design and implementation
guidelines and restrictions described in the Genesys Developer Program
Guide and Genesys software documentation. For example:

a. The integration must use only published interfaces to access Genesys
data.

b. The integration shall not modify data in Genesys database tables
directly using SQL.

¢. The integration shall not introduce database triggers or stored
procedures that operate on Genesys database tables.

Any schema extension to Genesys database tables must be carried out using
Genesys Developer software through documented methods and features.

The Genesys developer materials outlined in this document are not intended to
be used for the creation of any product with functionality comparable to any
Genesys products, including products similar or substantially similar to
Genesys’s current general-availability, beta, and announced products.

Any attempt to use the Genesys developer materials outlined in this document
or any Genesys Developer software contrary to this clause shall be deemed a
material breach with immediate termination of this addendum, and Genesys
shall be entitled to seek to protect its interests, including but not limited to,
preliminary and permanent injunctive relief, as well as money damages.

13

Preface

Chapter Summaries

Chapter Summaries

In addition to this opening chapter, this guide contains these chapters and an
appendix.

14

Chapter 1, “How IVRs Use XML,” on page 21, explains how IVR
components use XML, introduces basic XML skills, and presents system
requirements.

Chapter 2, “Modes of Operation for IVR,” on page 27, explains the three
modes of operation, how a mode is determined, and what operations are
supported by each mode.

Chapter 3, “IVR In-Front and Behind State Machine Diagrams,” on

page 37, contains state machine diagrams from the viewpoint of the IVR
driver. This chapter also includes messages that can be sent from any state,
error messages, and the procedure for configuring the statistics used in the
statistics messages.

Chapter 4, “In-Front and Behind Call Flow Diagrams,” on page 47,
provides call flow diagrams for many common scenarios. It is intended as
a reference.

Chapter 5, “IVR XML Protocol Messages and Parameters,” on page 65,
contains tables showing the parameters for each message, the message
direction, and whether the parameters are required or optional.

Chapter 6, “Using the [IVR XML Protocol: Examples,” on page 97,
presents sample XML messages and comments for a number of
commonly-encountered call flow scenarios. These sample XML messages
are intended as starting points for building your IVR driver application.

Chapter 7, “IVR Network State Machine Diagrams,” on page 143, contains
state machine diagrams from the viewpoint of an IVR Server deployed in
Network mode.

Chapter 8, “Network Call Flow Diagrams,” on page 151, provides call
flow diagrams for many common scenarios relevent to Network mode. It is
intended as a reference.

Chapter 9, “IVR XML Protocol Messages and Parameters,” on page 161,
contains tables showing the parameters for each message, the message
direction, and whether the parameters are required or optional when used
in Netwrok mode.

“The IVR Server DTD” on page 177, contains the complete text of the [IVR
Server DTD.

IVR SDK 7.5 XML @

Preface

Document Conventions

Document Conventions

This document uses certain stylistic and typographical conventions—
introduced here—that serve as shorthands for particular kinds of information.

Examples:

Examples:

Developer’s Guide

Document Version Number

A version number appears at the bottom of the inside front cover of this
document. Version numbers change as new information is added to this
document. Here is a sample version number:

75sdk_dev_ivr-xml_08-2006_v7.5.000.02

You will need this number when you are talking with Genesys Technical
Support about this product.

Type Styles

Italic

In this document, italic is used for emphasis, for documents’ titles, for
definitions of (or first references to) unfamiliar terms, and for mathematical
variables.

Please consult the Genesys 7 Migration Guide for more information.

A customary and usual practice is one that is widely accepted and used
within a particular industry or profession.

Do not use this value for this option.

The formula, x +1 = 7 where x stands for . . .

Monospace Font

A monospace font, which looks like teletype or typewriter text, is used for
all programming identifiers and GUI elements.

This convention includes the names of directories, files, folders, configuration
objects, paths, scripts, dialog boxes, options, fields, text and list boxes,
operational modes, all buttons (including radio buttons), check boxes,
commands, tabs, CTI events, and error messages; the values of options; logical
arguments and command syntax; and code samples.

Select the Show variables on screen check box.
Click the Summation button.

In the Properties dialog box, enter the value for the host server in your
environment.

In the Operand text box, enter your formula.

15

Preface

Example:

Related Resources

* Click 0K to exit the Properties dialog box.

» The following table presents the complete set of error messages
T-Server® distributes in EventError events.

* Ifyou select true for the inbound-bsns-calls option, all established
inbound calls on a local agent are considered business calls.

Monospace is also used for any text that users must manually enter during a
configuration or installation procedure, or on a command line:

* Enter exit on the command line.

Screen Captures Used in This Document

Screen captures from the product GUI (graphical user interface), as used in this
document, may sometimes contain a minor spelling, capitalization, or
grammatical error. The text accompanying and explaining the screen captures
corrects such errors except when such a correction would prevent you from
installing, configuring, or successfully using the product. For example, if the
name of an option contains a usage error, the name would be presented exactly
as it appears in the product GUI; the error would not be corrected in any
accompanying text.

Square Brackets

Square brackets indicate that a particular parameter or value is optional within
a logical argument, a command, or some programming syntax. That is, the
parameter’s or value’s presence is not required to resolve the argument,
command, or block of code. The user decides whether to include this optional
information. Here is a sample:

smcp_server -host [/flags]

Angle Brackets

Angle brackets indicate a placeholder for a value that the user must specify.
This might be a DN or port number specific to your enterprise. Here is a
sample:

smcp_server -host <confighost>

Related Resources

16

Consult these additional resources as necessary:

* The IVR Interface Option 7.5 IVR Server System Administrators Guide,
which will help you understand the architecture of the Genesys IVR
product.

IVR SDK 7.5 XML @

Preface Making Comments on This Document

* The Genesys Technical Publications Glossary, which ships on the Genesys
Documentation Library CD and which provides a comprehensive list of the
Genesys and CTI terminology and acronyms used in this document.

* The Genesys 7.5 Migration Guide, also on the Genesys Documentation
Library CD, which contains a documented migration strategy for Genesys
product releases 5.x and later. Contact Genesys Technical Support for
additional information.

* The Release Notes and Product Advisories for this product, which are
available on the Genesys Technical Support website at
http://genesyslab.com/support.

Information on supported hardware and third-party software is available on the
Genesys Technical Support website in the following documents:

* Genesys 7 Supported Operating Systems and Databases

* Genesys 7 Supported Media Interfaces

Genesys product documentation is available on the:

* Genesys Technical Support website at http://genesyslab.com/support.

* Genesys Documentation Library CD, which you can order by e-mail from
Genesys Order Management at ordermanegenesyslab.com.

Making Comments on This Document

If you especially like or dislike anything about this document, please feel free
to e-mail your comments to Techpubs.webadminegenesyslab.com.

You can comment on what you regard as specific errors or omissions, and on
the accuracy, organization, subject matter, or completeness of this document.
Please limit your comments to the information in this document only and to the
way in which the information is presented. Speak to Genesys Technical
Support if you have suggestions about the product itself.

When you send us comments, you grant Genesys a nonexclusive right to use or
distribute your comments in any way it believes appropriate, without incurring
any obligation to you.

Developer’s Guide 17

http://genesyslab.com/support/dl/retrieve/default.asp?item=B6C52FB62DB42BB229B02755A3D92054&view=item
http://genesyslab.com/support/dl/retrieve/default.asp?item=A9CB309AF4DEB8127C5640A3C32445A7&view=item
http://genesyslab.com/support
http://genesyslab.com/support
mailto:techpubs.webadmin@genesyslab.com
http://genesyslab.com/support
mailto:orderman@genesyslab.com

Preface Making Comments on This Document

18 IVR SDK 7.5 XML @

S

GENESYS

AN ALCATEL COMPANY

Part

Developer’s Guide

Part One: Use of XML and
Modes of Operation

Part One of the IVR SDK 7.5 XML Developer s Guide provides a general
overview of the IVR SDK components that use XML, introduces the XML
skills necessary in order to develop applications that communicate with those
IVR components, and presents system requirements. It also explains the three
modes of operation that IVRs use, how a mode is determined, and what
operations are supported by each mode.

The information in Part One is divided between the following chapters:

e Chapter 1, “How IVRs Use XML,” on page 21, explains how IVR
components use XML, introduces basic XML skills, and presents system
requirements.

e Chapter 2, “Modes of Operation for IVR,” on page 27, explains the three
modes of operation, how a mode is determined, and what operations are
supported by each mode.

19

IVR SDK 7.5 XML @

S

GENESYS

AN ALCATEL COMPANY

Chapter

How IVRs Use XML

This chapter provides a general overview of the IVR SDK components that use

XML, introduces the XML skills necessary in order to develop applications
that communicate with those IVR components, and presents system
requirements. This chapter contains these sections:

« How IVR Uses XML, page 21

+ XML Concepts, page 21

« IVR Architecture, page 22

« XML Message Guidelines, page 24

How IVR Uses XML

The Genesys Interactive Voice Response (IVR) application programming
interface (API) enables communication between a third-party [IVR and the
Genesys IVR Server. To establish this communication, you must create an
application that functions as an [VR driver. This driver communicates with
IVR Server using Extensible Markup Language (XML). IVR Server uses a
customized document type declaration (DTD), that defines the
Genesys-defined XML elements and attributes necessary to create call flows
that are appropriate to your enterprise.

For the text of the DTD, see “The IVR Server DTD” on page 177.

XML Concepts

Developer’s Guide

This guide assumes that you have a thorough understanding of XML data
modeling. You should be familiar with the standards set in the XML
specification v1.0. In addition, you need to know how to use an external
(DTD) (in this case the IServer.dtd file located on your software CD).

21

Chapter 1: How IVRs Use XML IVR Architecture

IVR Architecture

Figure 1 shows how the XML interface connects the customer-developed IVR
driver to IVR Server, which then communicates with Genesys Framework

components.
c IVR Library
IVR » (C wrapper for T-Server
Driver XML)

; XML Configuration
ke > e VR Server Server
Cooco Driver

IVR
Stat Server

Universal Routing
Server

Figure 1: Genesys IVR Architecture

Stack Layers

Figure 2 contains a basic representation of the stack layers, that handle the
communication among the IVR components: Descriptions of these stack layers
follow:

Application

Figure 2: Stack Layers

* Application layer—Represents the XML-based client application built by
the user to function as an interpreter between the IVR and the Genesys

IVR Server.
* XML layer—Shows that XML is the language the application uses to
communicate.
22 IVR SDK 7.5 XML @

Chapter 1: How IVRs Use XML IVR Architecture

* GDI Link Interface (GLI) layer—Responsible for link-layer functions such
as load balancing over multiple network interfaces and connection-failure
detection using Keep-Alive messages. It is a proprietary transport protocol
used to structure TCP/IP messages, and is a subset of the Generic Data
Interface (GDI) protocol from Telcordia (formerly Bellcore). For details on
the GDI, see “The GDI Specification” on page 23.

* Transmission Control Protocol (TCP) layer—Provides transport functions.

* Internet Protocol (IP) layer—Provides routing capability.

The GDI Specification

The GDI protocol is a service-independent interface specification created by
Telcordia Technologies, Inc. (formerly Bellcore). This protocol defines both
link layer features (load balancing, link monitoring, and so on) as well as
application/presentation layer features (ASN.1 data types and TCAP for
session management).

You can obtain a copy of this specification directly from the Telcordia Store at
www.telcordia.com. The specification is a Special Report, SR-3389. The full
title of the document is ISCP Generic Data Interface Specification for TCP/IP:
Using GR-246-CORE ANSI TCAP encoding.

The GLI Specification

Link Failure

Keep-Alive

Error Messages

Developer’s Guide

The GLI protocol used by IVR Server is a strict subset of the GDI protocol,
and contains only the link layer features of GDI described in Chapter 2 of the
GDI specification. The application/presentation layer aspects of GDI related to
TCAP and ASN.1 are not used by GLI and may be ignored. For GLI code
examples, See “GLI Header” on page 97.

Reliability

The following notes indicate how the GLI subset of the GDI handles
connections and supports keep-alive functions.

The client initiates the TCP/IP connection to the Genesys IVR Server. In the
event of a link failure, the client reinitiates the connection with the server. For
details, see the GDI specification, Section 2.1.

When the client receives a Keep-Alive request, it replies with Keep-Alive
response. For the format of these messages, see the GDI specification, Sections
22,2.2.2,and 2.2.3.

When it receives an Error message, the client closes the current connection and
initiates a new one. Error messages consist of the GDI header and an Error
Code. For the definition of these Error Codes, see the GDI specification,
Section 2.2.4.

23

Chapter 1: How IVRs Use XML XML Message Guidelines

Multiple Circuit
Connections

Security

Timeout

Errors can be generated in the following scenarios:

* The client is not authorized to connect to the server (client access is
enabled by using the Genesys Configuration Manager).

* The version number (part of the GDI header) is invalid.

The client can use Multiple Circuit Connections to connect with the Genesys
IVR Server. For details, see the GDI specification, Section 2.3.

Only the server side enforces security implementation. Security
implementation is not included in the client. For details, see the GDI
specification, Section 2.4. The server side may also enforce Transport Level
Security (TLS) which is the industry standard protocol for secure
communications on the Internet and the successor of SSL 3.0. For detailed
information refer to the Genesys 7.5 Security Deployment Guide.

The client generates a timeout in the event of a lack-of-response condition of
the server. For details, see the GDI specification, Section 2.2.4.

XML Message Guidelines

Special Character
Encoding

24

The following points indicate important message considerations.

Note: Keys in Key/Data pairs cannot include colons “:". An error message

appears if keys include this character.

The characters <, >, &, ", and ' must be coded in escape form in order for the
parser to interpret them correctly. This applies to all portions of the messages.
Table 1 lists the escape forms:

Table 1: Escape Form for Certain Characters

Character Escape Form
< <
> &agt;
& &
" "
' 3apos;

IVR SDK 7.5 XML @

Chapter 1: How IVRs Use XML XML Message Guidelines

Header Structure

Data Message
Type

MessagelLength

The Callld
Parameter

Error Message
Type

Keep-Alive
Message Types

VersionNumber

ApplicationIlD
Value

Note: The messaging protocol used between IVR Server and IVR Clients (for
instance, Genesys IVR Drivers, Genesys Voice Platform [GVP], and
custom-built SDK clients) is XML, and certain character codes are not
valid in an XML document. Characters with a value less than
hexadecimal number 0x20 are not valid, with the exception of the
characters 0x09, 0x0A, and 0x0D. These exceptions correspond to the
ASCII control characters TAB, LINE FEED, and CARRIAGE RETURN.
Application user-data keys or values should not contain any of the
disallowed character codes.

For the GDI header structure, see the GDI specification, Section 2.2.

The XML-encoded application layer messages are considered data messages.
The value for this message type is 03. Data messages are sent from the client
to the Genesys IVR Server.

The MessageLength includes the one-byte VersionNumber and the one-byte
ApplicationID in its count. Key/Data pairs to be passed to T-Server are limited
to 16 K in size. Other messages, including the header, can be 64 K in size. For
details, see the GDI specification, Section 2.2.

The IVR driver assigns a CallId value at the time of the initial NewCall or
MakeCall request. This CallId may be present in subsequent message for this
call. The value can be any valid character string.

Note: The Callld parameter must be unique for every concurrently active call
handled by an IVR Server application. This means not only that each
individual client application has to generate unique CallIds, but if
multiple clients connect to the same IVR Server application, those
clients must ensure that they do not use the same CallIds.

The client can receive Error messages from the server. The message type for
the Error message has a value of 02.

The message type of a Keep-Alive request has a value of 00. The message type
for the Keep-Alive response has a value of 01.

The VersionNumber must have a value of 2.

The only valid value for the ApplicationIDis 0.

Attached Data

Developer’s Guide

Message extensions are optional parameters that are included in some
messages. They can be used by routing strategies, [IVR scripts, and the client
application. The Genesys IVR Server does not interpret these values, it simply
forwards them between the Genesys Universal Routing Service (URS) and the
client application.

25

Chapter 1: How IVRs Use XML XML Message Guidelines

Attaching CED

The UDataEx
Parameter

CED is an optional parameter for RouteRequest and TreatStatus messages. If
provided, the value of CED will be present in the AttributeCollectedDigits
parameter of the T-Library message that the Genesys IVR Server forwards
back from the Genesys T-Server. The TLib message is either
EventRouteRequest or EventTreatmentEnd, depending on which message
started the sequence.

UDataEx is an optional parameter that you can include in almost every message
from your client application to the Genesys IVR Server. When IVR Server
receives data in the UDataEx parameter, it attaches the data to the call as user
data, thus providing a convenient way to combine attached data with another
request. For example, sending RouteRequest with UDataEx attached is
equivalent to calling UDataSet, followed by a RouteRequest.

Sockets, Ports, Channels, and DNs

26

For both IVR In-Front and IVR Behind configurations, IVR Server uses a list
of DNs and IVR ports that correspond to a particular IVR. The association
between IVR ports and DN is defined in the Configuration Layer, and it is
used by IVR Server to correlate a given IVR port number (supplied by a client)
with a DN configured on the switch. (See the IVR Interface Option 7.5 IVR
Server System Administrator's Guide for more information.) The IVR port
related to a call is specified as the cal ledNum parameter in the NewCall XML
message. (See “NewCall” on page 101.)

All of the message exchanges for a given IVR and IVR Server pair can be
made using a single TCP/IP socket connection, and this is the recommended
approach. It is possible to implement alternative connection handling methods,
but special care must be taken when doing so.

IVR SDK 7.5 XML @

S

GENESYS

AN ALCATEL COMPANY

Chapter

Modes of Operation for IVR

This chapter provides a general overview of the IVR SDK’s three modes of
operation (Behind, In-Front, and Network), how a mode is determined, and
what operations are supported by each mode.

This chapter contains these sections:

« IVR Server Operational Modes, page 27

« Individual Message Support and Behavior, page 31

IVR Server Operational Modes

Developer’s Guide

A running [VR Server application has three different modes in which it may
operate:

* The IVR Behind-the-switch mode is a basic configuration in which a
T-Server connected to the premise switch can monitor the call activity on
IVR channels.

* InIVR In-Front-of-the-switch mode, a Computer Telephony Integration
(CTI) link is not involved with the call processing.

* InIVR Network mode, the IVR Server (an IVR T-Server running in
Network mode) is a link to a user-provided Network IVR application. A
routing strategy and a Genesys Network T-Server route calls to the
Network IVR for processing.

In this document, these three modes are referred to as In-Front, Behind, and
Network, respectively.

For more information regarding these modes of operation and their
configuration, refer to The IVR Interface Option 7.5 IVR Server System
Administrator s Guide.

Depending on the mode in which your IVR Server is deployed, call flows vary,
and certain messages may, or may not be supported.

27

Chapter 2: Modes of Operation for IVR IVR Server Operational Modes

Implications of the Different Modes

28

Generally speaking, In-Front and Behind modes behave identically. The
exception is that with In-Front, IVR Server is a client of itself. By contrast,
with Behind mode, the IVR Server is a client of another T-Server. This has
repurcussions in that some premise T-Servers support functionality that IVR
Server’s T-Server does not, such as conferencing. On the other hand, Network
mode is at times dramatically different and more akin to the Genspec XML-
based Network T-Server. (See any Network T-Server Deployment Guide for
details.)

Modes and Their Uses of Interfaces

IVR Server contains several different client and server interfaces for use during
operation. Although technically all of the interfaces are available, regardless of
mode, logically they are not. The relevant interfaces are:

* XML/GLI server—Provides access to XML-based clients, such as IVR
drivers.

* T-Server—A fully functioning Genesys T-Server that generates various
T-Library events.

¢ T-Library client—A T-Server client for interfacing with other Genesys
T-Servers.

* StatServer client—Interfaces with Genesys Stat Server to provide
statistics lookup.

* ConfigServer client—Client for establishing and maintaining configuration
information relevant to IVR Server.

Behind Mode and Interfaces

The T-Server interface is not utilized and should be considered unavailable if
your have deployed Behind mode. For this particular mode, IVR Server is a
client of a foreign T-Server—generally, a premise T-Server. It is important to
note that any T-Server events, such as EventRouteRequest, cannot be sent in a
Behind mode call since this is a function of the T-Server interface.

In-Front Mode and Interfaces

When the mode for a given call is In-Front, all interfaces are active (or
available, depending on the specific configuration). In this case, the T-Library
client interface connects to the T-Server interface, and IVR Server becomes a
client of itself. This can cause some confusion in reading logs, because
messages seem to appear more often than they should.\

IVR SDK 7.5 XML @

Chapter 2: Modes of Operation for IVR IVR Server Operational Modes

Network Mode and Interfaces

The T-Library client interface is not used and requires no configuration for
Network mode. Additionally, if IVR Server is running only in Network mode,
an IVR Server application is not required in Configuration Manager. If this
setup is chosen, the StatServer and ConfigServer interfaces will also be
offline.

Determination of Mode

Developer’s Guide

At any given time, an IVR Server application is in one of the three types of
modes. This means that individual calls are associated with a particular mode
at call origination (either NewCall or MakeCall). You can determine the mode by
using the CalledNum value of NewCall or the OrigNum value of MakeCall
messages. Figure 3 on page 30 provides a diagram of the decision process.

29

Chapter 2: Modes of Operation for IVR

Retrieve
CallNum or
OrigNum
value

Is value a
registered
route DN?

No

Is
origination
logged in?

Using logged in
name, retrieve

Callisin
network
mode

Yes—»

No —» and no mode
is associated

Call is in error

*

No

Is there a

information

port to dn

about the IVR mapping?

port
o Is the type
Callisin -

behind mode [© No In-Front
switch”?

Yes

v

Callisin
In-Front
mode

Figure 3: Mode Determination Process

30

44— No

IVR Server Operational Modes

Is the
T-Server
associated
with the port

Retrieve the
switch type of the
assoc. T-Server

When a call is in error, an EndCal Ll message with
EndCause=FeatureNotSupported is returned. This particular type of message
usually indicates a configuration error. The decision block that determines
whether a T-Server is connected relates to the Connections tab of the IVR
Server Application object, not a network connection.

IVR SDK 7.5 XML @

Chapter 2: Modes of Operation for IVR

Individual Message Support and Behavior

Individual Message Support and Behavior

Supported Messages

After you determine the mode of the call, any subsequent messages received
for that call behave according to the call model for its type. Table 2 lists all the
IVR Server XML client messages, and indicates whether they are supported

for each type.

Table 2: XML Message Support

XML Message PGF Event Name Supported
In-Front | Behind | Network

AccessNumCancel Cancel Call Data Transfer| Yes Yes No
AccessNumGet Call Data Transfer Yes Yes No
CalllnfoReq Call Info Request Yes Yes Yes
CancelCompleted Cancel Yes Yes Yes
CompleteXfer Consult Conference No Yes No
Connected Connected Yes Yes Yes
EndCall End Call Yes Yes Yes
Failure Route Failed Yes Yes Yes
GetStatReq Get Stat Yes Yes Yes
InitXfer Consult Transfer No Yes No
LoginReq Login Request Yes Yes Yes
LogMsg Log Message Yes Yes Yes
MakeCall Make Call No Yes No
NewCall(CallControlMode=Genesys) | New Call Genesys No No Yes
NewCall(CallControlMode=Network)| New Call Network Yes Yes Yes
OneStepConf Single Step Conference No Yes No
OneStepXfer Single Step Transfer No Yes No
PeekStatReq Peek Stat Yes Yes Yes

Developer’s Guide

31

Chapter 2: Modes of Operation for IVR

Table 2: XML Message Support (Continued)

Individual Message Support and Behavior

XML Message PGF Event Name Supported
In-Front | Behind | Network

Reset N/A N/A N/A N/A
RetrieveCall Retrieve No Yes No
RouteRequest Route Request Yes Yes Yes
TreatStatus (Status=Completed) Treatment Complete Yes Yes Yes
TreatStatus (Status=NotStarted) Treatment Not Started Yes Yes Yes
TreatStatus (Status=Started) Treatment Started Yes Yes Yes
UDataDel Delete User Data Yes Yes No
UDataGet Get User Data Yes Yes Yes
UDataSet Update User Data Yes Yes Yes

Mode Behavioral Differences

32

Support of a message in a particular mode does not mean that this message will
prompt the same behavior by the server in all modes. In addition, some
supported messages might be required for proper operation of one mode, but
might be entirely optional for another. This section details those messages that
exhibit exceptions across modes.

NewCall (CallControlIMode=Network)

In Network mode, no CallStatus messages are generated because there are no
agents or extensions involved. With In-Front mode, ringing and established
status messages are always generated. However, in Behind mode, they are
dependent on EventRinging and EventEstablished events occurring on the
associated premise T-Server. If the premise T-Server generates both
EventRinging and EventEstablished for calls directed to the IVR, the behavior
for In-Front and Behind modes is the same.

RouteRequest

Network mode uses route type DN for all call processing. Routing requests
are generated on the same number as Cal LedNum from the NewCal Ll message. In
addition, Network mode calls can use a subset of the called number as the
actual DN. (See the cal led-num-subset option in the Administrator s Guide.)
This setting is not used in In-Front or Behind mode. Also, the RouteDN attribute

IVR SDK 7.5 XML @

Chapter 2: Modes of Operation for IVR Individual Message Support and Behavior

Developer’s Guide

of RouteRequest is required for In-Front and Behind modes, but it is
disregarded in Network mode.

In Network mode, only a single RouteRequest can be made for a call. However,
since it is possible for routing failures to be indicated, target selection can
occur multiple times for the same RouteRequest.

Since routing failure conditions cannot be indicated for In-Front or Behind
mode (see “Failure” on page 33), these modes support multiple RouteRequest /
RouteResponse interactions for a call.

Connected

This message must be sent for a Network mode call in order to properly
complete the routing interaction. For In-Front and Behind modes routing
cannot fail, and the use of the Connected message is highly discouraged.
Sending the Connected message for In-Front or Behind mode calls will cause
the routing interaction to be canceled. This is used to implement the Route
Abort feature that is required for compatibility purposes in some IVR drivers,
although it is considered deprecated.

Failure
The Fai Lure message maps to EventError in Network mode, and it can be used

to indicate routing problems. For In-Front and Behind modes, routing cannot
fail, and the use of the Fai Lure message is not recommended.

LoginReq

This message is necessary for proper determination of In-Front and Behind
modes.

33

Chapter 2: Modes of Operation for IVR Individual Message Support and Behavior

34 IVR SDK 7.5 XML @

S

GENESYS

AN ALCATEL COMPANY

Part

Part Two: IVR Server
In-Front and Behind Mode

Part Two of the IVR SDK 7.5 XML Developer s Guide tfamiliarizes you with
the Genesys IVR SDK XML, the tool for building drivers that allow your IVR
(Interactive Voice Response Unit) to communicate with the Genesys [VR
Server. This portion of the guide introduces you to the relevant concepts,
terminology, and procedures used by the Genesys [IVR SDK XML in standard
integration situations.

The information in Part Two is divided amoung the following chapters:

¢ Chapter 3, “IVR In-Front and Behind State Machine Diagrams,” on
page 37, contains state machine diagrams from the viewpoint of the IVR
driver. This chapter also includes messages that can be sent from any state,
error messages, and the procedure for configuring the statistics used in the
statistics messages.

¢ Chapter 4, “In-Front and Behind Call Flow Diagrams,” on page 47,
provides call flow diagrams for many common scenarios. It is intended as
a reference.

e Chapter 5, “IVR XML Protocol Messages and Parameters,” on page 65,
contains tables showing the parameters for each message, the message
direction, and whether the parameters are required or optional.

* Chapter 6, “Using the IVR XML Protocol: Examples,” on page 97,
presents sample XML messages and comments for a number of
commonly-encountered call flow scenarios. These sample XML messages
are intended as starting points for building your IVR driver application.

Developer’s Guide 35

IVR SDK 7.5 XML @

S

GENESYS

AN ALCATEL COMPANY

Chapter

IVR In-Front and Behind
State Machine Diagrams

This chapter includes diagrams showing sequences of events and transitions
from state to state in a standard application using an IVR driver. This chapter
contains these sections:

« Overview, page 37

« Call Routing States, page 38

« Transfer States, page 39

« Conference States, page 40

« Call Treatment States, page 41

+ Make Call States, page 43

« Additional Event Messages, page 43

- Error Messages, page 45

+ Configuring Stat Server Statistics, page 45

Overview

Developer’s Guide

The following diagrams outline the states available to the client-server system,
shown from the perspective of the client IVR driver application.

Events in the diagrams that are prefaced with “IVR” are generated by the IVR
and sent to the client IVR driver application. All other events are sent from the
IVR Server to the IVR driver.

Note: The messages in these diagrams are designed to represent typical
messages that your IVR sends to your IVR driver client application.
The messages might differ somewhat from those given below,
depending on the IVR hardware and software your enterprise uses.

37

Chapter 3: IVR In-Front and Behind State Machine Diagrams Call Routing States

The first diagram in this chapter, Figure 4 on page 39, shows the initiation of a
call and marks the points where a call treatment, transfer, or conference could
begin. Remote transfers, local transfers, conferencing, and call treatments are
shown in separate state machine diagrams that follow this Call Routing
example.

The final state machine diagram, Figure 8 on page 43, shows a MakeCall call
flow. With MakeCall, the IVR system (or an outbound calling program that
uses the IVR) initiates the call. This is an alternative to NewCal L and is therefore
shown separately.

Call Routing States

38

Figure 4 on page 39 includes the initial NewCall messages that lead to the Call
Started or Connecting state—the starting points for transfers and
conferencing—followed by the IVR driver states found in a routing call flow.

NewCall is the starting point for the subsequent diagrams and tables, with the
exception of the MakeCall call flow (“Make Call States” on page 43).

IVR SDK 7.5 XML @

Chapter 3: IVR In-Front and Behind State Machine Diagrams Transfer States

Call Routing

** Call Treatments can
occur from the Waiting
For Instructions state.
This is detailed in a
different state machine IVR NewCall
fragment. (Network)

(1)
Waiting For
Instructions / Call Started*
3)
RouteResponse

*Must wait for
Established.

CallStatus
(Ringing,
Established)

IVR RouteRequest

RouteRequest * Transfer of calls and conference
calls can occur from either the Call
Started or Connecting states. For
simplicity, these state machine
fragments are shown below.

IVR Connected (10)

Connected

\
IVR EndCall (11)

0

Figure 4: Call Routing States Diagram

Transfer States

The following diagram shows the IVR driver states encountered during a
transfer. Throughout these transfer sequences, the IVR and the Genesys [VR
Server communicate through your IVR driver application.

Note: The transfer events and their branches, shown in Figure 5 on page 40,
are only available when the IVR Server is running in Behind mode.

Developer’s Guide 39

Chapter 3: IVR In-Front and Behind State Machine Diagrams Conference States

The IVR Server supports two types of transfers, one-step and consult. One-step
transfers are made as quickly as the switch can perform them. They are most
useful for predictive dialing situations. Consult transfers place the original call
on hold and establish that the transfer line is available before completing the
transfer.

Note: Not all switches support one-step transferring. If you receive an
“Unsupported Operation” error message when making a one-step
transfer, use the consult transfer instead. In case of an error message,
the original call is reactivated.

Transfer Connecting
or

Call Starteg

CallStatus
(Retrieved)

IVR OneStepXfer (1
CallError

CallError

IVR Initxfer (15)

CallStatus
Held
[()ia(leing‘; Single Step
Established, Xfer
XferComplete

IVR Retri 17
CallStatus etrieve (17)
(Held,

Established

Dialing,
Busy)

IVR EndCall (18) IVR Complete Xfer (16)

Consult
Xfer
Comple

CallStatus
(XferComplete)

IVR EndCall (1

Figure 5: Transfer State Machine

Conference States

The following diagram shows the IVR driver states encountered when
conferencing a call. Throughout these conferencing sequences, the IVR and the
IVR Server communicate via your IVR driver application.

Note: The conference events and their branches, shown in Figure 6 on
page 41, are only available when the IVR Server is running in
IVR-Behind mode.

40 IVR SDK 7.5 XML @

Chapter 3: IVR In-Front and Behind State Machine Diagrams Call Treatment States

The IVR Server supports two types of conferencing, one-step and consult.
One-step conferences are made as quickly as the switch can perform them.
Consult conferencing places the original call on hold and establishes that the
new conference line is available before completing the conference.

Note: Not all switches support one-step conferencing. If you receive an
“Unsupported Operation” error message when attempting a one-step
conference, use the consult conference method instead. In case of an
error message, the original call is reactivated.

Conference

Connecting
or
Call Started

CallError

CallStatus
IVR InitConf (21) (Retrieved)
CallStatus

(ConfPartyDeleted)

CallStatus
(Held,
Dialing,
Established
Busy)

IVR OneStepConf (20)

CallError
CallStatus
(ConfPartyDeleted)

Consult
Conf
Complete

CallStatus
(ConfPartyAdde

) Single Step
Conf

CallStatus
IVREndCall 25 (Retrieve,
IVR EndCall (24) ConfPartyAdded)

Figure 6: Call-Conferencing States

Call Treatment States

A call treatment is an operation performed on a call and can be one of a
number of types. These types can be sequences of automated questions that

Developer’s Guide 41

Chapter 3: IVR In-Front and Behind State Machine Diagrams Call Treatment States

collect caller information, music on hold, or some other handling of the call.
Invoking a call treatment application involves the states shown in the
following diagram, Figure 7 on page 42.

Call Treatments

Waiting For
Instructions

IVR Failure (9)

RouteResponse
IVR TreatStatusNotStarted (4)\

TreatCall IVR TreatStatusCompleted (5)

TreatCall

Connecting

Starting
Treatment

/

RouteResponse

IVR TreatStatusStarted (6)
TreatCall

IVR Connected (10)

RouteResponse

y

Treatment
Started

Connected

Cancel

IVR EndCall (11) IVR TreatStatusCompleted (8)

Cancelling
Treatment

IVR Cancelled (7)

Treatment
Cancelled

Figure 7: Call Treatment States

42 IVR SDK 7.5 XML @

Chapter 3: IVR In-Front and Behind State Machine Diagrams Make Call States

Make Call States

The MakeCall operation is an alternative to the NewCall scenario. In a MakeCall
call flow, the initial call is outbound rather than inbound. Figure 8 shows the
states that can occur during an MakeCal l operation.

Make Call

©

IVR MakeCall
(26)

\ |
CallStatus
(Dialing,
Busy)
CallStatus

(Established) VR EndCall (11)

Call Started * O

*** Make Call is a separate state
machine that connects to the
main Call Routing state machine.
In the Make Call scenario, the
CallStatus(Ringing) and
CallStatus(Established) events do
not occur in the Call Started state.
See the Call Routing state

machine for comparison.

Figure 8: MakeCall States

Additional Event Messages

In addition to the events included in the diagrams above, you can have the IVR
driver send the following messages to the IVR Server.

Anytime Messages

Messages that can be sent at any point in a call after the NewCal L message:

PeekStatReq—Requests statistical information from Stat Server. You can
request two statistics, CurrNumberWaitingCalls and ExpectedwaitTime. These
allow you to inform the caller how long the expected wait time is.

Developer’s Guide 43

Chapter 3: IVR In-Front and Behind State Machine Diagrams Additional Event Messages

GetStatReq—Requests statistical information from Stat Server. You can request
two statistics, CurrNumberWaitingCalls and ExpectedWaitTime. These allow
you to inform the caller how long the expected wait time is.

Note: These statistics must be configured in the Stat Server application. See
“Configuring Stat Server Statistics” on page 45 for the statistic
parameters.

LogMsg—Writes data to a log file. This file can be local or on the IVR Server.
Set the log location in the Data Options Transport section of the IVR Server
Application in Configuration Manager.

After CallStatus(Ringing) Messages

44

Messages that can be sent after the IVR Server has sent a Cal LStatus (Ringing)
message:

UDataSet, UDataGet, UDataResp, UDataDel—These user data messages allow
you to set up and manipulate key/value lists that are stored in T-Server for the
duration of an interaction. These lists can include multiple key/value pairs that
contains customer data such as current account information. The IVR requests
this information, which the driver forwards to T-Server by way of the IVR
Server.

* UDataSet—Requests T-Server to add specified key/value pairs to the call
object. To replace data, use UDataSet with Action set to Replace.

* UDataGet—Requests data for an existing key or keys.

* UDataDel—Removes one or all key/value pairs for a call. To remove one,
use Action set to De LeteKey. To delete all keys, use Action set to
DeleteAll.

* UDataResp—The response to a previous UData request.

+ If the request was Get and Result was set to Success, the data is in the
response.

+ Ifthe request was Set or Del and Result was set to Success, the
operation was successful and no data is returned.

+ If'the operation was not successful, it failed for the specified reason:
NoSuchCall, NoMatch (no such key), FeatureNotSupported (cannot add
key/value pairs), or MiscError.

CallInfoReq—A request from the IVR for T-Server call data, forwarded to
T-Server by the IVR driver via the IVR Server. The data can include:

¢ ANI—The calling party’s number.
e DNIS—The number or switch alias called by the caller.

* CalledNum—The IVR port number of the call. The port numbers are
configured in the IVR application in the Configuration Layer.

IVR SDK 7.5 XML @

Chapter 3: IVR In-Front and Behind State Machine Diagrams Error Messages

ConnID—The connection number attached to the IVR port for the call.
Framework uses this number as a reference for all parties involved with the
call.

TSCallId—The call ID assigned to the call.

PortDN, PortTrunk, PortQueue—The directory number, trunk and/or queue
of the IVR port.

OtherDN, O0therTrunk, OtherQueue—The directory number, trunk and/or
queue of the party on the other end of the call from the IVR port.

LastEvent—The last T-server event received for the IVR port, such as
EventRinging, EventEstablished, and so on.

FirstHomeLocation—This attribute corrasponds to the T-Library’s
AttritributeFristTransferHomelLocation attribute.

Note: If you send one of these six messages before the CallStatus (Ringing)

message, the request simply times out.

Error Messages

The IVR can return one of several types of error messages:

Fai Lure—If a connection attempt is unsuccessful, the IVR sends a Fai Lure
message with the appropriate reason attached: Busy, NoAnswer, or
ConnectFailed.

CalLError—Returned when a request fails. See the DTD for a full list of
reasons that might be attached to the message. The Cal lError message may
also include a TLibErrorCode. For a list of T-Library error codes and their
explanations, see a T-Server deployment guide.

Messages—Requests can generate responses indicating that an operation
failed if the request referred to invalid or non-existent objects or was
incorrectly formatted. The response indicates the nature of the problem.

Note: If you encounter an error during conferencing or transferring, the IVR

Server reactivates the original call (if it was on hold for a consult
transfer or conference) or returns it to the original port (in the case of
one-step transfers and conferences).

Configuring Stat Server Statistics

To configure the ExpectedWaitTime and CurrNumberWaitingCalls statistics:

1. Open the Stat Server application in Configuration Manager.

2. Click the Create New Section/Option icon on the Options tab menu.

Developer’s Guide

45

Chapter 3: IVR In-Front and Behind State Machine Diagrams Configuring Stat Server Statistics

3. Enter the statistic name and click 0K.

4. Locate the new statistic in the list and double-click it.

A blank pane appears.
5. Right-click and select New from the pop-up menu.
6. Enter the object names and values, one set at a time, as given in Table 3.
7. Click 0K to exit application configuration and save the new settings.

For more information on configuring Stat Server, see the Stat Server User s
Guide.

Table 3: Stat Server Statistic Values

Statistic Name Objects Category MainMask Subject
Queue, CurrentNumber CallWait DNAction
CurrNumberWaitingCalls | RoutePoint,Group
Queues
Queue, ExpectedWaitTime | CallWait DNAction
ExpectedWaitTime RoutePoint,Group
Queues
46 IVR SDK 7.5 XML @

S

GENESYS

AN ALCATEL COMPANY

Chapter

In-Front and Behind Call
Flow Diagrams

This chapter provides detailed information about specific, selected paths
through the call control state machine described in Chapter 3, “IVR In-Front
and Behind State Machine Diagrams,” on page 37. These paths have specific
relevance to In-Front and Behind mode deployment.

This chapter contains these sections:

« Overview, page 47

« Call Routing Call Flow, page 48

« Call Treatment, page 49

+ Call Treatment Failed, page 50

« Call Treatment Interrupted, page 51

« MakeCall Call Flow, page 52

« MakeCall (Busy), page 52

+ Conference Call Flow Diagrams, page 53

+ Transfer Call Flow Diagrams, page 59

Overview

The call flow diagrams available in this chapter are intended to be used as
reference. Some of these call flows are expanded versions of the call flows
analyzed in Chapter 6, “Using the VR XML Protocol: Examples,” on page 97.
The remaining call flow diagrams illustrate the request-response sequences for
additional interaction types.

You can find complete lists of the conference and transfer call flow diagrams
under “Conference Call Flow Diagrams” on page 53 and “Transfer Call Flow
Diagrams” on page 59.

Developer’s Guide 47

Chapter 4: In-Front and Behind Call Flow Diagrams Call Routing Call Flow

Call Routing Call Flow

VR Driver Server
IVR NewCall
NewCall (Network) q
CallStatus (Ringing)
< IVR CallRinging
< CallStatus (Established)
< IVR CallEstablished
IVR RouteRequest >
RouteRequest
< RouteResponse
< IVR Connect
EndCall
IVR EndCall >

Figure 9: Call Routing Call Flow

See “Routing” on page 106 for sample XML messages and comments on the
IVR driver/IVR Server segment of this call flow.

48 IVR SDK 7.5 XML @

Chapter 4: In-Front and Behind Call Flow Diagrams

Call Treatment

Call Treatment

IVR IVR
IVR Driver Server
IVR NewcCall
NewCall (Network)»
CallStatus (Ringing)
IVR CallRingin
< ging
< CallStatus (Established)
< IVR CallEstablished
IVR RouteRequest >
RouteRequest q
TreatCall n
IVR TreatCall <
IVR TreatStatusStarteg Multiple
Treatment
TreatStatus (StarteQ C;iTer:en
IVR TreatStatusComplited May Occur
TreatStatus (Completﬁd)
RouteResponse
IVR Connect < P
IVR EndCall
>
EndCall

Figure 10: Call Treatment Call Flow

See “Call Treatment Operation” on page 110 for sample XML messages and
comments on the [IVR driver/IVR Server segment of this call flow.

Developer’s Guide

49

Chapter 4: In-Front and Behind Call Flow Diagrams Call Treatment Failed

Call Treatment Failed

VR Driver Servr
IVR NewCall
NewCall (Networli
CallStatus (Ringing)
< IVR CallRinging
< CallStatus (Established)
< IVR CallEstablished
IVR RouteRequest q
RouteRequest
< TreatCall |
IVR TreatCall Multple
IVR TreatStatusNotStarigd gsélz;am‘i
TreatStatus (NotStart>ed Occur
< TreatCall
< IVR TreatCall
IVR TreatStatusStarteg
TreatStatus (Starte@
IVR TreatStatusCompIeEd
TreatStatus (CompIeEd)
< RouteResponse
< IVR Connect
IVR EndCall q
EndCall

Figure 11: Call Treatment Failed Call Flow

50 IVR SDK 7.5 XML @

Chapter 4: In-Front and Behind Call Flow Diagrams

Call Treatment Interrupted

Call Treatment Interrupted

Developer’s Guide

IVR
Server

IVR IVR
Driver
IVR NewcCall
NewCall (NetworkL
CallStatus (Ringing)
IVR CallRinging [
¢
CallStatus (Establishedl)
IVR CallEstablished [«
IVR RouteRequest
g RouteRequest
TreatCall
< IVR TreatCall
IVR TreatStatusStartgd
TreatStatus (Started»)
Cancel
IVR Cancel <
N
IVR Cancelled
CancelCompleted
P
RouteResponse
IVR Connect < s
5
IVR EndCall
EndCall

Figure 12: Interrupted Call Treatment

The command to cancel the call treatment is forwarded from the Genesys
Framework by IVR Server.

51

Chapter 4: In-Front and Behind Call Flow Diagrams MakeCall Call Flow

MakeCall Call Flow

IVR
VR Driver o
IVR MakeCall >
MakeCall
< CallStatus (Dialing)
IVR CallDialing
< CallStatus (Establisheql)
< IVR CallEstablished

Figure 13: MakeCall Operation

Note: The MakeCall call flow is revelant to the behind mode only.

See “MakeCall Operation” on page 112 for sample XML messages and
comments on the [VR driver/IVR Server segment of this call flow.

MakeCall (Busy)

IVR IVR
IVR Driver Server

IVR MakecCall
P

MakeCall
< CallStatus (Dialing)
IVR CallDialin
< 9
< CallStatus (Busy)
IVR CallBus
< y
IVR EndCall
ndCa N

EndCall

Figure 14: MakeCall(Busy) Call Flow

©

52 IVR SDK 7.5 XML &=

Chapter 4: In-Front and Behind Call Flow Diagrams

Conference Call Flow Diagrams

Conference Call Flow Diagrams

The following call flow diagrams illustrate several scenarios involving

conferenced calls.

One-step Conference, page 53

One-step Conference, Scenario 2, page 54

Conference Consult Call, page 55

Conference Consult Call, Scenario 2, page 56

Conference Consult Call (Busy), page 57

Conference Consult Call (Failed), page 58

One-step Conference

IVR IVR
IVR Driver Server
IVR NewCall
> NewCall (Network) q
CallStatus (Ringing)
IVR CallRinging
CallStatus (Established)
< IVR CallEstablished
IVR RouteRequest>
RouteR t
outeReques N
< RouteResponse
IVR Connect
¢
IVR OneStepConL
OneStepConf
P >

IVR PartyAdded

< CallStatus (ConfPartyAdded)

IVR EndCall

(Original party hangs up)

EndCall

Figure 15: Call Flow for a One-Step Conference

See “One-Step Conference Operation” on page 114 for sample XML messages

and comments on the IVR driver/IVR Server segment of this call flow.

Developer’s Guide

53

Chapter 4: In-Front and Behind Call Flow Diagrams

Conference Call Flow Diagrams

If a CaLlLError occurs, IVR Server automatically returns you to the same status
as before the conference call was started. This means that the original call is
retrieved without any input from the IVR.

One-step Conference, Scenario 2

IVR IVR IVR
Driver Server
IVR NewcCall
g
NewCall (Network) q
CallStatus (Ringing)
< IVR CallRinging
CallStatus (Established)
< IVR CallEstablished
IVR RouteRequest>
RouteRequest
< RouteResponse
IVR C t
< onnec
IVR OneStepConf > N
OneStepConf >
Conference
< CallStatus (ConfPartyAdded > May Be
Repeated
< IVR PartyAdded jepes
CallStatus (ConfPartyDeletgd|) Scenario
< IVR PartyDeleted (Conferenced party hangs up)
%

Figure 16: One-Step Conference with Alternative Disconnect Scenario

54

IVR SDK 7.5 XML @

Chapter 4: In-Front and Behind Call Flow Diagrams Conference Call Flow Diagrams

Conference Consult Call

IVR IVR
VR Driver Server
IVR NewCall q
NewCall (Network)
CallStatus (Ringing)
IVR CallRingin
< ging
< CallStatus (Established)
IVR CallEstablished
<
IVR RouteRequest
>
RouteRequest q
< RouteResponse
IVR Connect
¢
IVR InitConf
InitConf
< CallStatus (Held)
IVR CallHeld
n
CallStatus (Dialing)
IVR CallDiali
< allDialing
< CallStatus (Established)
IVR CallEstablished
n
IVR CompleteConf>
CompleteConf
< CallStatus (Retrieved)
IVR CallRetrieved
¢
< CallStatus (ConfPartyAdded)
IVR PartyAdded
¢
IVR EndCall
(Original party hangs up) EndCall >

Figure 17: Call Flow for Conference Consult Call

See “Conference Consult Operation” on page 116 for sample XML messages
and comments on the IVR driver/IVR Server segment of this call flow.

Developer’s Guide 55

Chapter 4: In-Front and Behind Call Flow Diagrams

Conference Call Flow Diagrams

Conference Consult Call, Scenario 2

IVR IVR
IVR Driver Server
IVR NewcCall
> NewCall (Network)
CallStatus (Ringing)
IVR CallRinging [
<
CallStatus (Established)
|« VR CallEstablished <
IVR RouteRequest
P RouteRequest
>
RouteResponse
IVR Connect < P
¢
\
IVR InitConf nitCont
nitCon
4
CallStatus (Held
IVR CallHeld < (feld)
¢
< CallStatus (Dialing)
IVR CallDialin
< g
CallStatus (Established) Conf
IVR CallEstablished [onference
& May Be
> Repeated
IVR CompleteConf In This
> CompleteConf Scenario
CallStatus (Retrieved)
|« VR CallRetrieved <
< CallStatus(ConfPartyAddedq)
< IVR PartyAdded
< CallStatus(ConfPartyDeleted
< IVR PartyDeleted (Conferenced party hangs up)
J

Figure 18: Conference Consult Call Alternative Scenario

56

IVR SDK 7.5 XML @

Chapter 4: In-Front and Behind Call Flow Diagrams

Conference Consult Call (Busy)

Developer’s Guide

IVR I\(R IVR
Driver Server
IVR NewCall
ewCa q
NewCall (Network)
CallStatus (Ringing)
< IVR CallRinging
< CallStatus (Established
IVR CallEstablished
<
IVR RouteRequest
> RouteRequest
< RouteResponse
IVR Connect
<
) N
IVR InitConf
InitConf
nitCon >
CallStatus (Held)
IVR CallHeld
<
< CallStatus (Dialing)
ol Conference
< IVR CallDialing May Be
Repeated
< CallStatus (Busy) > e
< CallStatus (Busy) Scenario
IVR RetrieveCall
> RetrieveCall |
CallStatus (Retrieved)
IVR CallRetrieved
< L/

Figure 19: Conference Consult Call, Line Busy

A Busy response is not considered an error. When the party which is to be
conferenced with the original caller is busy, the IVR driver must send a
RetrieveCall message to retrieve the original call. Compare this to
“Conference Consult Call (Failed)” on page 58.

Conference Call Flow Diagrams

57

Chapter 4: In-Front and Behind Call Flow Diagrams Conference Call Flow Diagrams

Conference Consult Call (Failed)

IVR IVR
IVR Driver Server
IVR NewCall
NewCall (Network)>
CallStatus (Ringing)
IVR CallRingin
< ging
< CallStatus (Established
< IVR CallEstablished
IVR RouteRequest
< RouteRequest
RouteResponse
IVR Connect <
i
IVR InitConf nitConf
nitCon
>
CallStatus (Held)
< IVR CallHeld <
< CallStatus (Dialing)
IVR CallDialin
< g
CallE
< allError
IVR CallE
< allError

Figure 20: Conference Consult Call Failed Call Flow

If a CalLError occurs, IVR Server automatically returns you to the same status
as before the conference call was started. This means that the second call is
terminated and the original call is retrieved without any input from the IVR.

Note: If the IVR tries to retrieve the original call after a Cal lError message,
the IVR will receive another error message because the original call
has already been taken off hold.

58 IVR SDK 7.5 XML @

Chapter 4: In-Front and Behind Call Flow Diagrams

Transfer Call Flow Diagrams

Transfer Call Flow Diagrams

The following call flow diagrams illustrate several scenarios involving

transferring calls.

* Transfer to Remote Site, page 59

* Single-Step Transfer, page 60

* Transfer Consult Call, page 61

* Transfer Consult Call (Busy), page 62
* Transfer Consult Call (Failed), page 63

Transfer to Remote Site

Developer’s Guide

IVR IVR
VR Driver Server
IVR NewCall
d >
NewCall (Network) >
CallStatus (Ringing)
IVR CallRinging
CallStatus (Established)
< IVR CallEstablished
IVR RouteRequest >
RouteR t
outeReques q
RouteResponse
IVR Connect
¢
IVR AccessNumGet >
AccessNumGet q
AccessNumResp
IVR EndCall
E I
ndCa q

Figure 21: Transfer to a Remote Site

See “Transfer to Remote Site Operation” on page 121 for sample XML
messages and comments on the IVR driver/IVR Server segment of this call

flow.

59

Chapter 4: In-Front and Behind Call Flow Diagrams Transfer Call Flow Diagrams

Single-Step Transfer
IVR IVR
IVR Driver Server
IVR N Il
ewCa N
NewCall (Network)>
CallStatus (Ringing)
< IVR CallRinging
< CallStatus (Established
< IVR CallEstablished
IVR RouteRequest>
RouteRequest
SN
< RouteResponse
< IVR Connect
IVR OneStepXfer >l
OneStepXfer In The Case
Where Single
Step Transfer
Is Not Supported
By The Switch,
These Events
Will Also Be
CallStatus (XferComplef Sent By
< IVR Server
| IVR CallXferCompletg
IVR EndCall
EndCall

Figure 22: Single-Step Transfer

See “One-Step Transfer Operation” on page 123 for sample XML messages
and comments on the IVR driver/IVR Server segment of this call flow.

If a CalLError occurs, IVR Server automatically returns you to the same status
as before the transfer was started. This means that the original call is retrieved
without any input from the IVR.

60 IVR SDK 7.5 XML @

Chapter 4: In-Front and Behind Call Flow Diagrams Transfer Call Flow Diagrams

Transfer Consult Call

IVR IVR
IVR Driver Server
IVR NewCall q
NewCall (Network) >
CallStatus (Ringing)
< IVR CallRinging
< CallStatus (Established)
< IVR CallEstablished
IVR RouteRequest >l
RouteRequest q
RouteResponse
< IVR Connect
IVR InitXfer q
InitXfer
< CallStatus (Held)
< IVR CallHeld
< CallStatus (Dialing)
< IVR CallDialing
< CallStatus (Established)
< IVR CallEstablished
IVR CompleteXfer >
CompleteXfer >
CallStatus (XferCompletg)
< IVR CallXferComplete
IVR EndCall
EndCall q

Figure 23: Call Flow for a Transfer Consult Call

See “Transfer Consult Operation” on page 125 for sample XML messages and
comments on the [IVR driver/IVR Server segment of this call flow.

Developer’s Guide 61

Chapter 4: In-Front and Behind Call Flow Diagrams Transfer Call Flow Diagrams

Transfer Consult Call (Busy)

IVR IVR
IVR Driver Server
IVR NewCall
NewCall (Network)>
< CallStatus (Ringing)
< IVR CallRinging
< CallStatus (Established
IVR CallEstablished
IVR RouteRequest
g RouteRequest >
< RouteResponse
IVRC t
< onnec
IVR InitXfer M)
g InitXfer
CallStatus (Held)
< IVR CallHeld <
< CallStatus (Dialing)
IVR CallDialing Transfer
< May Be
CallStatus (Busy) Repeated
< In This
IVR CallBusy Scenario
<
IVR RetrieveCall
> RetrieveCall >
< CallStatus (Retrieved)
IVR CallRetrieved
|/

Figure 24: Transfer Consult Call, Line Busy

A Busy response is not considered an error. When the party to which the
original caller is to be transferred is busy, the IVR driver must send a
RetrieveCall message to retrieve the original call. Compare this to “Transfer
Consult Call (Failed)” on page 63.

62 IVR SDK 7.5 XML @

Chapter 4: In-Front and Behind Call Flow Diagrams Transfer Call Flow Diagrams

Transfer Consult Call (Failed)

IVR IVR
IVR Driver Server
IVR NewCall
NewCall (Network)>
CallStatus (Ringing)
< IVR CallRinging
< CallStatus (Established
< IVR CallEstablished
IVR RouteRequest
P RouteRequest
< RouteResponse
IVR Connect
<
IVR InitXfer it N
nitXfer
>
< CallStatus (Held)
Transfer
< IVR CallHeld May Bo
< CallStatus (Dialing) > Eeﬁz:ted
< IVR CallDialing Scenario
CallError
n
IVR CallError
B Y

| 1]
Figure 25: Transfer of Consult Call Failed
If a CaLlLError occurs, IVR Server automatically returns you to the same status

as before the call transfer was started. This means that the second call is
terminated and the original call is retrieved without any input from the IVR.

Note: If the IVR tries to retrieve the original call after a Cal LError message,
the IVR will receive another error message because the original call
has already been taken off hold.

Developer’s Guide 63

Chapter 4: In-Front and Behind Call Flow Diagrams Transfer Call Flow Diagrams

64 IVR SDK 7.5 XML @

S

GENESYS

AN ALCATEL COMPANY

Chapter

IVR XML Protocol
Messages and Parameters

This chapter presents detailed explanations of the messages and parameters

used by the Genesys IVR XML protocol in a standard deployment situation.

This chapter contains these sections:

Overview, page 65

General Messages, page 67

New Call and Call Routing Messages, page 76
Call Treatment Messages, page 79
External Routing Messages, page 82
Transfer/Conferencing Messages, page 84
Call Information Messages, page 88
Statistics Messages, page 89

User Data Messages, page 91

Outbound Messages, page 93

Message Parameters, page 95

Overview

The messages in this chapter are defined in version 3.0 of the IServer.dtd file.
For a complete text of the DTD, see “The IVR Server DTD” on page 177.

Important Message Constraints

Callid

Developer’s Guide

The value of the Callld parameter can be any valid character string and is
assigned by the IVR driver at the time of the initial NewCall or MakeCall request
is made. This CallId must be included in every subsequent message for this
call.

65

Chapter 5: IVR XML Protocol Messages and Parameters Overview

Special Character

66

Deprecated
Parameters

Key/Data Pairs

Encoding

The Callld field used in the Login message will be used for all server
monitoring events generated by IVR Server. Any control messages sent by the
IVR must use the Callld supplied in Login as well. Messages not using this
CallId will result in error messages.

See the DTD (in “The IVR Server DTD” on page 177) for details on how
CalllId fits into the message structure.

Note: The Callld parameter must be unique for every concurrently active call
handled by an IVR Server application. This means not only that each
individual client application has to generate unique CallIds, but if
multiple clients connect to the same IVR Server application, those
clients must ensure that they do not use the same CallIds.

The version 1.0 parameters UserData and Extensions are still supported, but are
deprecated. The UDataEx and ExtnsEx parameters should be used instead, and
are supported in DTD version 2.0 and higher.

The key in a key/data pair cannot include the character “:”. An error message
appears when the user tries to retrieve data identified using this character in the
key.

The characters <, >, & ", and ' must all be coded in escape form for the
parser to interpret them correctly. The escaped forms are:

Table 4: Escape Form for Certain Characters

Character Escape Form
< <
> >
& &
" "
' 8apos;

IVR SDK 7.5 XML @

Chapter 5: IVR XML Protocol Messages and Parameters General Messages

Note: The messaging protocol used between IVR Server and IVR Clients (for
instance, Genesys IVR Drivers, Genesys Voice Platform (GVP), and
custom-built SDK clients) is XML, and certain character codes are not
valid in an XML document. Characters with a value less than
hexadecimal number 0x20 are not valid, with the exception of the
characters 0x09, 0x0A, and 0x0D. These exceptions correspond to the
ASCII control characters TAB, LINE FEED, and CARRIAGE RETURN.
Application user-data keys or values should not contain any of the
disallowed character codes.

General Messages

LoginReq

Developer’s Guide

These messages include login, logging, and reset messages.

Sent by the IVR to the IVR Server to initiate a session and authenticate user
access to the IVR Server. Except when working in Network mode, this request
is required for the client to interact with the IVR Server. (For compatibility
with the previous XML interface (GenSpec XML), login is optional in
Network mode.) LoginReq is the first XML request the client must send to the
IVR Server.

Note: Without sending LoginReq and receiving a successful LoginResp (see
“LoginResp” on page 68), the client cannot send any further XML
requests to the [IVR Server.

The value for the ClientName parameter is the name given to the IVR
Application object in Configuration Manager.

Set the optional ReportStatus parameter to true to indicate that the login
response message (LoginResp) for this request should include its Status
parameter. You can also use the Status parameter to determine if the [IVR
Server startup initialization is still in progress (and not able to process calls on
all ports). To determine when initialization is complete, have your application
periodically send login requests until the status result is 0K.

Extending the agent login mechanism to include a client-driven approach
makes it necessary to generate certain unsolicited events. T-Server messages
that were previously of no interest to a connected IVR will now be crucial to
proper agent state management. You must subscribe to events such as
EventLinkConnected and EventLinkDisconnected to maintain backwards
compatibility. The ServerMonitor parameter will extend the existing login
message for subscribing to these events.

67

Chapter 5: IVR XML Protocol Messages and Parameters General Messages

LoginResp

68

Set the optional ServerMonitor parameter to set to indicate that a particular
client is interested in significant remote events. If the client is no longer
interested in this information, resending a Login message with ServerMonitor
set to clear will remove the feature. If this field is not set, the default 1s
considered to be clear. The ServerMonitor parameter is respected only if
Version is set to 4.0.

Note: Login in IVR Server cannot fail. It can also be repeated without
negative effects.

Place required configuration information in the data transport section of the
IVR Application object in Configuration Manager. In that case, the
information is returned in the ConfigOptions section of the LoginResp message.

See Table 5 for a complete list of message parameters.

Table 5: LoginReq Message

Parameter .
Message Direction gstlgi?::j/
Name Value q
Version 1.0 Required
2.0
3.0
4.0
LoginReq IVR to IVR Server ClientName Required
ReportStatus | true Optional
false
ServerMonitor| set Optional
clear

This message is sent by the IVR Server to the IVR in response to a LoginReq
message.

The Status parameter of the LoginResp message has the following possible
values. (See Table 6 on page 69 for a complete list of message parameters.)

NoSuchClient
There is no IVR object configured in the Configuration Layer
with the name supplied in the CLientName parameter of the
LoginReq message.

InitInProgress
The IVR Server is in the process of initializing and is not ready
to process new calls.

IVR SDK 7.5 XML @

Chapter 5: IVR XML Protocol Messages and Parameters General Messages

0K Initialization is complete, and the IVR Server can process calls.

Clients can use the value of the Status parameter to detect IVR Server’s
initialization status. If it is initializing, clients can then periodically retry
LoginReq until IVR Server initialization is complete.

Place required configuration information in the data transport section of the
IVR Application object in Configuration Manager. If you do this, the
information is returned in the Config0Options section of the LoginResp message.

Table 6: LoginResp Message

Parameter
Message Direction Optional/Required
Name Value
[ServerVersion Required
Result Success Required
InvalidProtocolVersion
LoginResp IVR Server to IVR ConfigOptions Optional
Status NoSuchClient Optional
InitInProgress
0K
LogMsg

Developer’s Guide

This message from the IVR to the IVR Server allows you to write a message to
a log file. You can specify the log type and the desired log message.

This file can be local or on the IVR Server. Set the log location in the Data
Options Transport section of the IVR Server Application in Configuration
Manager.

See Table 7 for a complete list of message parameters.

Table 7: LogMsg Message

Parameter :
Message Direction CR)gtlg ir:::jl
Name Value q
MsgType Standard Required
Trace
LogMsg IVR to IVR Server Debug
Msg Required
69

Chapter 5: IVR XML Protocol Messages and Parameters General Messages

Reset

Monitorinfo

This message is not yet implemented. It is reserved for future use.

See Table 8 on page 70 for a complete list of message parameters.

Table 8: Reset Message

Optional/

Message Direction Parameter Name Required

Reset IVR to IVR Server ExtnsEx Optional

This message will be sent when a significant event occurs related to the server
monitoring. These will be events pertinent to managing agent status. The Reqld
parameter will be present when this event is in response to an XML request, as
opposed to an unsolicited event.

See Table 9 for a complete list of message parameters.

Table 9: Monitorinfo Message

Parameter Optional/

Message Direction Required

Name Value

MonitorInfo IVR Server to IVR | Reqld Optional

Server Subtype

70

A Server type of MonitorInfo message is created when the information being
sent is related to T-Server connections. This message is never directly
requested by a client, so the Reqld parameter of the MonitorInfo message will
never be supplied.

This message will be sent when either an EventLinkDisconnected or
EventLinkConnected event occurs, or when the T-Server socket is closed. For
this event to be forwarded, it must occur on a T-Server that is used by the IVR.
This is based upon the configuration of the IVR in ConfigServer and the name
provided by the login request. Server status events are shown in Table 10.

See Table 11 on page 71 for a complete list of message parameters.

IVR SDK 7.5 XML @

Chapter 5: IVR XML Protocol Messages and Parameters

Port Subtype

Developer’s Guide

Table 10: Server Status Events

General Messages

T-Library Event

XML

EventLinkConnected

{Server Status='0K'/>

EventLinkDisconnected/
Socket Closed/
No Connection

{Server Status='Unavailable'/)

Table 11: Server Message

Parameter ;
Message Direction 32 t'f.’i'::g
Name Value q
Name Required
Stat 0K Required
Server IVR Server to IVR atus . e
Unavailable
Switch Optional

This message will be sent to inform the client that no further successful
requests can be submitted for that port due to configuration database changes.
As with the Server subtype; this message will never have a Reqld associated

with it.

See Table 12 for a complete list of message parameters.

Table 12: Port Message

Parameter ;
Message Direction ggtlgi?-::j/
Name Value q
PortNum Required
Port IVR S to IVR
0 erver to Status 0K Required
Unavailable
71

Chapter 5: IVR XML Protocol Messages and Parameters General Messages

Agent Subtype

Agent-related events occurring on relevant ports are conveyed using the Agent
subtype. These messages can either be in response to control messages, or due
to external sources. When in response to a control message, ReqIld from that
related message will be used. Table 13 shows the relationship between
T-Library events and XML messaging.

Table 13: Agent Status Events

T-Library Event XML

EventAgentLogin {Agent PortNum='01"' Status='LoggedIn'/>
EventAgentLogout {Agent PortNum='01" Status='LoggedOut'/>
EventAgentReady {Agent PortNum='01"' Status='Ready'/>
EventAgentNotReady {Agent PortNum='01" Status='NotReady'/>

In T-Library, the LoggedIn state is not a steady state, it only indicates that the
login was successful. Another status message will always follow the LoggedIn
indication to signify whether the agent is in the ready or not ready state. This
is a function of the switch and may be one or the other depending on
configuration. Therefore, Ready and NotReady imply LoggedIn.

It is also important to note that the query event may return an Unknown state
from the switch. As a general rule, treat Unknown as LoggedOut.

See Table 14 for a complete list of message parameters.

Table 14: Agent Message

Parameter .
Message Direction ggtlgi?::jl
Name Value q
PortNum Required
Status LoggedIn Required
Agent IVR Server to IVR LoggedOut
Ready
NotReady
Unknown

AgentQuery

The client can, at any time, request the current agent state. This will trigger the
generation of a MonitorInfo (Agent subtype) message. Functionally, this
triggers a TQueryAddress on behalf of the IVR. The values that can be returned

72 IVR SDK 7.5 XML @

Chapter 5: IVR XML Protocol Messages and Parameters

AgentLogin

Developer’s Guide

General Messages

are taken from the AgentStatus extension to EventAddressInfo and are
translated in Table 15.

See Table 16 on page 73 for a complete list of message parameters.

Table 15: Agent Status Values

AgentStatus Value XML Status
UNKNOWN <0 Unknown
LOGGED OUT 0 Unknown
LOGGED_IN 1 LoggedIn
READY 2 Ready
NOT READY 3 NotReady
ACW 4 NotReady
WALK AWAY 5 NotReady
Any other value Unknown
Table 16: AgentQuery Message
Message Direction Parameter gs;igi?:g
Name Value
Reqld Required
AgentQuery| IVR to IVR Server
PortNum Required

This message is sent when the IVR wishes to log an agent in. This message
converts to a TAgentLogin message. Generally this message will only be
acceptable to the switch when the current agent state is logged out.

See Table 17 on page 74 for a complete list of message parameters.

73

Chapter 5: IVR XML Protocol Messages and Parameters

AgentLogout

AgentReady

74

Table 17: AgentLogin Message

General Messages

Message Direction Parameter gsaigi?:g
Name Value
Reqld Required
PortNum Required
AgentLogin| IVR to IVR Server| Queue Required
Agent Id Required
Password Required

This message is sent when the IVR wishes to log an agent out. This message
converts to a TAgentLogout message. Generally this message will only be
acceptable to the switch when the current agent state is not logged out, though
behavior can vary from switch to switch.

See Table 18 for a complete list of message parameters.

Table 18: AgentLogout Message

Message Direction Parameter gs;igir::g
Name Value
Reqld Required
AgentLogout | IVR to IVR Server | PortNum Required
Queue Optional

This message is sent to set an existing logged in port to the ready state. The
optional WorkMode parameter is converted to a corresponding

AttributeWorkMode in the TAgentSetReady message.

See Table 19 for a complete list of message parameters.

=

IVR SDK 7.5 XML &=

Chapter 5: IVR XML Protocol Messages and Parameters

Table 19: AgentReadyMessage

General Messages

Parameter
Message Direction Optional/Required
Name Value
Reqld Required
PortNum Required
AgentReady IVR to IVR Server Queue Required
WorkMode Autoln Optional
Manvalln
Unknown
AgentNotReady

Table 20: AgentNotReady Message

This message is sent to set an existing logged in port to the not ready state.
The optional WorkMode is converted to a corresponding AttributeWorkMode in
the TAgentSetNotReady message.

See Table 20 for a complete list of message parameters.

Parameter
Message Direction Optional/Required
Name Value
Reqld Required
PortNum Required
AgentNotReady IVR to IVR Server Queue Required
WorkMode AutolIn Optional
ManuallIn
Unknown
FlowControl

Developer’s Guide

This message is sent based on the setting of the f Low-control option in the [IVR
Server’s App Lication object properties. The message indicates the current
setting for flow control, and is returned at login or when the value changes.
When the status of flow control is on, new calls may be rejected depending on
the state of the driver or IVR Server. The call ID used comes from the

corresponding LoginReq.

75

Chapter 5: IVR XML Protocol Messages and Parameters New Call and Call Routing Messages
Note: For the XML-based client to receive and handle this flow control
message, it must log in using the 4.0 version of the IServer.dtd file.

See Table 21 for the message parameters.

Table 21: FlowControl Message

Parameter .
Message Direction 35"3325
Name Value q
FlowControl IVR Server to IVR Status Z:{ Required

New Call and Call Routing Messages

These messages are used to start a call, route it, confirm the connection or
indicate failure to connect, and end the call.

NewCall

This message is sent by the IVR to the IVR Server to indicate the start of a new
call.

See Table 22 on page 77 for a complete list of message parameters.

76 IVR SDK 7.5 XML @

Chapter 5: IVR XML Protocol Messages and Parameters New Call and Call Routing Messages

Table 22: New Call Message

Parameter
Message Direction Optional/Required
Name Value
CalledNum? Required
CallControlMode®| Genesys Required
Network
(MakeCall)
Version 1.0 Required
2.0
3.0
4.0
1 ANIRestriction CLIP-(Calling Line Reserved for Future
NewCa IVR to IVR Server Identification Use
Presentation)
CLIR-(Calling Line
Identification
Restriction)
DNIS Optional
ANI Optional
UDataEx Optional
ExtnsEx Optional

a. Recall that the CalledNum parameter is the IVR port number of the call. (See the CalledNum definition on
page 44.)

b. When CallControlMode is set to Genesys, Routing Server (URS) controls this call. When set to Network, the
IVR controls the call. In the latter case, the IVR can request to have the call routed by URS by sending a

RouteRequest message. The value MakeCall is for backwards compatibility purposes only. (It allows the
premise T-Server, release 6.1, to initiate calls.)

RouteRequest

This message is sent by the IVR to the IVR Server to request that the call be
routed by Genesys URS. This message can only be used when
CallControlMode is set to Network in the NewCal Ll message. It indicates that the
call has been processed by the IVR and invokes a routing strategy. Note that
the call can be parked prior to routing if necessary.

Developer’s Guide 77

Chapter 5: IVR XML Protocol Messages and Parameters

. . Parameter . .

Message Direction Name Optional/Required

RouteDn (DN Required for IVR in

where the routing | front and IVR behind.

strategy is Ignored for IVR with

located.) Network T-Server.
RouteRequest | IVR to IVR Server)

CED Optional

UDataEx Optional

ExtnsEx Optional

RouteResponse

New Call and Call Routing Messages

Note: For In-Front and Behind mode IVRs, if the Router does not respond
prior to the timeout, this message results in
RouteResponse (RouteType=Default) . (See “RouteResponse” on
page 78 for details.) For IVRs in Network mode, a Router timeout
results in EndCal Ll (EndCause=Timeout). (See “EndCall” on page 79 for
details. This Network mode behavior provides compatibility with the
GenSpec XML NTS.)

See Table 23 for a complete list of message parameters.

Table 23: RouteRequest Message

This message is sent by the IVR Server to the IVR to indicate that the call
should be routed to the specified destination.

See Table 24 for a complete list of message parameters.

Table 24: RouteResponse Message

Parameter
Message Direction Optional/Required
Name Value
RouteType Default Present only if
Norma L supplied by URS.
Reroute
RerouteAttended
RouteResponse | IVR Server to IVR
RerouteConferenced
Dest Optional
ExtnsEx Optional
78 IVR SDK 7.5 XML @

Chapter 5: IVR XML Protocol Messages and Parameters

EndCall

Call Treatment Messages

This message is sent by either the IVR or the IVR Server response to a NewCal l
message.

Note: Ifthe IVR (driver) generates EndCall while it still has outstanding
requests, the behavior of IVR Server in replying to those requests is
undefined. In some cases replies may be sent, but not in all cases. No
further call-related messages may arrive after the EndCal L message.

If you issue EndCal L with 6GCTIActiveRelease set to false, the active call on the
IVR port is not terminated (if it is still on the port). Issuing EndCall with this
parameter not set (which is the default behavior), also causes the call to be

cleared.

See Table 25 on page 79 for a complete list of message parameters.

Table 25: EndCall Message

Parameter
Message Direction Optional/Required
Name Value
EndCause Normal Required
Abandoned
Resources
FeatureNotSupported
InvalidVersion
InvalidStateTransition
IVR Server to IVR ServerPaused
EndCall OR Timeout
IVR to IVR Server UDataEx Optional (Used for
Network IVR)
ExtnsEx Optional (Used for
Network IVR)
GCTIActive- | true Optional
Release false

Call Treatment Messages

Call treatment messages are used to start and control an external application
that processes a call and which might return data that can then be used to route
the call.

Developer’s Guide

79

Chapter 5: IVR XML Protocol Messages and Parameters Call Treatment Messages

TreatCall

This message is sent by the IVR Server to the IVR to indicate that the specified
call treatment should be run by the IVR.

See Table 26 for a complete list of message parameters.

Table 26: TreatCall Message

Parameter
Message Direction Optional/Required
Name Value
Type Busy Required
CancelCall

CollectDigits
DeleteAnnounce
FasyBusy

IVR

Music

PlayAnnounce
PLlayAnnounceAndDigits
PlayApplication
TreatCall IVR Server to IVR RAN

RecordAnnouce
RingBack
SetDefaultRoute
Silence

TextToSpeech
TextToSpeechAndDigits
VerifyDigits

ExtnsEx AttributeExtensions Optional

Parameters| AttributeTreatmentParms | Optional

TreatStatus

This message is sent by the IVR to the IVR Server to indicate what the call
treatment process requested by the IVR Server is doing.

See Table 27 for a complete list of message parameters.

80 IVR SDK 7.5 XML @

Chapter 5: IVR XML Protocol Messages and Parameters

Table 27: TreatStatus

Call Treatment Messages

Parameter
Message Direction Optional/Required
Name Value
Callld Required
Status Started Required
NotStarted- (Indicates
the the call treatment did
not start properly.)
TreatStatus IVR to IVR Server
Completed
UDataEx Optional
ExtnsEx Optional
CED Optional
Cancel
This message is sent by the IVR Server to the IVR to indicate that a previously
started call treatment process must be canceled.
See Table 28 for a complete list of message parameters.
Table 28: Cancel Message
- . Parameter . -
Message Direction Name Optional/Required
Cancel IVR Server to IVR
CancelCompleted

Developer’s Guide

This message is sent by the IVR to the IVR Server to indicate that the call
treatment requested by the IVR Server has been canceled.

This message has no parameters.

Table 29: CancelCompleted Message

Message

Direction

Name

Parameter

Optional/Required

CancelCompleted

IVR to IVR Server

81

Chapter 5: IVR XML Protocol Messages and Parameters External Routing Messages

External Routing Messages

These messages are used to prepare a call for an inter-switch transfer. They
make it possible for caller data to be transferred from one switch/T-Server to
another at a different site.

AccessNumGet

82

This message is sent by the IVR to the [IVR Server to request that the call be
routed to a remote site. The XRouteType parameter is used to select the type of
routing required.

Note: This functionality is not supported when IVR Server operates in
Network Mode.
When IVR Server operates in In-Front or Behind modes, in order to
communicate with T-Server, IVR Server translates AccessNumGet into
the T-Library function call TéetAccessNumber () . In these modes, IVR
Server acts as a T-Library client, and so is able to make this request of
T-Server. When operating in Network mode, however, [IVR Server
does not act as a T-Library client, and so has no way to generate the
AccessNumGet request.

See Table 30 on page 83 for a complete list of message parameters.

IVR SDK 7.5 XML @

Chapter 5: IVR XML Protocol Messages and Parameters

Table 30: AccessNumGet Message

External Routing Messages

Parameter
Message Direction Optional/Required
Name Value
DestDN Required
Location Required
(Indicates the
switch to
which to call
is
transferred.)
XRouteType | Default Optional
Route (Default is the
Reroute default)
AccessNumGet | IVR to [VR Server Direct
DirectAni
DirectNoToken
DirectAniDnis
DirectUUI
DirectDigits
DnisPool
UUI Number Optional
UDataEx Optional
ExtnsEx Optional
AccessNumCancel

Developer’s Guide

This message is sent by the IVR to the IVR Server to request that the previous
AccessNumGet request be canceled. There are no parameters in this message.

Table 31: AccessNumCancel Message

Message

Direction

Parameter
Name

Optional/Required

AccessNumCancel

IVR to IVR Server

83

Chapter 5: IVR XML Protocol Messages and Parameters

AccessNumResp

Table 32: AccessNumResp Message

Transfer/Conferencing Messages

This message is sent by the IVR Server to the IVR to indicate the result of a
previous AccessNumGet/AccessNumCancel. The Action parameter indicates to
which type of request this message is in response. The access number is only
present for a successful AccessNumGet.

See Table 32 for a complete list of message parameters.

Parameter
Message Direction Optional/Required
Name Value
Action Get Required
Cancel
AccessNumResp | IVR Server to IVR Result Success Required
Failure
AccessNum Optional

Transfer/Conferencing Messages

These messages are used to control call transfers and conferencing.

OneStepXfer

84

This message is sent by the IVR to the [IVR Server to request that the call be
immediately transferred to another agent. This meesage is present in Behind

mode only.

See Table 33 for a complete list of message parameters.

Table 33: One-Step Transfer Message

. . Optional/
Message Direction Parameter Name Required
DestDN Required
Location (Indicates Optional
the switch to which to
OneStepXfer | IVR to IVR Server | call is transferred.)
UDataEx Optional
ExtnsEx Optional

=

IVR SDK 7.5 XML &=

Chapter 5: IVR XML Protocol Messages and Parameters

OneStepConf

InitXfer

InitConf

Developer’s Guide

Transfer/Conferencing Messages

This message is sent by the IVR to the IVR Server to request that another agent
be immediately conferenced into the call.

See Table 34 for a complete list of message parameters.

Table 34: OneStepConf Message

. . Optional/
Message Direction Parameter Name Required
DestDN Required
Location (Indicates the | Optional
switch to which to call
OneStepConf | IVR to IVR Server | is transferred.)
UDataEx Optional
ExtnsEx Optional

This message is sent by the IVR to the IVR Server to request that the call be
transferred to another agent.

See Table 35 for a complete list of message parameters.

Table 35: InitXfer Message

. . Optional/
Message Direction Parameter Name Required
DestDN Required
Location (Indicates the Optional
switch to which to call is
InitXfer IVR to IVR Server transferred.)
UDataEx Optional
ExtnsEx Optional

This message is sent by the IVR to the IVR Server to request that another agent
be conferenced into the call.

See Table 36 on page 86 for a complete list of message parameters.

85

Chapter 5: IVR XML Protocol Messages and Parameters Transfer/Conferencing Messages

Table 36: InitConf Message

. . Optional/
Message Direction Parameter Name Required
DestDN Required
Location (Indicates the Optional
switch to which to call is
InitConf IVR to IVR Server | transferred.)
UDataEx Optional
ExtnsEx Optional

CompleteXfer

This message is sent by the IVR to the [IVR Server to indicate that the transfer
has been completed.

See Table 37 for a complete list of message parameters.

Table 37: CompleteXfer Message

. . Optional/
Message Direction Parameter Name Required
CompleteXfer | IVR to IVR Server | ExtnsEx Optional

CompleteConf

This message is sent by the IVR to the IVR Server to indicate that the conference
call has been set up.

See Table 38 for a complete list of message parameters.

Table 38: CompleteConf Message

. . Optional/
Message Direction Parameter Name Required
CompleteConf | IVR to IVR Server | ExtnsEx Optional

RetrieveCall

This message is sent by the IVR to the [IVR Server to request that the original
call be retrieved from hold.

See Table 39 on page 87 for a complete list of message parameters.

86 IVR SDK 7.5 XML @

Chapter 5: IVR XML Protocol Messages and Parameters

CallStatus

Transfer/Conferencing Messages

Table 39: RetrieveCall Message

. . Optional/
Message Direction Parameter Name Required
RetrieveCall IVR to IVR Server | ExtnsEx Optional

This message is sent by the IVR Server to inform the IVR of certain call
events. The list of possible events are alternatives. Only one parameter from
this list appears in any message.

See Table 40 for a complete list of message parameters.

Table 40: CallStatus Message

Message

Parameter

Direction Optional/Required

Name Value

CallStatus

IVR Server to IVR

Event Dialing
Ringing
Established
Retrieved
Busy

Held
ConfPartyAdd
ConfPartyDel
XferComp lete

Required

Released

CallError

Developer’s Guide

This message is sent by the IVR Server to inform the IVR that an error
occurred during the setup of a transfer or a conference call.

Errors related to agent control activities will be represented by the
AgentControl or the NotAl Lowed indication. When the error is due to an
EventError, the TLibErrCode will be populated with AttributeErrorCode and
the type will be AgentControl. NotAlLlowed will be used exclusively when
attempting to control a server controlled port. The user supplied ReqId will be
returned in the error.

See Table 41 on page 88 for a complete list of message parameters.

87

Chapter 5: IVR XML Protocol Messages and Parameters

Table 41: CallError Message

Call Information Messages

Message

Direction

Parameter

Name

Value

Optional/Required

CallError

IVR Server to IVR

FailedReq

Unknown
NoSuchCall
OneStepXfer
OneStepConf
InitConf
CompleteConf
InitXfer
CompleteXfer
RetrieveCall
MakeCall
AgentControl
NotAl lowed

Required

TLibErrCode

Optional

Reqld

Optional

Call Information Messages

These messages request data attached to the call and return the corresponding

CallinfoReq

CallinfoResp

88

response.

See “CalllnfoResp”, below, for the information this request can produce.

Table 42: CallinfoReq Message

Message

Direction

Parameter Name

Optional/
Required

CalllnfoReq

IVR to IVR Server

The response contains information on all of the listed parameters for which
data has been collected.

IVRSDKISXML%@

Chapter 5: IVR XML Protocol Messages and Parameters

Statistics Messages

Note: The value of the FirstHomeLocation parameter is only returned for
logins with version 3.0 or later of the IServer.dtd file. This attribute
corresponds to T-Library’s AttributeFirstTransferHomeLocation
attribute. See the Voice Platform SDK 7.5 .NET or Java API Reference

for details.

See Table 43 for a complete list of message parameters.

Table 43: CallinfoResp Message

Message Direction Parameter Name gg;isir:zg
ANI Optional
DNIS Optional
CalledNum Optional
Connld Optional
TSCallld Optional
PortDN Optional
PortTrunk Optional

CalllnfoResp IVR Server to IVR
PortQueue Optional
OtherDN Optional
OtherTrunk Optional
OtherQueue Optional
LastEvent (The most Optional
recently recorded
T-Server event.)
FirstHomeLocation Optional

Statistics Messages

The statistics messages enable you to request and receive data on the
CurrNumberWaitingCalls and ExpectedWaitTime statistics. These statistics must
be configured in Stat Server before they can be accessed through the IVR
Server. For instructions on configuring statistics, see “Configuring Stat Server
Statistics” on page 45.

Developer’s Guide

89

Chapter 5: IVR XML Protocol Messages and Parameters Statistics Messages

PeekStatReq

The PeekStatReq message returns the current values for the requested statistics.

See Table 44 for a complete list of message parameters.

Table 44: PeekStatReq Message

Parameter
Message Direction Optional/Required
Name Value
Requestld Required
PeekStatReq | IVR to IVR Server
StatName Required
GetStatReq
The GetStatReq message returns a full report on the requested statistics for the
specified objects (queue, route point, group of queues).
See Table 45 for a complete list of message parameters.
Table 45: GetStatReq Message
. . Optional/
Message Direction Parameter Name Required
Requestld Required
ServerName Required
GetStatReq IVR to IVR Server| StatType Required
Objectld Required
ObjectType Required
StatResp

Supplies the response to the PeekStatReq and GetStatReq messages.

See Table 46 on page 91 for a complete list of message parameters.

90 IVR SDK 7.5 XML @

Chapter 5: IVR XML Protocol Messages and Parameters

Table 46: StatResp Message

User Data Messages

Parameter
Message Direction Optional/Required
Name Value
Requestld Required
ResultCode Success Required
StatResp IVR Server to IVR NoSuchStat
MiscError
Result Optional

User Data Messages

These messages enable you to access and control data about the actions
performed by callers.

UDataGet

UDataSet

Developer’s Guide

Requests the values for existing keys. The keys to retrieve should be entered in
a colon-separated list. This use of colons as separators is the reason that colons
cannot be used as a part of a key name.

See Table 47 for a complete list of message parameters.

Table 47: UDataGet Message

. . Optional/
Message Direction Parameter Name Required
Requestld Required
UDataGet IVR to IVR Server
Keys Required

This message enables you to add or change (replace) user data keys.

See Table 48 on page 92 for a complete list of message parameters.

91

Chapter 5: IVR XML Protocol Messages and Parameters

Table 48: UDataSet Message

User Data Messages

Parameter
Message Direction Optional/Required
Name Value

Requestld Required

Acti Add Requi
UDataSet IVR to IVR Server ction equired

Replace
UDataEx Optional
UDataDel

Table 49: UDataDel Message

This message allows you to delete one or all user data keys.

See Table 49 for a complete list of message parameters.

Parameter
Message Direction Optional/Required
Name Value
Requestld Required
Acti DeleteAll Required
UDataDel | IVR to IVR Server cHon eduire
DeleteKey
Key Optional
UDataResp
This message contains the response to the previous user data messages. The
responses for UDataSet and UDataDel indicate either success or, if failure, the
reason for the failure.
The response for a successful UDataGet includes the values for the requested
keys.
See Table 50 on page 93 for a complete list of message parameters.
92 IVR SDK 7.5 XML @

Chapter 5: IVR XML Protocol Messages and Parameters Outbound Messages

Table 50: UDataResp Message

Parameter
Message Direction Optional/Required
Name Value
Requestld Required
Result Success Required
NoSuchCall
UDataResp | IVR Server to IVR NoMatch
FeatureNotSupported
MiscError
UDataEx Optional

Outbound Messages

DialOutRegistry

Sent from the IVR to IVR Server, this message controls registrations for
outbound DNs. A client may register for one DN (Command="Add"), deregister a
single DN (Command="Remove") or deregister all DNs (Command="RemoveALL").
Other than the case of RemoveAl L, the DN field is required. See
“DialOutRegistryResp” below for proper responses.

See Table 51 for a complete list of message parameters.

Table 51: Dial Out Registry Message

Parameter
Message Direction Optional/Required
Name Value
Command Add Required
Remove
DialOutRegistry IVR to IVR Server RemoveAll
DN Optional

DialOutRegistryResp
Sent from IVR Server to the IVR, this message returns information about the

related DialOutRegistry message. ConfigError is returned when the
corresponding DN from the DialOutRegistry message either is not defined in

Developer’s Guide 93

Chapter 5: IVR XML Protocol Messages and Parameters Outbound Messages

the Configuration Layer or is not a route point. MiscFai Lure is currently not
used. Success will be returned in all other cases. When using commands
Remove and RemoveAl L, Success will always be returned.

See Table 52 for a complete list of message parameters.

Table 52: Dial Out Registry Resp Message

Parameter
Message Direction Optional/Required
Name Value
Result MiscFailure
DialOutRegistryResp| IVR Server to IVR ConfigError | Required
Success
DialOut

Sent from IVR Server to the IVR, this message indicates that an outbound call
has been requested. Values from the original TMakePredictiveCall are included
in this message where UDataEx and ExtnsEx are AttributeUserData and
AttributeExtensions, respectively. Also, OrigNunm is retrieved from
AttributeThisDN and DestNum is AttributeOtherDN. TimeToAnswer gives the
amount of time, in seconds, that the IVR should allow for an outbound call to
be answered before a NoAnswer failure should be returned.

See Table 53 for a complete list of message parameters.

Table 53: Dial Out Message

Parameter
Message Direction Optional/Required
Name Value
OrigNum Required
DestNum Required
DialOut IVR Server to IVR
ReflD Required
TimeToAnswer Required

DialOutError

94

Sent from the IVR to IVR Server, this message is sent in response to a Dial0Out
message. This indicates that an outbound call could not be dialed for one of the
reasons specified. These will be converted to EventError towards the T-Library
client with NotSupported being equivalent to TERR_UNSUP_OPER, NoTrunks to
TERR_OUT_OF _SERVICE, and MiscError to TERR_UNKNOWN.

IVR SDK 7.5 XML @

Chapter 5: IVR XML Protocol Messages and Parameters

Message Parameters

Note: Unlike all other IVR Server messaging elements, DialOut and
DialOutError do not contain a CalLId element. In the case of these
messages, the IVR Server is initiating the call with the driver. As the
driver is responsible for establishing call IDs, the server cannot supply

one.

See Table 54 for a complete list of message parameters.

Table 54: Dial Out Error Message

Parameter
Message Direction Optional/Required
Name Value
Error NotSupported Required
NoTrunks

DialOutError| IVR to IVR Server MiscError

ReflD Required

DialOutlnit

Sent in response to a DialOut message from IVR Server, the DialOutInit
message signifies that an outbound call has been dialed. The message provides
a Callld field that will be used for the remainder of this call (the RefID will no
longer be important). The [VR must also provide the route point or IVR port
that is dialing the call, depending on the operational mode. The Version
parameter is used in the same fashion as NewCal L.

See Table 55 for a complete list of message parameters.

Table 55: Dial Out Init Message

Parameter ;
Message Direction ggt'ﬁi'::g
Name Value 9
RefID Required
DialOutlnit | IVR to IVR Server | v oo 2.0 Optional
3.0

Message Parameters

These parameters are composite types based on List and Node. You can create
a list containing a string of UDataEx or ExtnsEx values. See the DTD (in the A,

Developer’s Guide

“The IVR Server DTD,” on page 177) for details.

95

Chapter 5: IVR XML Protocol Messages and Parameters Message Parameters

UDataEx

ExtnsEx

96

The previously used UserData tag is considered deprecated, but is supported for
backward compatibility. Any message that had UserData now accepts the new
form, UDataEx.

The previously used Extensions tag is considered deprecated, but is supported
for backward compatibility. Any message that had Extensions now accepts the
new form, ExtnsEx.

IVR SDK 7.5 XML @

S

GENESYS

AN ALCATEL COMPANY

Chapter

Using the IVR XML
Protocol: Examples

This chapter presents instructions and examples of XML messages showing
how to write code for a selection of interaction scenarios. The samples include
the following:

« GLI Header, page 97

« Call-Scenario Examples, page 99

« A Typical Call Flow, page 100

« Routing, page 106

- Call Treatment Operation, page 110

+ MakeCall Operation, page 112

+ One-Step Conference Operation, page 114
« Conference Consult Operation, page 116

+ Transfer to Remote Site Operation, page 121
« One-Step Transfer Operation, page 123

+ Transfer Consult Operation, page 125

« Agent Login Interface, page 130

« Outbound Dialing, page 136

GLI Header

Use the code examples in this section to define and insert the GLI header.

Given a pointer to the XML character string to

send = pSnd

with

Length = ulen

a new buffer is allocated with pointer pNewBuf which will contain the header
information.

Developer’s Guide 97

Chapter 6: Using the IVR XML Protocol: Examples GLI Header

98

The socket write is done with pNewBuf and length newLen.

Header File

The following C-code example is from a header file that defines the GLI
header and msg types:

#ifdef GLI_VERSION_1

#define GLI_VERSION1

#else

#define GLI_VERSIONZ

#endif

#

#define GLI_DEFAULT_APPO

static unsigned char GliHeaderData[GLI_HEADER_LENGTH]= {0x0,
0x3, 0x0, 0x2, GLI_VERSION, GLI_DEFAULT_APP};

#define GLI_HEADER_LENGTH 6

Adding the Header to the XML Code

The following example is from the coC_send () function, which adds the GLI
header to the XML code and does the socket write.
PBYTE pNewBuf;

unsigned short newlLen;

unsigned short newLenData;

unsigned short htons_newLen;

newLen = ulLen+GLI_HEADER_LENGTH;

if ((pNewBuf=(PBYTE)malloc(newLen)) == NULL)
{ /* Failure. */

prn(WFL_"malloc() for memdup() failure!");
return FALSE; /* Failure. */

}

newLenData = newlLen-4;

htons_newLen = htons(newLenData);

memcpy ((void *)8&GLliHeaderDatal2], (const
void*)&htons_newLen, sizeof (htons_newLen));
memcpy ((void*)pNewBuf, (const
void*)&GliHeaderData, GLI_HEADER_LENGTH);
memcpy (pNewBuf+GLI_HEADER_LENGTH, pSnd, uLen);

Enabling the IVR Server Debug

Use the Configuration Layer to enable the IVR Server debug. In the
Application object for the T-Server that connects to the IVR Server, on the
Options tab, add a section named pgf-debug. Then add the following key-value
pair to that section:

Key: debug

Value: default:ALL

IVR SDK 7.5 XML @

Chapter 6: Using the IVR XML Protocol: Examples Call-Scenario Examples

Call-Scenario Examples

The remainder of this chapter presents several representative call scenarios.
The description for each kind of call contains:

* A graphic showing the request-response interaction for the entire call flow.

* A step-by-step breakdown. Each step includes:
+ A sample XML message that you can use as a model or starting point
for your application.
+ An explanation that points out key elements and parameters, defines
certain terms, and, when necessary, explains the logic of the Genesys
IVR XML protocol as it relates to the particular interaction type.

Interaction Format

Developer’s Guide

As the call flows demonstrate, the conversation between the IVR, mediated
through your client IVR driver application, and the Genesys IVR Server tends
to follow a request-response sequence.

Note: The call flows included in this chapter are examples. The actual call
flows depend on your routing strategy and may differ from the call
flows given here.

For help understanding the call flow logic, see Chapter 3, which presents all
state-to-state transitions and the triggers that initiate them.

Interaction Example

The RouteRequest and RouteResponse message pair provides a good example of
the request-response sequence.

Note: This example pertains to a CallControlMode=Genesys environment.

1. After the IVR receives an incoming call, it prompts your client application
to send a NewCal L message to Genesys IVR Server. This message contains
the CallID that will be used throughout the entire transaction.

2. IVR Server returns the appropriate call status messages,
CallStatus(Ringing) and CallStatus(Established), to the client IVR
driver application which then forwards them to the IVR.

3. When the IVR has processed the call, it sends a second message, via the
client IVR driver application, asking IVR Server how to route the call. IVR
Server then passes the request on to the Genesys Universal Routing Server
(URS). The message may include attached information, such as Customer-
Entered Data (CED).

99

Chapter 6: Using the IVR XML Protocol: Examples A Typical Call Flow

4. IVR Server sends back the RouteResponse message which it receives from
URS. This message indicates the RouteType, which is the method of
routing used to send the call to an agent (Default, Normal, and so on).

Further Information

* For a complete set of call flow diagrams, see Chapter 4.
* For documentation of all messages and parameters, see Chapter 5.

* For a complete text of the IServer.dtd file, see the A, “The IVR Server
DTD,” on page 177.

A Typical Call Flow

The following call flow, shown in Figure 26, demonstrates a basic, commonly-
encountered type of interaction.

IVR IVR
Driver Server
NewCall (Network) >
< CallStatus (Ringing)
< CallStatus (Established)
CallinfoReq q
< CallinfoResp
InitXfer q
< CallStatus (Held)
< CallStatus (Dialing)
< CallStatus (Established)
CompleteXfer >
< CallStatus (XferComplete)
EndCall q

Figure 26: Typical Call Flow

The sections below include the code needed to create each step of this
interaction, with explanations of key elements and parameters for each.

100 IVR SDK 7.5 XML @

Chapter 6: Using the IVR XML Protocol: Examples A Typical Call Flow

NewCall

IVR IVR
Driver Server

‘ NewCall (Networ,

Figure 27: NewCall Message

<{?xml version='1.0" encoding='is0-8859-1'?>
{IDOCTYPE GctiMsg SYSTEM 'IServer.dtd')
{GctiMsg)
{CallId>41</Callld>
{NewCall CallControlMode="'Network' Version='3.0')
{CalledNum»1</CalledNum>
<{DNIS>5550700</DNIS)>
CANI>3432232</ANI)
{/NewCall>
{/GectiMsg>

Comments

The IVR receives the incoming call and sends the CallID to the client
application, which uses the format shown above to transfer the information to
IVR Server. The CalLID remains the same during all phases of the interaction.

CallControlMode is a required parameter. The values are Genesys or Network.
The CallControlMode parameter determines whether URS will control this call
(CallControlMode=6enesys) or the IVR will control this call
(CallControlMode=Network).

Version 3.0 indicates the current iteration of the protocol, as defined in the
IServer.dtd file on your Genesys IVR CD-ROM.

CalledNum, with a value of 1, is the IVR port configured in the Configuration
Layer, under the IVR which took the call.

Note: The CalledNum is only a port number when dealing with In-Front or
Behind mode.

This example shows only two of the optional parameters for this message, DNIS
and ANI. For a complete list, see “NewCall” on page 76.

Developer’s Guide 101

Chapter 6: Using the IVR XML Protocol: Examples A Typical Call Flow

CallStatus(Ringing) and CallStatus(Established) Messages

IVR IVR
Driver Server

CallStatus (Ringing)
CallStatus (Establishe)

[oX
~

Figure 28: CallStatus(Ringing) and CallStatus(Established) Messages

<{?xml version='1.0" encoding='is0-8859-1'?>
{IDOCTYPE GctiMsg SYSTEM 'IServer.dtd')
{GctiMsg)

{Callld>41</Callld>

{CallStatus Event='Dialing'/>
{/GctiMsg>
{--1 Next CallStatus message --)
<{?xml version='1.0" encoding='is0-8859-1'?>
{IDOCTYPE GctiMsg SYSTEM 'IServer.dtd')
{GctiMsg>

CallId>41</Callld>

{CallStatus Event='Established'/>
{/GectiMsg>

Comments

CallStatus has one required parameter, Event, which can have one of a
number of values. For a complete list, see “CallStatus” on page 87.

This example shows the Cal LlStatus (Ringing) and CallStatus (Established)
events, which follow a NewCal Ll message when in Network mode. The
CallStatus (Established) message indicates that the IVR can initiate the next
step in the call flow.

CallinfoReq and CallinfoResp Messages

IVR IVR
Driver Server
| CallinfoReq
}4 CallInfoResp >‘
|

Figure 29: CallinfoReq and CallinfoResp

{--1 The Call Info Request --)
<{?xml version='1.0" encoding='is0-8859-1'?>

102 IVR SDK 7.5 XML @

Chapter 6: Using the IVR XML Protocol: Examples A Typical Call Flow

InitXfer

Developer’s Guide

{IDOCTYPE GctiMsg SYSTEM 'IServer.dtd')
<GctiMsg>

CallId>41</Callld>

{CallInfoReq />
{/GctiMsg>
{--! The Call Info Response --)
<{?xml version='1.0" encoding='is0-8859-1'?>
< IDOCTYPE GctiMsg SYSTEM 'IServer.dtd')
{GctiMsg)

CallId>41</Callld>

{CallInfoResp DNIS='5550700' ANI='3432232' />

{/GctiMsg>

Comments

All CallInfoResp parameters are optional (implied). Whatever information is
available from T-Server is supplied.

For a complete list of CallInfoResp parameters, see “CallInfoResp” on
page 88.

IVR IVR
Driver Server

‘ InitXfer

Figure 30: InitXfer Message

<{?xml version='1.0" encoding='is0-8859-1'?>
{IDOCTYPE GctiMsg SYSTEM 'IServer.dtd')
{GctiMsg>

<CallId>41</Callld>

{InitXfer DestDN='5550800'/>
{/GctiMsg>

Comments

You have the option to add user data and extension information to the InitXfer
message if desired. To do so, use the UDataEx or ExtnsEx parameter.

DestDN is a required parameter for the InitXfer message.

For a full list of InitXfer message parameters, see “InitXfer” on page 85. See
also InitXfer as used in “Transfer Consult Operation” on page 125.

103

Chapter 6: Using the IVR XML Protocol: Examples A Typical Call Flow

CallStatus(Held), CallStatus(Dialing), and
CallStatus(Established)

104

IVR IVR
Driver Server

< CallStatus (Held)

CallStatus (Dialing)

<

< CallStatus (Established)

Figure 31: CallStatus(Held), CallStatus(Dialing) and CallStatus(Established)
Messages

<?xml version='1.0" encoding='is0-8859-1'?>
{IDOCTYPE GctiMsg SYSTEM 'IServer.dtd')
GetiMsg)

{Callld>41</Callld>

{CallStatus Event="Held'/>
{/GctiMsg>
{--1 Next CallStatus message --)
<{?xml version='1.0" encoding='is0-8859-1'?>
{IDOCTYPE GctiMsg SYSTEM 'IServer.dtd')
{GctiMsg>

CallId>41</Callld>

{CallStatus Event='Dialing'/>
{/GctiMsg>
{--1 Next CallStatus message -->
<{?xml version='1.0" encoding='is0-8859-1'?>
{IDOCTYPE GctiMsg SYSTEM 'IServer.dtd')
<GctiMsg>

{CallId>41</Callld>

{CallStatus Event='Established'/>
{/GctiMsg>

Comments

These messages tell the IVR, via the client IVR driver application, what is
happening to the call. CallStatus (Held) refers to the original call, while the
CallStatus(Established) indicate the progress in opening a new call to the
transfer destination.

For a complete list of Cal LStatus event parameters, see “CallStatus” on
page 87.

IVR SDK 7.5 XML @

Chapter 6: Using the IVR XML Protocol: Examples A Typical Call Flow

CompleteXfer

IVR IVR
Driver Server

‘ CompleteXfer

Figure 32: CompleteXfer Message

<{?xml version='1.0" encoding='is0-8859-1'?>
{IDOCTYPE GctiMsg SYSTEM 'IServer.dtd')
{GctiMsg>

CallId>41</Callld>

{Comp LeteXfer/>
{/GectiMsg>

Comments

The IVR sends the Comp LeteXfer message after notification that the new call to
the transfer destination has been established. Comp LeteXfer indicates that the
original call, which has been on hold, should be connected to the transfer
destination.

Comp LeteXfer has no required parameters. For a complete list of CompleteXfer
parameters, see “CompleteXfer” on page 86.

CallStatus(XferComplete)

Developer’s Guide

IVR IVR
Driver Server

CallStatus(XferCompIetL:)

Figure 33: CallStatus(XferComplete) Message

<?xml version='1.0" encoding='is0-8859-1'?>
< IDOCTYPE GctiMsg SYSTEM 'IServer.dtd')
(GetiMsgd

{CallId>41<{/Callld>

{CallStatus Event='XferComplete'/>
{/GectiMsg>

105

Chapter 6: Using the IVR XML Protocol: Examples Routing

EndCall

Comments

The Genesys IVR Server sends the CalLStatus (XferCompLlete) message to the
IVR, via the client IVR driver application, when the transfer has been
successfully accomplished.

For a complete list of CallStatus event parameters, see “CallStatus” on
page 87.

IVR IVR
Driver Server

‘ EndCall

Figure 34: EndCall Message

<?xml version="1.0" encoding="is0-8859-1"?)
<IDOCTYPE GctiMsg SYSTEM "IServer.dtd")
{GctiMsg>
<CallId>IVR_SYSy1130y261</Callld)
{EndCall EndCause="Normal")
<ExtnsEx)
{Node Name="GCTIActiveRelease" Type="Str" Val="false" />
</ExtnsEx>
<{/EndCall>
{/GctiMsg>

Comments

The EndCause attribute is required for the EndCal L message. This example uses
the GCTIActiveRe lease parameter. For details about its use and a complete list
of EndCause parameters, see “EndCall” on page 79.

Routing

106

Figure 35 on page 107 shows the complete call flow for a call routed by URS,
contacted through the Genesys IVR Server.

IVR SDK 7.5 XML @

Chapter 6: Using the IVR XML Protocol: Examples Routing

IVR IVR
Driver Server
NewCall (Network)
>
CallStatus(Dialing)
-
CallStatus(Established)
¢
RouteRequest
>
RouteResponse
-
Connected
>
EndCall
>

Figure 35: Routing Call Flow

The sections below include only code for steps of this interaction that have not
yet been presented.

RouteRequest

IVR IVR
Driver Server
| RouteRequest

Figure 36: RouteRequest Message

<{?xml version='1.0" encoding='is0-8859-1'?>
{IDOCTYPE GctiMsg SYSTEM 'IServer.dtd')
{GctiMsg)

{Callld>12<{/Callld>

<RouteRequest RouteDN='5550700")

{CED>1442914432</CED>

{/RouteRequest)

{/GctiMsg>

Developer’s Guide 107

Chapter 6: Using the IVR XML Protocol: Examples Routing

Comments

If you are using IVR In-Front or [IVR Behind, RouteDN is a required parameter
for the RouteRequest message. It is optional only if you are using IVR Network
mode.

This RouteRequest sample includes optional Customer-Entered Data (CED),
which can be used in the routing strategy.

See “RouteRequest” on page 77 for further information about this message.

RouteResponse
IVR IVR
Driver Server

RouteResponse

Figure 37: RouteResponse Message

<{?xml version='1.0" encoding='is0-8859-1'?>
{IDOCTYPE GctiMsg SYSTEM 'IServer.dtd')
{GctiMsg>
<CallId>12</Callld>
{RouteResponse RouteType='Normal')
{Dest»5550700</Dest)
<ExtnsEx>
{Node Name='CUSTOMER_ID' Type='Str' Val='Test'/>
{/ExtnsEx>
{/RouteResponse)
{/GctiMsg>

Comments

The RouteType attribute is required. See “RouteResponse” on page 78 for a
complete list of Route Types.

This sample XML message shows the use of the optional ExtnsEx parameter
using the Node attribute. This attribute requires Name, Type, and Val values. For
more on ExtnsEx, see “ExtnsEx” on page 96.

108 IVR SDK 7.5 XML @

Chapter 6: Using the IVR XML Protocol: Examples Routing

Connected

IVR IVR
Driver Server
| Connected

Figure 38: Connected Message

<{?xml version='1.0" encoding='is0-8859-1'?>
{IDOCTYPE GctiMsg SYSTEM 'IServer.dtd')
{GctiMsg)

{CallId>12</Callld>

{Connected/>
{/GctiMsg>

Comments

Connected has only one parameter, the optional parameter ExtnsEx.

Developer’s Guide 109

Chapter 6: Using the IVR XML Protocol: Examples

Call Treatment Operation

Call Treatment Operation

TreatCall

110

IVR IVR
Driver Server
NewCall (Network)
q
RouteRequest
>
CallStatus(Dialing)
¢
CallStatus(Established)
.
TreatCall
<
TreatStatus(Started)
>
TreatStatus(Completed)
>
RouteResponse
.
Connected
>
EndCall
>

Figure 39: Call Treatment Call Flow

The call treatment call flow uses the same basic elements as the previous
examples, with the addition of messages controlling a call treatment

application.
IVR IVR
Driver Server
TreatCall

Figure 40: TreatCall Message

IVR SDK 7.5 XML @

Chapter 6: Using the IVR XML Protocol: Examples Call Treatment Operation

<{?xml version='1.0" encoding='is0-8859-1'?>
{IDOCTYPE GctiMsg SYSTEM 'IServer.dtd')
{GctiMsg>
{CallId»3</Callld>
{TreatCall Type='PlayApplication')
{Parameters>
{Node Name='APP_ID' Type='Int' Val='1"'/)
{Node Name='LANGUAGE' Type='Str' Val="English(US)'/>
{/Parameters)
{/TreatCall>
{/GctiMsg>

Comments

The Type parameter is required. The other parameters are optional. The content
list for the optional parameters depends on the call treatment type. In this
example, the treatment type is PLayApplication and the parameters identify
the application and indicate its language.

For all TreatCal l parameters, see “TreatCall” on page 80.

TreatStatus(Started) and TreatStatus(Completed)

Developer’s Guide

IVR IVR
Driver Server
TreatStatus(Started)

TreatStatus(Completed)

Figure 41: TreatStatus(Started) and TreatStatus(Completed) Messages

{--1 TreatStatus(Started) Message -->
<?xml version="1.0" encoding="is0-8859-1"?)
<IDOCTYPE GctiMsg SYSTEM "IServer.dtd")
GetiMsgd

{CallId>3</Callld>

{TreatStatus Status="Started")<{/TreatStatus)
{/GectiMsg>
{--1 TreatStatus(Completed) Message --»
{?xml version="1.0" encoding="is0-8859-1"?>
{IDOCTYPE GctiMsg SYSTEM "IServer.dtd")
{GctiMsg)

{CallId>3</Callld>

{TreatStatus Status="Completed")>{/TreatStatus)
{/GctiMsg>

1M

Chapter 6: Using the IVR XML Protocol: Examples

Comments

MakeCall Operation

The required parameters for TreatStatus are Callld and Status. For available

optional parameters, see “TreatStatus” on page 80.

MakeCall Operation

A MakeCall operation is one in which the IVR initiates the call, which can then
be transferred after the call is answered. The call flow in Figure 42, below,
shows the interaction sequence for the MakeCall operation, which would then
be followed by whatever further operations are appropriate.

MakeCall

112

IVR VR

Driver Server

MakeCall

>
CallStatus(Dialing)

<

CallStatus(Established)
)

Figure 42: Call Flow for the MakeCall Operation

IVR IVR

Driver Server
| MakeCall

Figure 43: MakeCall Message

<{?xml version='1.0" encoding="'is0-8859-1'?>
{IDOCTYPE GctiMsg SYSTEM 'IServer.dtd')
GetiMsg)

{CallId>41<{/Callld>

{MakeCall OrigNum='5550700"' DestNum='3432232"'/>

{/GctiMsg>

IVR SDK 7.5 XML @

Chapter 6: Using the IVR XML Protocol: Examples MakeCall Operation

Comments

Both 0rigNum and DestNum are required parameters. MakeCall has no other
parameters.

CallStatus(Dialing)

VR VR
Driver Server
CallStatus(Dialing)

Figure 44: CallStatus(Dialing) Message

<{?xml version='1.0" encoding='is0-8859-1'?>
{IDOCTYPE GctiMsg SYSTEM 'IServer.dtd')
{GctiMsg>

CallId>41</Callld>

{CallStatus Event='Dialing'/>
{/GctiMsg>

Comments

CallStatus has one required parameter, Event, which can have one of a
number of values. For a complete list, see “CallStatus” on page 87.

CallStatus (Established)

IVR IVR
Driver Server

CallStatus(Established)

Figure 45: CallStatus(Established) Message

<?xml version='1.0" encoding='is0-8859-1'?>
{IDOCTYPE GctiMsg SYSTEM 'IServer.dtd')
GetiMsg)

{CallId>41<{/Callld>

{CallStatus Event="Established'/)
{/GectiMsg>

Developer’s Guide 113

Chapter 6: Using the IVR XML Protocol: Examples One-Step Conference Operation

Comments

Established is also a valid value for the required CallStatus parameter, Event.
For a complete list, see “CallStatus” on page 87.

One-Step Conference Operation

IVR IVR
Driver
NewCall (Network) Server
>
CallStatus(Dialing)
N
CallStatus(Established
N
RouteRequest
g
RouteResponse
N
OneStepConf
CallStatus(ConfPartyAdd)
N
EndCall
g

Figure 46: One-Step Conference Call Flow

One-step conferences enable immediate conferencing of active calls with
destination DNs as quickly as the PBX can act. This feature can be used for
chat and e-mail as well as calls.

Note: Some switches do not support this feature. If your switch does not
support one-step transfers, you receive an Unsupported Operation error
message.

114 IVR SDK 7.5 XML @

Chapter 6: Using the IVR XML Protocol: Examples One-Step Conference Operation

OneStepConf

IVR IVR

Driver Server
| OneStepConf»‘

Figure 47: OneStepConf Message

{?xml version='1.0" encoding='is0-8859-1'?>
{IDOCTYPE GctiMsg SYSTEM 'IServer.dtd')
<GctiMsg>

{Callld>7</Callld>

{OneStepConf DestDN='5550800'/>
{/GctiMsg>

Comments

DestDN is a required parameter. For optional parameters, see “OneStepConf” on
page 85.

CallStatus(ConfPartyAdd)

IVR IVR
Driver Server

CallStatus(CoanartyAdc')

Figure 48: CallStatus (ConfPartyAdd) Message

<{?xml version='1.0" encoding='is0-8859-1'?>
{IDOCTYPE GctiMsg SYSTEM 'IServer.dtd')
{GctiMsg>

<CallId)7</Callld>

{CallStatus Event='ConfPartyAdd'/>
{/GctiMsg>

Comments

ConfPartyAdd is a valid value for the CallStatus message’s required Event
parameter.

Developer’s Guide 115

Chapter 6: Using the IVR XML Protocol: Examples Conference Consult Operation

Conference Consult Operation

116

IVR IVR
Driver Server
NewCall (Network)
>
CallStatus(Dialing)
)
CallStatus(Established)
-
RouteRequest
>
RouteResponse
<
InitConf
>
CallStatus(Held)
-
CallStatus(Dialing)
-
CallStatus(Established)
-
CompleteConf
>
CallStatus(Retrieved)
<
CallStatus(ConfPartyAdd)
-
EndCall
>

Figure 49: Conference Consult Call Flow

The Conference Consult interaction sequence enables more complex
conferencing scenarios than one-step conferencing. Instead of the two calls
joining as soon as the PBX can accomplish it, the initial call is placed on hold,
and a second call is opened to the party that should be conferenced in. Only
after the second call is established is it conferenced with the first call.

IVR SDK 7.5 XML @

Chapter 6: Using the IVR XML Protocol: Examples Conference Consult Operation

InitConf
IVR IVR
Driver Server
| InitConf
Figure 50: InitConf Message
{?xml version='1.0" encoding='is0-8859-1'?>
{IDOCTYPE GctiMsg SYSTEM 'IServer.dtd')
{GctiMsg>
{CallId»3</Callld>
<{InitConf DestDN='5550800'/>
{/GctiMsg>
Comments
DestDN is a required parameter for the InitConf message. For optional
parameters, see “InitConf” on page 85.
CallStatus(Held)
IVR IVR
Driver Server

Developer’s Guide

CallStatus(Held
) |

Figure 51: CallStatus(Held) Message

{?xml version='1.0" encoding='is0-8859-1'?>
{IDOCTYPE GctiMsg SYSTEM 'IServer.dtd')
{GctiMsg)

{Callld>3</Callld>

{CallStatus Event="Held'/>
{/GctiMsg>

Comments
Held is a valid value for the CallStatus message’s required Event parameter. In

this case it indicates that the original call has been placed on hold in
preparation for opening a new call to the party to be added to the conference.

117

Chapter 6: Using the IVR XML Protocol: Examples Conference Consult Operation

CallStatus(Dialing)

IVR IVR
Driver Server

CallStatus(Dialing |)

Figure 52: CallStatus(Dialing) Message

<{?xml version='1.0" encoding="'is0-8859-1'?>
{IDOCTYPE GctiMsg SYSTEM 'IServer.dtd')
{GctiMsg)

{CallId>3</Callld>

{CallStatus Event='Dialing'/>
{/GctiMsg>

Comments

This Cal LStatus message indicates that a new call has been initiated to the
party to be added to the conference.

CallStatus(Established)

118

IVR IVR
Driver Server

CaIIStatus(Estainshe+)

Figure 53: CallStatus(Established) Message

{?xml version='1.0" encoding='is0-8859-1'?>
{IDOCTYPE GctiMsg SYSTEM 'IServer.dtd')
<GctiMsg>

{Callld>3</Callld>

{CallStatus Event='Established'/)
{/GctiMsg>

Comments

This message indicates to the IVR driver and IVR that the additional call has
been established and signals a ready state for completing the conference.

If at this point the call status is Busy, the IVR driver should send a
RetrieveCall message. RetrieveCall signals that the busy call should be
dropped and the original call, which was put on hold, reconnected.

IVR SDK 7.5 XML @

Chapter 6: Using the IVR XML Protocol: Examples Conference Consult Operation

Note: RetrieveCall is used only to reconnect an original call that was placed
on hold after an Initiate Conference or Initiate Transfer message.
RetrieveCall, if used, must occur before the Complete Conference or
Complete Transfer message.

CompleteConf

IVR IVR
Driver Server

| CompleteConf

Figure 54: CompleteConf Message

<{?xml version='1.0" encoding="'is0-8859-1'?>
< IDOCTYPE GctiMsg SYSTEM 'IServer.dtd')
GetiMsg)

{CallId>3</Callld>

{CompleteConf/>
{/GctiMsg>

Comments

CompleteConf, which signals to IVR Server that the calls to be conferenced
should be joined, does not require any parameters. If desired, you can use the
optional ExtnsEx parameter.

CallStatus(Retrieved)

Developer’s Guide

IVR IVR
Driver Server

CallStatus(Retrieveoi)

Figure 55: CallStatus(Retrieved) Message

<{?xml version='1.0" encoding="'is0-8859-1'?>
{IDOCTYPE GctiMsg SYSTEM 'IServer.dtd')
GetiMsg)

{CallId>3</Callld>

{CallStatus Event='Retrieved'/>
{/GectiMsg>

119

Chapter 6: Using the IVR XML Protocol: Examples Conference Consult Operation

Comments

CallStatus(Retrieved) indicates that the original call, which was placed on
hold, has been activated and connected with the newly established call.

Note: CallStatus(Retrieved) and RetrieveCall do not have the same
meaning or functions. See the note regarding RetrieveCall on
page 119 for clarification on the difference between the two messages.

CallStatus(ConfPartyAdd)

120

IVR IVR
Driver Server

CallStatus(CoanartyAdc')

Figure 56: CallStatus(ConfPartyAdd)

<{?xml version='1.0" encoding='is0-8859-1'?>
{IDOCTYPE GctiMsg SYSTEM 'IServer.dtd')
{GctiMsg>

{CallId»3</Callld>

{CallStatus Event='ConfPartyAdd'/>
{/GctiMsg>

Comments

ConfPartyAdd is a valid value for the Cal lStatus message’s required Event
parameter. This status message indicates that the original call has successfully
been reactivated and joined in a conference with the new call.

IVR SDK 7.5 XML @

Chapter 6: Using the IVR XML Protocol: Examples Transfer to Remote Site Operation

Transfer to Remote Site Operation

IVR IVR
Driver Server
NewCall (Network)
>
CallStatus(Ringing)

<

CallStatus(Established
<

RouteRequest
>
RouteResponse
<
AccessNumGet
>
AccessNumResp
<
Connected
>
EndCall
>

Figure 57: Transfer to Remote Site Call Flow

AccessNumGet
IVR IVR
Driver Server

| AccessNumGet

Figure 58: AccessNumGet Message

<{?xml version='1.0" encoding='is0-8859-1'?>
{IDOCTYPE GctiMsg SYSTEM 'IServer.dtd')
{GctiMsg)
<CallId»17</Callld>
{AccessNumGet DestDN='5550700" Location='Switch_X'
XRouteType='Default'/>
{/GctiMsg>

Developer’s Guide 121

Chapter 6: Using the IVR XML Protocol: Examples Transfer to Remote Site Operation

Comments

The DestDN and Location parameters are required. The XRouteType parameter is
optional.

The value for the Location parameter is the name given to the switch when that
Switch object is set up in Configuration Manager. It is used by an external
router.

Additional optional parameters are given in “AccessNumGet” on page 82.

AccessNumResp
IVR IVR
Driver Server
AccessNumResp

122

Figure 59: AccessNumResp Message

{?xml version='1.0" encoding='is0-8859-1'?>
{IDOCTYPE GctiMsg SYSTEM 'IServer.dtd')
{GctiMsg)
<CallId»17</Callld>
{AccessNumResp Action='Get' Result='Success' AccessNum='2200'/>

{/GctiMsg>

Comments

The parameters Action and Result are required for the AccessNumResp message.
The AccessNum parameter is optional. Additional optional parameters are given
in “AccessNumResp” on page 84.

IVR SDK 7.5 XML @

Chapter 6: Using the IVR XML Protocol: Examples

One-Step Transfer Operation

One-Step Transfer Operation

OneStepXfer

Developer’s Guide

IVR IVR

Driver

Server
NewCall (NetworlS
>

CallStatus(Dialing)

N
CallStatus(Established)
N
RouteRequest
RouteResponse
N
OneStepXfer

<

CallStatus(XferComplete)

EndCall

Figure 60: One-Step Transfer Call Flow

>

One-step transfers enable simple, immediate call transfers. They are most often
used during power or predictive dialing when transfer speed is critical.

Not all switches support one-step transfer. If you receive an message indicating
that this feature is not supported, use Consult Transfer instead.

IVR IVR

Drj

ver Server

OneStepXfer

Figure 61: OneStepXfer Message

<{?xml version='1.0" encoding='is0-8859-1'?>
{IDOCTYPE GctiMsg SYSTEM 'IServer.dtd')

{GctiMsg)

{CallId>7</Callld>

{OneStepXfer DestDN='5550800'/)

{/GctiMsg>

123

Chapter 6: Using the IVR XML Protocol: Examples One-Step Transfer Operation

Comments

DestDN is a required parameter for OneStepXfer. Location, UDataEx, and
ExtnsEx are optional parameters for this message. See “OneStepXfer” on
page 84 for details.

CallStatus(XferComplete)

124

IVR IVR
Driver Server

CaIIStatus(XferCompIetIe)

Figure 62: CallStatus(XferComplete)

<{?xml version='1.0" encoding="'is0-8859-1'?>
{IDOCTYPE GctiMsg SYSTEM 'IServer.dtd')
(GetiMsgd

{Callld>7</Callld>

{CallStatus Event='XferComplete'/>
{/GctiMsg>

Comments

The CallStatus (XferComplete) indicates that the transfer has been successfully
accomplished. For a complete list of Cal LStatus messages, see “CallStatus” on
page 87.

IVR SDK 7.5 XML @

Chapter 6: Using the IVR XML Protocol: Examples Transfer Consult Operation

Transfer Consult Operation

Developer’s Guide

IVR IVR
Driver Server
NewCall (Network)
>
CallStatus(Dialing)
<
CallStatus(Established)
<
RouteRequest
>
RouteResponse
<
InitXfer
>
CallStatus(Held)
<
CallStatus(Dialing)
<
CallStatus(Established)
<
CompleteXfer
CallStatus(XferComplete)
<
EndCall
>

Figure 63: XferConsult Call Flow

In contrast with one-step transfer, a consultation transfer requires additional
steps, but has the benefit of avoiding transfers to busy or otherwise unavailable
destinations.

Route Request and Route Response are shown below to provide an example of
the information that is carried into the transfer.

125

Chapter 6: Using the IVR XML Protocol: Examples Transfer Consult Operation

RouteRequest

IVR IVR
Driver Server

| RouteRequest

Figure 64: RouteRequest Message

<{?xml version='1.0" encoding="'is0-8859-1'?>
{IDOCTYPE GctiMsg SYSTEM 'IServer.dtd')
{GctiMsg)

{CallId>3</Callld>

{RouteRequest RouteDN='8000'>

{CED>1442914432</CED>

{/RouteRequest>

{/GectiMsg>

Comments

If you are using IVR In-Front or IVR Behind, RouteDN is a required parameter
for the RouteRequest message. It is optional only if you are using IVR Network
mode.

This RouteRequest sample includes optional Customer-Entered Data (CED)
that can be used in the routing strategy.

See “RouteRequest” on page 77 for further information about this message.

RouteResponse
IVR IVR
Driver Server

126

RouteResponse |

Figure 65: RouteResponse Message

<{?xml version='1.0" encoding='is0-8859-1'?>
{IDOCTYPE GctiMsg SYSTEM 'IServer.dtd')
{GctiMsg>

{CallId»3</Callld>

{RouteResponse RouteType='Normal')

<Dest>5550700</Dest>

{/RouteResponse

{/GectiMsg>

IVR SDK 7.5 XML @

Chapter 6: Using the IVR XML Protocol: Examples Transfer Consult Operation

InitXfer

Comments

The RouteType attribute is required. See “RouteResponse” on page 78 for a
complete list of route types. If the RouteType is Default, the message will
include the default route number.

IVR IVR
Driver Server

‘ InitXfer

Figure 66: InitXfer Message

<{?xml version='1.0" encoding='is0-8859-1'?>
{IDOCTYPE GctiMsg SYSTEM 'IServer.dtd')
{GctiMsg>

{CallId»3</Callld>

{InitXfer DestDN='5550800'/>
{/GctiMsg>

Comments

You have the option to add user data and extension identification to the
InitXfer message if desired. To do so, use the UDataEx or ExtnsEx parameter.

DestDN is a required parameter for the InitXfer message.

For a full list of InitXfer message parameters, see “InitXfer” on page 85. See
also InitXfer as used in “A Typical Call Flow” on page 100.

CallStatus(Held)

Developer’s Guide

IVR IVR
Driver Server

CallStatus(Held
) |

Figure 67: CallStatus(Held) Message

<{?xml version='1.0" encoding='is0-8859-1'?>
{IDOCTYPE GctiMsg SYSTEM 'IServer.dtd')
<GctiMsg>

<Callld>3</Callld>

127

Chapter 6: Using the IVR XML Protocol: Examples Transfer Consult Operation

{CallStatus Event='Held'/>
{/GctiMsg>

Comments

Held is a valid value for the Cal LStatus message’s required Event parameter. In
this case it indicates that the original call has been placed on hold in
preparation for opening a new call to the part to be added to the conference.

CallStatus(Dialing)

IVR IVR
Driver Server
CallStatus(Dialing |)

Figure 68: CallStatus(Dialing) Message

{?xml version='1.0" encoding='is0-8859-1'?>
{IDOCTYPE GctiMsg SYSTEM 'IServer.dtd')
{GctiMsg>

<Callld>3</Callld>

{CallStatus Event='Dialing'/>
{/GctiMsg>

Comments

This Cal LStatus message indicates that a new call has been initiated to the
party that the original caller will be transfered to.

CallStatus(Established)

128

IVR IVR
Driver Server

CallStatus(Established)

Figure 69: CallStatus(Established) Message

<?xml version='1.0" encoding='is0-8859-1'?>
< IDOCTYPE GctiMsg SYSTEM 'IServer.dtd')
{GctiMsg>

<CallId»3</Callld>

{CallStatus Event='Established'/>

IVR SDK 7.5 XML @

Chapter 6: Using the IVR XML Protocol: Examples Transfer Consult Operation

{/GectiMsg>

Comments

This message indicates to the IVR driver and IVR that the additional call has
been established and signals a ready state for completing the transfer.

If at this point the call status is Busy, the IVR driver should send a
RetrieveCall message. RetrieveCall signals that the busy call should be
dropped and the original call, which was put on hold, reconnected.

Note: RetrieveCall is used only to reconnect an original call that was placed
on hold after an InitiateConference or InitXfer message.
RetrieveCall, if used, must occur before the Complete Conference or
Complete Transfer message.

CompleteXfer

Developer’s Guide

IVR IVR
Driver Server

‘ CompleteXfer

Figure 70: CompleteXfer Message

<{?xml version='1.0" encoding='is0-8859-1'?>
{IDOCTYPE GctiMsg SYSTEM 'IServer.dtd')
{GctiMsg>

{CallId»3</Callld>

{CompleteXfer/>
{/GctiMsg>

Comments

The IVR sends the Comp LeteXfer message after notification that the new call to
the transfer destination has been established. Comp LeteXfer indicates that the
original call, which has been on hold, should be connected to the transfer
destination.

Comp LeteXfer has no required parameters. For a complete list of CompleteXfer
parameters, see “CompleteXfer” on page 86.

129

Chapter 6: Using the IVR XML Protocol: Examples Agent Login Interface

CallStatus(XferComplete)

IVR IVR
Driver Server

CaIIStatus(XferCompIet|e)

Figure 71: CallStatus(XferComplete) Message

{?xml version='1.0" encoding='is0-8859-1'?>
{IDOCTYPE GctiMsg SYSTEM 'IServer.dtd')
{GctiMsg)

{CallId»3</Callld>

{CallStatus Event='XferComplete'/>
{/GctiMsg>

Comments

The CallStatus (XferComplete) indicates that the transfer has been
successfully accomplished. For a complete list of Cal LStatus messages, see
“CallStatus” on page 87.

Agent Login Interface

The following sections define an interface model relating to the agent protocol
messages described in Chapter 5, “IVR XML Protocol Messages and
Parameters,” on page 65. This basic model that explains both server and client
responsibilities.

Server Side Model

130

The server in this implementation behaves primarily as a proxy. The server
does provide translation from port numbers to associated DN and T-Server
pairs. However, the server does not maintain any state information on behalf of
either the IVR or the T-Server.

XML messages arriving from the client receive basic validity checks. If those
checks pass, the messages is translated to its T-Library counterpart and
submitted to the relevant T-Server. Supplied reference identifiers are stored for
use in reply messages from the T-Server. Messages received from the T-Server
are translated to XML and sent to any interested clients.

IVR SDK 7.5 XML @

Chapter 6: Using the IVR XML Protocol: Examples Agent Login Interface

Client Side Model

The client software has two primary responsibilities: respecting remote server
state and ensuring desired agent login state. These goals have some overlap.
For instance, when the remote server is either unavailable or disconnected, all
agent control messages will fail. Additionally, you must be aware of the remote
server name in order to correctly process server information events.

You should expect that, upon registering for server monitoring, MonitorInfo
messages can arrive at any time. These messages can occur whenever a
significant event occurs on the remote T-Server. Such significant events may
not be in response to an XML request.

Login
XML Client IVR Server T-Server
. EventLinkConnected
Login
(ServerMonitor=set)
Link Status
Link Status*
EventLinkDisconnected
Link Status <
Login
(ServerMonitor=clear)
EventLinkConnected

Figure 72: Login Message

Login Example Message

{?xml version='1.0" encoding='is0-8859-1'?>
{IDOCTYPE GctiMsg SYSTEM 'IServer.dtd')
{GctiMsg)
{CallId>1</Callld>
{LoginReq Version='4.0" ClientName="IVR_1' ServerMonitor='set' />
{/GctiMsg>

Link Status Example Message

{?xml version='1.0" encoding='is0-8859-1'?>
{IDOCTYPE GctiMsg SYSTEM 'IServer.dtd')
<GctiMsg>

Developer’s Guide 131

Chapter 6: Using the IVR XML Protocol: Examples Agent Login Interface

Port Status

132

{CallId>1</CallId>
{MonitorInfo)
{Server Name='G3_TServer_1' Status='Connected' />
{/MonitorInfo)
{/GctiMsg>

Comments

Figure 72 above details the behavior of the server monitoring features of Login.
When a login request that specifies monitoring is received, the current server
status is sent to the requestor. As a single [IVR may be interested in more than
one T-Server, multiple initial server statuses may be reported. This is indicated
by an asterisk(*). The figure also demonstrates the deregistration process, for
clients who are no longer interested in status updates.

XML Client IVR Server T-Server

TUnregisterAddress R

EventUnregistered

«

Port Status

Figure 73: Port Status Message

Port Status Example Message

<{?xml version='1.0" encoding='is0-8859-1'?>
{IDOCTYPE GctiMsg SYSTEM 'IServer.dtd')
{GctiMsg>
{CallId>1</CallId)
{MonitorInfo)
{Server PortNum='01"' Status='Unavailable' />
{/MonitorInfo)
{/GctiMsg>

Comments

Figure 73 above is an example of generation of the port status update. This can
currently only occur when the configuration is change such that a previously
registered DN is no longer part of the configuration. This occurrence should be
exceptionally rare.

IVR SDK 7.5 XML @

Chapter 6: Using the IVR XML Protocol: Examples Agent Login Interface

Agent State Query

XML Client IVR Server T-Server

AgentQuery

TQueryAddress

EventAddressinfo

Agent Status

Figure 74: Agent Query Message

Agent Query Example Message

{?xml version='1.0" encoding='is0-8859-1'?>
{IDOCTYPE GctiMsg SYSTEM 'IServer.dtd')
{GctiMsgy

{CallId»1</Callld>

{AgentQuery Reqld='705"' PortNum='01" />
{/GctiMsg>

Agent Status Example Message

<{?xml version='1.0" encoding='is0-8859-1'?>
{IDOCTYPE GctiMsg SYSTEM 'IServer.dtd')
{GctiMsg>

<Callld>1</Callld>

{MonitorInfo Reqld="705"'>

<Agent PortNum='01"' Status='Unknown'/)

{/MonitorInfo)

{/GctiMsg>

Comment

Figure 74 above shows an agent state query. This should always be done
before attempting any other control operations. Many T-Servers will produce
errors when attempting to set the agent into a state it is already in. For
example, logging in a logged in agent will often produce EventError.

Developer’s Guide 133

Chapter 6: Using the IVR XML Protocol: Examples

Agent Control

T-Server

XML Client IVR Server
AgentLogin R
TAgentLogin
EventAgentLogin
P Agent Status
EventAgentNotReady
Agent Status <
AgentReady
» TAgentSetReady
EventAgentReady
P Agent Status <
AgentNotReady
»| TAgentSetNotReady R
EventAgentNotReady
Agent Status <
AgentLogout R
TAgentLogout
EventAgentLogout
P Agent Status

Figure 75: Agent Control Message

AgentLogin Example Message

<{?xml version='1.0" encoding='is0-8859-1'?>
{IDOCTYPE GctiMsg SYSTEM 'IServer.dtd')
{GctiMsg>

<CallId»1</Callld>

{AgentLogin Reqld='705' PortNum='01"
Queue='8000"' AgentId='553"
Password="'JoeyTunaFish' />

{/GectiMsg>

AgentLogout Example Message

<{?xml version='1.0" encoding='is0-8859-1'?>
{IDOCTYPE GctiMsg SYSTEM 'IServer.dtd')
GetiMsgd

134

{CallId>1</Callld>

Agent Login Interface

IVR SDK 7.5 XML @

Chapter 6: Using the IVR XML Protocol: Examples Agent Login Interface

Error Case

Developer’s Guide

{AgentLogout Reqld='705' PortNum='01"' Queue='8000"' />
{/GctiMsg>

AgentReady Example Message

{?xml version='1.0" encoding='is0-8859-1'?>
{IDOCTYPE GctiMsg SYSTEM 'IServer.dtd')
{GctiMsg>
{Callld>1</Callld>
{AgentReady Reqld='705' PortNum='01"
Queue='8000' WorkMode='ManualIn' />
{/GctiMsg>

AgentNotReady Example Message

{?xml version='1.0" encoding='is0-8859-1'?>
{IDOCTYPE GctiMsg SYSTEM 'IServer.dtd')
{GctiMsg)
{CallId»1</Callld>
{AgentNotReady Reqld='705' PortNum='01"
Queue='8000' WorkMode='ManualIn' /)
{/GctiMsg>

Comment

Figure 75 above shows the remaining agent control messages. When an
AgentLogin request is sent, two status messages will always follow. The first
indicates the success of the login, the second the readiness state.

XML Client IVR Server T-Server

AgentLogin

TAgentLogin

EventAgentLogin

P Agent Status
EventAgentNotReady
Agent Status <
AgentLogin
TAgentLogin
EventError
CallError <

Figure 76: Error Case Message

135

Chapter 6: Using the IVR XML Protocol: Examples Outbound Dialing

CallError Example Message

<{?xml version='1.0" encoding="'is0-8859-1'?>
<IDOCTYPE GctiMsg SYSTEM 'IServer.dtd')
GetiMsg)
{Callld>1</Callld>
{CallError FailedReq="AgentControl’
TLibErrCode="50"
Reqld='705" />
{/GctiMsg>

Comment

Figure 76 is a possible error case. In this example, the T-Server generates an
error because the agent state is already in the requested state. Certain T-Servers
will behave in this way.

Outbound Dialing

Registration

136

IVR Client IVR Server

DialOutRegistry

DialOutRegistryResp

Figure 77: Registration

Dial Out Registry Example

<{?xml version='1.0" encoding='is0-8859-1'?>
{IDOCTYPE GctiMsg SYSTEM 'IServer.dtd')
{GctiMsg)

{CallId>1</Callld>

{DialOutRegistry Command='Add' DN='1000'/>
{/GctiMsg>

Dial Out Registry Resp Example
<{?xml version='1.0" encoding='is0-8859-1'?>
{IDOCTYPE GctiMsg SYSTEM 'IServer.dtd')
<{GctiMsg>

{Callld>1</Callld>

<DialOutRegistryResp Result='Success'/>
{/GectiMsg>

IVR SDK 7.5 XML @

Chapter 6: Using the IVR XML Protocol: Examples Outbound Dialing

Comment

All outbound registration requests result in a similar response. There is no
specific message related to error cases. See “DialOutRegistryResp” on page 93
for details on error indications.

Request Timeout

Developer’s Guide

IVR Client IVR Server T-library Client
TMakePredictiveCall
P DialOut
© Outbound timer expires
EventError
DialOutlnit
EndCall

Figure 78: Dial Out Request Timeout

Dial Out Example
{?xml version='1.0" encoding='is0-8859-1'?>
{IDOCTYPE GctiMsg SYSTEM 'IServer.dtd')
{GctiMsgy
<DialOut RefID="'19" OrigNum='1000"' DestNum='8435551023'/>
{/GctiMsg>

Comment

Figure 78 above represents cases in which the [IVR does not respond to a
DialOut request. The timer duration is derived from the AttributeTimeout
value supplied in the TMakePredictive call request. A late arriving DialOutInit
is shown for informational purposes.

137

Chapter 6: Using the IVR XML Protocol: Examples Outbound Dialing

Dialer Error

IVR Client IVR Server T-library Client

TMakePredictiveCall

DialOut

DialOutError

EventError

Figure 79: Dial Out Error

Dial Out Error Example
<{?xml version='1.0" encoding='is0-8859-1'?>
{IDOCTYPE GctiMsg SYSTEM 'IServer.dtd')
{GctiMsg>

{DialOutError RefID='19" Error='NoTrunks'/>
{/GcitMsg>

Comment

Figure 79 above deals with DialOut rejection by the IVR. For cases in which
the client cannot or will not make an outbound call, an error is returned.

Connection Failure

138

IVR Client IVR Server T-library Client
TMakePredictiveCall
P DialOut <
DialOutlnit
EventDialing
CallStatus “Dialing”
Failure
EventAbandoned

Figure 80: Connection Failure

Dial Out Init Example
<{?xml version='1.0" encoding='is0-8859-1'?>
<IDOCTYPE GctiMsg SYSTEM 'IServer.dtd')
{GctiMsg>
{DialOutInit RefID="19"'>
{CalledNum>@7</Cal LedNum>

IVR SDK 7.5 XML @

Chapter 6: Using the IVR XML Protocol: Examples

{/DialOutInit)
{/GctiMsg>

Comment

Successful Call Flow

Developer’s Guide

IVR Client

IVR Server

Outbound Dialing

T-library Client

TMakePredictiveCall

DialOut

DialOutlnit

EventDialing

CallStatus “Dialing”

A

CallStatus “Established” -

EventQueued

EventDiverted

EventRinging*

CallStatus “Ringing”

EventEstablished*

P CallStatus “Established”

«

IVR Client

DialOut

Figure 81: Successful In-Front call flow

IVR Server T-library Client

TMakePredictiveCall

DialOutlnit

CallStatus “Dialing”

EventDialing

A

CallStatus “Established”

EventQueued

EventDiverted

EventQueued*

Figure 82: Successful network call flow

Unlike the error case in Figure 79, in Figure 80 above the failure occurs after
the outbound call has been dialed (and thus DialOutInit sent). At this point the
call is over.

139

Chapter 6: Using the IVR XML Protocol: Examples Outbound Dialing

140

Comment

Figure 81 and Figure 82 above show the case of a successful outbound call; the
call is left in a state identical to that which occurs after NewCal L. As such,
routing and other call functions can proceed normally. The events marked with
an asterisk (*) indicate that AttributeThisDN will be potentially different than
in previous T-Library events. This value will be determined based on the
DialOutInit information.

IVR SDK 7.5 XML @

S

GENESYS

AN ALCATEL COMPANY

Part

Part Three: IVR Server
Network Mode

Part Three of this IVR SDK 7.5 XML Developer s Guide provides details about
the state model; information about specific, selected paths through the call
control state machine; and protocol messages used when developing an IVR
Server client that will be used in a Network mode deployment.

The information in Part Three is divided among the following chapters:

e Chapter 7, “IVR Network State Machine Diagrams,” on page 143, contains
state machine diagrams from the viewpoint of an IVR Server deployed in
Network mode.

* Chapter 8, “Network Call Flow Diagrams,” on page 151, provides call
flow diagrams for many common scenarios relevant to Network mode. It is
intended as a reference.

e Chapter 9, “IVR XML Protocol Messages and Parameters,” on page 161,
contains tables showing the parameters for each message, the message
direction, and whether the parameters are required or optional when used
in Network mode.

Developer’s Guide 141

142 IVR SDK 7.5 XML @

S

GENESYS

AN ALCATEL COMPANY

Chapter

IVR Network State Machine
Diagrams

This chapter details the state model to use when developing an IVR Server
client that will be used in a Network mode deployment. This chapter contains
these sections:

« Call Control, page 143

« Call Information, page 147

- Logging, page 148

« Statistics, page 148

« User Data Control, page 149
« Error Responses, page 149

Call Control

The primary state machine for interactions with [VR Server is described below
and illustrated in Figure 83 on page 144. The events shown in the diagram that
are in italics and that start with the by the letters IVR are generated by an
unspecified network event. These are outside the scope of this discussion. All
other events are displayed in bold, and they are named to match the
corresponding IVR Server XML message, detailed in Chapter 9, “IVR XML
Protocol Messages and Parameters,” on page 161. The numbered transitions
related to network indications have the recommended actions explained below.
In cases where the transition is caused by an [IVR Server message, the cause of
the message is discussed instead.

Developer’s Guide 143

Chapter 7: IVR Network State Machine Diagrams Call Control

IVR Connected(8)
RouteRespons¢9)

Call Routed

IVR Canceled(17)

Canceling
Treatment

Cancel(16)

Routing Call

RouteResponsd7) IVR Start Call(2)

IVR Connect Failed(10)\ VR Route Call(1)

IVR Request Instructions(3)
Waiting for ™\ g —
Instructions

TreatCall(11) EndcCall(5)

IVR Not Started(12)
IVR Completed(1 5)\6

TreatCall(13)
IVR Started(14)

Call Started

EndCall4)

Starting
Treatment

IVR End Call(6)

Starting
Treatment

Figure 83: Call Control State Machine

144

This particular state machine must be active, for the following state machines
to be available:

e “Call Information” on page 147

* “Logging” on page 148

* “Statistics” on page 148

o “User Data Control” on page 149

When this state machine is ended, all supplementary state machines will
terminate. Outstanding requests on supplementary state machines may not be
answered after the client indicates that the call is over.

Transition 1: IVR Route Call

This is one of the two forms of indicating that a call has arrived at the network
platform. This form allows the client to indicate that the call has started and
also that Genesys Universal Routing Server should provide routing
instructions. The client informs IVR Server of this occurrence by using the

IVR SDK 7.5 XML @

Chapter 7: IVR Network State Machine Diagrams Call Control

Developer’s Guide

NewCall XML message with CallControlMode set to Genesys. This, in turn,
generates an EventRouteRequest message.

Using this form of new call indication does not provide the same T-Library
event model as using a CalLControlMode of Network. The network mode
indication provides an additional EventQueued message that is not present here.

Transition 2: IVR Start Call

The second of two forms of new call notification, this form indicates that a call
has started, but that no further action is needed. The client informs IVR Server
of this by issuing a NewCall message with CalLControlMode set to Network. An
EventQueued message is generated based upon this message.

Transition 3: IVR Request Instructions

The network platform indicates that it requires instructions from Genesys
Universal Routing Server, via an EventRouteRequest message. A RouteRequest
XML message is submitted to IVR Server at this point.

Transition 4: EndCall

Receiving an EndCall message from IVR Server here will always have the
same EndCallCause: FeatureNotSupported. This indicates that the CalledNum
value specified in the NewCal L message is not a configured route type DN. The
Switch object associated with [VR Server must have all relevant route DNs
configured. In addition, these route DNs must be registered by a T-Library
client, likely Universal Routing Server.

Transition 5: EndCall

In cases where the EndCal LCause is FeatureNotSupported, see the description in
“Transition 4: EndCall” above.

An EndCall message might also be received from IVR Server due to a timeout
when waiting for Universal Routing Server. In the case where Universal
Routing Server does not provide routing or treatment instructions within a
configured period, an EndCal L message will be sent with a cause of Timeout.
The network platform should treat this as an instruction to handle the call using
default routing.

Transition 6: IVR End Call

At any point during a call, the network platform must indicate to IVR Server
that a call has ended. When this occurs, the client sends an EndCall XML
message to I[IVR Server using whichever cause is appropriate.

145

Chapter 7: IVR Network State Machine Diagrams Call Control

146

Transition 7: RouteResponse

Universal Routing Server has indicated, via IVR Server, that the call should be
routed. The routing request received from Universal Routing Server is
packaged in the RouteResponse XML message.

Transition 8: IVR Connected

The network platform has successfully routed the call to the destination. The
client then must send an XML Connected message to IVR Server. This
message will cause an EventRouteUsed message to be sent to Universal Routing
Server, thus ending the running strategy.

Transition 9: RouteResponse

An unsolicited RouteResponse message indicates that reroute has been
requested. The network platform must expect this message at any time after a
call is connected.

Transition 10: IVR Not Connected

The network platform is unable to route the call to the prescribed destination.
The cause of the failure must be provided to IVR Server in an XML Fai Lure
message.

Transition 11: TreatCall

Universal Routing Server (URS) has indicated, via IVR Server, that the call
should be treated by the IVR. The request received from Universal Routing
Server is packaged in the TreatCall XML message.

Transition 12: IVR Not Started

Unable to treat the call as requested by IVR Server, the network platform
indicates the treatment is not running. A TreatStatus message is returned to
IVR Server with Status set to "NotStarted".

Transition 13: TreatCall

Similar to “Transition 11: TreatCall” above, Universal Routing Server has
indicated that the currently running treatment be stopped and a new treatment
be started.

IVR SDK 7.5 XML @

Chapter 7: IVR Network State Machine Diagrams Call Information

Transition 14: IVR Started

The requested treatment has been started by the client. A TreatStatus message
must be sent to IVR Server with Status set to "Started".

Transition 15: IVR Completed

The treatment running in the network is complete and the client needs further
instructions. A TreatStatus message is returned to IVR Server with Status set
to Comp Leted.

Transition 16: Cancel

IVR Server has indicated that a currently running treatment should be
canceled.

Transition 17: IVR Canceled

The network platform has indicated that a request to cancel a running treatment
was successful. A CancelCompleted message is returned to [IVR Server to
indicate that the client is ready for further instructions.

Call Information

Developer’s Guide

At any time during a call, a digest of call information may be requested. This
operation cannot fail; if the specified call exists, [IVR Server will return the call
information in a CalLInfoResp XML message.

IVR Get Call Info

Waiting for
Response

CallinfoResp

O

Figure 84: Call Information State Machine

147

Chapter 7: IVR Network State Machine Diagrams Logging

Logging

The logging functionality of IVR Server does not imply a state model. No
response, if within a running call, will be returned. The provided message is
simply logged at the specified detail level. See “LogMsg” on page 175 for
more information about message parameters.

Statistics

148

The act of requesting statistics primarily requires proper definition of the
statistic in the IVR Server configuration. Assuming that a call has been
properly started and is currently in progress, all requests will receive a
StatResp message from the server. Outside of the scope of a call the error
would be a standard Cal LError message.

IVR Get Statistic
IVR Peek Statistic

Waiting for
Response

StatResp

Figure 85: Statistics State Machine

Due to the simplicity of this state machine, no specific transitions need be
discussed. Refer to the “PeekStatReq” on page 171 and “GetStatReq” on

page 170 message definitions for information on constructing a request. Upon
receiving a valid request the IVR Server will respond with a StatResp message.
These messages should be correlated by the client based upon the RequestId
element, which should be unique for all outstanding requests. Uniqueness of
the RequestId is the responsibility of the network platform.

©

IVR SDK 7.5 XML &=

Chapter 7: IVR Network State Machine Diagrams User Data Control

User Data Control

T-Library user data for a call can be controlled in a limited fashion. Unlike
other modes of operation for IVR Server, no deletion is supported, and only
one form of update is supported.

IVR Update User Data
IVR Query User Data

v

Waiting for
Response

UDataResp

Figure 86: User Data Control State Machine

In the same fashion as the statistics state machine; requests must possess a
unique RequestId. See “UDataGet” on page 172 and “UDataSet” on page 173

for information about request structure.

Error Responses

If at any time a message is received which is in error; a Cal LError message will
be returned. The reasons for this error will be present in the message’s
attributes. See “CallError” on page 174 for details.

Developer’s Guide 149

Chapter 7: IVR Network State Machine Diagrams Error Responses

150 IVR SDK 7.5 XML @

S

GENESYS

AN ALCATEL COMPANY

Chapter

Network Call Flow
Diagrams

This chapter provides detailed information about specific, selected paths
through the call control state machine described in the previous chapter. These
paths have specific relevance to a Network mode deployment. This chapter
contains these sections:

« Overview, page 151

« Simple Routing (Network Control), page 152

- Simple Routing (Genesys Control), page 153

- Failed Routing, page 154

+ Routing Timeout, page 154

« Simple Treatment, page 156

+ Failed Treatment, page 157

« Treatment Interrupted by a Routing Request, page 158
« Treatment Interrupted by Another Treatment, page 159
« Unsolicited Connect, page 160

Overview

The diagrams in this chapter detail the entire call flow, including interaction
with Genesys Universal Routing Server. Since router is a required component
of Network mode IVR Server operation, expect an EndCal L
(EndCause=FeatureNotSupported) message to be returned when Universal
Routing Server is not present.

Developer’s Guide 151

Chapter 8: Network Call Flow Diagrams

Simple Routing (Network Control)

Simple Routing (Network Control)

This call flow demonstrates a simple route request/route response operation.

In this particular call flow the CallControlMode=Network, which introduces an
EventQueued/EventDiverted pair not present when the
CallControlMode=Genesys .

IVR

IVR Driver

IVR Start Call

IVR Request Instructions

IVR Connect

URS

IVR Connected

IVR End Call

IVR Server
NewCall
(CallControlMode=Network)
EventQueued
RouteRequest
EventRouteRequest
RequestRouteCall
RouteResponse
Connected
EventDiverted
EventRouteUsed
EndCall

Figure 87: Simple Routing (Network) Call Flow

152

IVR SDK 7.5 XML @

Chapter 8: Network Call Flow Diagrams Simple Routing (Genesys Control)

Simple Routing (Genesys Control)

This call flow demonstrates a simple route request/route response operation,
where the CallControlMode=Genesys .

IVR IVR Driver IVR Server URS
IVR Route Call NewCall
(CallControlMode=Genesys)
EventRouteRequest
RequestRouteCall
RouteResponse
IVR Connect
IVR Connected
Connected
EventRouteUsed
IVR End Call
EndCall

Figure 88: Simple Routing (Genesys) Call Flow

Developer’s Guide 153

Chapter 8: Network Call Flow Diagrams Failed Routing

Failed Routing

In this example, two key behaviors are documented:
* the ability of the IVR driver to indicate that an error has occurred

* the behavior of EndCall when received prior to Connected

IVR IVR Driver IVR Server URS
IVR Start Call NewCall
(CallControlMode=Network)
EventQueued
IVR Request Instructions =
RouteRequest
EventRouteRequest
RequestRouteCall
RouteResponse
IVR Connect
IVR Connect Failed
Failure
EventError
RequestRouteCall
RouteResponse
IVR Connect
IVR End Call
EndCall
EventAbandoned

Figure 89: Failed Routing Call Flow

Routing Timeout

In cases where Universal Routing Server does not respond to a route request in
a timely fashion an EndCall message is returned to the driver. It is important
that the driver recognize that when EndCause is Timeout, this should be treated
as default routing instructions. However, since IVR Server has ended its call
already, EndCall is necessary to indicate that no further interaction attempt on
the original call ID should be attempted.

154 IVR SDK 7.5 XML @

Chapter 8: Network Call Flow Diagrams Routing Timeout

IVR IVR Driver IVR Server URS
IVR Start Call | NewCall
(CallControlMode=Network)
> EventQueued
IVR Request Instructions N
P RouteRequest
EventRouteRequest

(O Router timer expires

End Call EventRouteUsed
(EndCause=Timeout)

IVR Default Route

[}

Figure 90: Routing Timeout Call Flow

Developer’s Guide 155

Chapter 8: Network Call Flow Diagrams

Simple Treatment

Simple Treatment

Figure 91 on page 156 shows a basic treatment request with routing

IVR

instructions provided after treatment completion.

IVR Driver

IVR Start Call

IVR Request Instructions

NewCall

(CallControlMode=Network)

IVR Server

EventQueued

URS

EventRouteRequest

RequestApplyTreatment

EventTreatmentApplied

EventTreatmentEnd

RequestRouteCall

RouteRequest
TreatCall
IVR Treatment Requested
IVR Started TreatStatus
(Status=Started)
IVR Completed TreatStatus
(Status=Completed)
RouteResponse
IVR Connect
IVR Connected
Connected
IVR End Call
EndCall

EventDiverted

EventRouteUsed

Figure 91: Simple Treatment Call Flow

156

IVR SDK 7.5 XML @

Chapter 8: Network Call Flow Diagrams

Failed Treatment

Failed Treatment

Figure 92 on page 157 depicts that the initial treatment request is not started.

IVR IVR Driver IVR Server URS
IVR Start Call NewCall
(CallControlMode=Network)
EventQueued
IVR Request Instructions
RouteRequest
EventRouteRequest
RequestApplyTreatment
TreatCall
IVR Treatment Requested
IVR Not Started TreatStatus
(Status=NotStarted)
EventTreatmentNotApplied
RequestApplyTreatment
TreatCall
IVR Treatment Requested
IVR Started TreatStatus
(Status=Started)
EventTreatmentApplied
IVR Completed TreatStatus
(Status=Completed)
EventTreatmentEnd
RequestRouteCall
RouteResponse
IVR Connect
IVR Connected
Connected
EventDiverted
EventRouteUsed
IVR End Call
EndCall

Figure 92: Failed Treatment Call Flow

Developer’s Guide

157

Chapter 8: Network Call Flow Diagrams Treatment Interrupted by a Routing Request

Treatment Interrupted by a Routing

Request
When a treatment is running on the network platform, Universal Routing
Server can interrupt this treatment. When this interruption is due to available
routing instructions, the treatment is actively canceled. This example is shown
in Figure 93 on page 158.
IVR IVR Driver IVR Server URS
IVR Start Call NewCall
(CallControlMode=Network)
EventQueued
IVR Request Instructions
RouteRequest
EventRouteRequest
RequestApplyTreatment
TreatCall
IVR Treatment Requested
IVR Started TreatStatus

(Status=Started)

EventTreatmentApplied

RequestRouteCall
Cancel
IVR Cancel Treatment
IVR Canceled
CancelCompleted
RouteResponse
IVR Connect
IVR Connected
Connected
EventDiverted
EventRouteUsed
IVR End Call
EndCall

Figure 93: Treatment Interrupted by a Routing Request Call Flow

158

IVR SDK 7.5 XML @

Chapter 8: Network Call Flow Diagrams Treatment Interrupted by Another Treatment

Treatment Interrupted by Another
Treatment

In contrast to case above, when Universal Routing Server interrupts a
treatment with another, no cancellation request is sent. When this occurs,
notice that messaging related to the currently running treatment is no longer
required. As such, a TreatStatus (Status=Comp Leted) message should not be
sent relating to the interrupted treatment.

IVR IVR Driver IVR Server URS

IVR Start Call NewcCall
(CallControlMode=Network)

EventQueued

IVR Request Instructions

RouteRequest

EventRouteRequest

P RequestApplyTreatment

TreatCall

__ IVR Treatment Requested <

IVR Started TreatStatus
(Status=Started)

EventTreatmentApplied

RequestApplyTreatment
TreatCall <

__IVR Treatment Requested |<

IVR Started TreatStatus
(Status=Started)

EventTreatmentApplied

IVR Completed TreatStatus
(Status=Completed)
”n EventTreatmentEnd
RequestRouteCall
RouteResponse <
B IVR Connect <
IVR Connected
Connected
EventDiverted
EventRouteUsed
IVR End Call
EndCall

Figure 94: Treatment Interrupted by Another Treatment

Developer’s Guide 159

Chapter 8: Network Call Flow Diagrams

Unsolicited Connect

Unsolicited Connect

Also referred to as network reroute, the diagram in Figure 95 on page 160
shows behavior related to previously routed calls requiring a new connection.

IVR

IVR Driver

IVR Start Call

NewCall
(CallControlMode=Network)

IVR Server

URS

EventQueued
IVR Request Instructions
RouteRequest
EventRouteRequest
RequestRouteCall
RouteResponse
IVR Connect
IVR Connected
Connected
EventDiverted
EventRouteUsed
RequestRouteCall
RouteResponse
IVR Connect
IVR Connected
Connected
EventRouteUsed
IVR End Call
EndCall

Figure 95: Unsolicited Connect Call Flow

160

=

IVR SDK 7.5 XML &=

S

GENESYS

AN ALCATEL COMPANY

Chapter

IVR XML Protocol
Messages and Parameters

This chapter presents detailed explanations of the messages and parameters
used by the Genesys IVR XML protocol in a Network mode deployment
situation.

This chapter contains these sections:

« Overview, page 161

« New Call and Call-Routing Messages, page 162

- Call Treatment Messages, page 167

« Call Information Messages, page 168

- Statistics Messages, page 170

« User Data Messages, page 172

« Transfer/Conferencing Messages, page 174

« General Messages, page 175

Overview

All messages processed by IVR Server must have a meaningful identifier.
This CallId field uniquely identifies a particular call that conforms to the state
model described in Chapter 7, “IVR Network State Machine Diagrams,” on
page 143. This parameter is a mandatory part of every XML message. It must
also be unique among all calls that are pending at the server. It is the client’s
responsibility to guarantee this uniqueness, even when multiple clients exist
for the same IVR Server. In parameter tables beginning on Page 163, literal
strings are indicated in bold whereas mapped values are indicated with italics.

This section does not demonstrate actual XML message structure. Parameter,
as a term, is used to indicate either an attribute or entity related to the message
entity. Refer to the IVR Server DTD for structural information.

Developer’s Guide 161

Chapter 9: IVR XML Protocol Messages and Parameters New Call and Call-Routing Messages

Messages that exist in the DTD that are not detailed here either:
* Do not pertain to Network mode—for example, the MakeCall message.

* Are meaningless when used in Network mode— for example, the LoginReg
message.

New Call

NewCall

162

and Call-Routing Messages

These messages are used to start a call, route it, confirm the connection or
indicate failure to connect, and end the call.

Sent from the IVR to IVR Server, this message notifies the server that a call
has arrived at the network platform. This message establishes the call ID that
should will be used throughout the call. Cal ledNum may not have its entirety
mapped to AttributeThisDN. A configuration option may specify that a certain
number of prefix digits be removed. Although "Version" is optional, it defaults
to "1.0". It is recommended that all calls use "2.0" or higher. Using version
"1.0" will disable the list structure used in ExtnsEx and UDataEx. The
deprecated forms of these structures are not covered in this document.

See Table 56 for a complete list of message parameters.

IVR SDK 7.5 XML @

Chapter 9: IVR XML Protocol Messages and Parameters

Table 56: NewCall Message Parameters

New Call and Call-Routing Messages

Parameter
Message Direction Optional/Required
Name Value
CallControlMode | Genesys Required
Network
CalledNum AttributeThisDN Required
Version 1.0 Optional
2.0
3.0
4.0
ANIRestriction CLIP-(Calling Line Reserved for Future
NewCall IVR to IVR Server Identification Use
Presentation)
CLIR-(Calling Line
Identification
Restriction)
DNIS AttributeDNIS Optional
ANI Attribute ANI Optional
UDataEx AttributeExtensions Optional
ExtnsEx AttributeUserData Optional
RouteRequest

Sent from the IVR to IVR Server, this message informs IVR Server that a call
started using NewCall (CalLControlMode=Network) requires instructions from
Universal Routing Server. The RouteDN attribute listed in the DTD is ignored in
network mode. Route requests will be posted against the DN specified in

NewCall.

See Table 57 for a complete list of message parameters.

Developer’s Guide

163

Chapter 9: IVR XML Protocol Messages and Parameters

Table 57: RouteRequest Message Parameters

New Call and Call-Routing Messages

Parameter
Message Direction Optional/Required
Name Value
CED AttributeCollectedDigits | Optional
RouteRequest| IVR to IVR Server| UDataEx| AttributeExtensions Optional
ExtnsEx | AttributeUserData Optional
RouteResponse

Sent from the IVR Server to the IVR, this message notifies the client that the
call should be routed to the specified destination. Dest will be present in cases
where RouteType is not Default. It may or may not be present when default

routing is requested.
See Table 58 for a complete list of message parameters.

Table 58: RouteResponse Message Parameters

Parameter
Message Direction Optional/Required
Name Value
RouteType | Default Required
Normal
Reroute
RerouteAttended
RouteResponse| IVR Server to IVR RerouteConferenced
Dest AttributeOtherDN Optional
ExtnsEx AttributeExtensions Optional
Connected

164

Sent from the IVR to IVR Server, this message indicates that the call has been
delivered to the destination specified in the previous RouteResponse message
from IVR Server. When this message is received by IVR Server, the
corresponding Universal Routing Server strategy will be ended.

See Table 59 for a complete list of message parameters.

IVR SDK 7.5 XML @

Chapter 9: IVR XML Protocol Messages and Parameters

Table 59: Connected Message Parameters

New Call and Call-Routing Messages

Parameter
Message Direction Optional/Required
Name Value
Connected IVR to IVR Server| ExtnsEx AttributeExtensions| Optional

EndCall

Sent from the IVR to IVR Server or from the IVR Server to the IVR, this
message indicates that a call has ended. If the client receives this message from
the server, no expectation should be made regarding outstanding requests on
the related call. An "EndCause" of "Timeout" should be interpreted as a default
handling instruction when sent by IVR Server. A cause of
"FeatureNotSupported" indicates a configuration error.

See Table 60 for a complete list of message parameters.

Table 60: EndCall Message Parameters

Message

Direction

Parameter

Name

Value

Optional/Required

EndCall

IVR Server to IVR

or

IVR to IVR Server

EndCause

Abandoned
FeatureNotSupported
InvalidStateTransition
InvalidVersion

Normal

Resources

Timeout

Required

UDataEx

AttributeUserData

Optional

ExtnsEx

AttributeExtensions

Optional

Developer’s Guide

165

Chapter 9: IVR XML Protocol Messages and Parameters

Failure

New Call and Call-Routing Messages

Sent from the IVR to IVR Server, after receiving routing instructions, this
message indicates that the routing operation failed. This will result in an
EventError being returned to Universal Routing Server.

See Table 61 for a complete li

Table 61: Failure Message Parameters

st of message parameters.

Parameter
Message Direction Optional/Required
Name Value
FailureCause Busy Required
ConnectionFailed
Failure IVR to IVR Server NoAnswer
ExtnsEx AttributeExtensions| Optional

The error code used when sending EventError to Universal Routing Server will
be determined based upon the value of "Fai LureCause". Those particular error

codes are listed in Table 62.

Table 62: Failure Error Codes

FailureCause

T-Library Error Value

AttributeErrorCode

TERR_ORIG DN BUSY | 83

Busy
NoAnswer TERR DN NO ANSWER | 232
ConnectFailed TERR CONN_ATMPT FIL| 234

166

IVR SDK 7.5 XML @

Chapter 9: IVR XML Protocol Messages and Parameters

Call Treatment Messa

ges

Call Treatment Messages

Call treatment messages are used to start and control an external application
that processes a call and which might return data that can then be used to route

TreatCall

the call.

Sent from the IVR Server to the IVR, in response to a RouteRequest, this
message notifies the client that the call should receive the specified treatment.
The Type parameter is converted from the T-Library AttributeTreatmentType

enumeration.

See Table 63 for a complete list of message parameters.

Table 63: TreatCall Message Parameters

Message

Direction

Parameter

Name

Value

Optional/Required

TreatCall

IVR Server to IVR

Type

Busy

CancelCall
CollectDigits
DeleteAnnounce
FasyBusy

IVR

Music

PlayAnnounce
PLlayAnnounceAndDigits
PlayApplication

RAN

RecordAnnouce
RingBack
SetDefaultRoute
Silence

TextToSpeech
TextToSpeechAndDigits
VerifyDigits

Required

ExtnsEx

AttributeExtensions

Optional

Parameters

AttributeTreatmentParms

Optional

Developer’s Guide

167

Chapter 9: IVR XML Protocol Messages and Parameters Call Information Messages

TreatStatus

Sent from the IVR to the IVR Server, this message informs the server of the
progress of a previous treatment request.

See Table 64 for a complete list of message parameters.

Table 64: TreatStatus Message Parameters

Parameter
Message Direction Optional/Required
Name Value
Status Started Required
NotStarted
Comp Leted
TreatStatus | IVR to IVR Server | cgp AttributeCollectedDigits | Optional
ExtnsEx AttributeExtensions Optional
UDataEx AttributeUserData Optional
Cancel
Sent from the IVR Server to the IVR, this message notifies the client that a
currently running treatment should be canceled. This message is only sent
when the cancellation is due to a routing request. This message has no
parameters.
CancelCompleted

Sent from the IVR to the IVR Server, this is the proper response to the Cancel
message, this indicates that the treatment has been cancelled and the network is
ready for routing instructions. This message has no parameters.

Call Information Messages

These messages request data attached to the call and return the corresponding
response.

CallinfoReq

Sent from the IVR to IVR Server, this message requests that call information
be returned to the client. This message has no parameters.

168 IVR SDK 7.5 XML @

Chapter 9: IVR XML Protocol Messages and Parameters

CallinfoResp

Call Information Messages

Sent from the IVR Server to the I[VR, in response to CallInfoReg, this message
contains information related to the listed parameters that have corresponding
data. This information is specifically related to T-Library side attributes,
though in network mode these values are often determined by attributes of the
NewCal L message.

In cases where a call is routed to IVR Server using route type external routing,
the PortDN field will contain the value of AttributeThisDN after being moved to
the route target.

The FirstHomeLocation field will only be present when the call using the
version 3 protocol. See “NewCall” on page 162 for more information.

See Table 65 for a complete list of message parameters.

Table 65: CallinfoResp Message Parameters

Parameter
Message Direction Optional/Required
Name Value

ANI Attribute ANI Optional
CalledNum AttributeThisDN Optional
Connld AttributeConnlD Optional
DNIS AttributeDNIS Optional
FirstHomeLocation | See details above Optional
LastEvent N/A Optional

CalllnfoResp | IVR Server to IVR | OtherDN AttributeOtherDN Optional
OtherQueue AttributeOtherQueue| QOptional
OtherTrunk AttributeOtherTrunk | QOptional
PortDN See details above Optional
PortQueue AttributeThisQueue | Optional
PortTrunk AttributeThisTrunk | Optional
TSCallld AttributeCallID Optional

Developer’s Guide

169

Chapter 9: IVR XML Protocol Messages and Parameters Statistics Messages

Statistics Messages

GetStatReq

170

The statistics messages enable you to request and receive data on the
CurrNumberWaitingCalls and ExpectedWaitTime statistics. These statistics must
be configured in Stat Server before they can be accessed through the IVR
Server.

Sent from the IVR to the IVR Server, this message requests information for a
specified statistic. Statistics cannot be arbitrarily requested, and they must be
configured fully in Configuration Manager prior to use. This request is thus
functionally equivalent to the “PeekStatReq” on page 171. The RequestId field
must be unique for all outstanding statistic requests on a given call. This value
will be returned in the subsequent response.

See Table 66 for a complete list of message parameters.

IVR SDK 7.5 XML @

Chapter 9: IVR XML Protocol Messages and Parameters Statistics Messages

Table 66: GetStatReq Message Parameters

Parameter
Message Direction Optional/Required
Name Value

Objectld obj_id (from | Required
Configuration
Manager
statistic
definition)

ObjectType obj_type Required
(from
Configuration
Manager
statistic
definition)

Requestld Client- Required
determined

GetStatReq | IVR to IVR Server reference ID

ServerName | server name | Required
(from
Configuration
Manager
statistic
definition)

StatType stat_type Required
(from
Configuration
Manager
statistic
definition)

PeekStatReq

Sent from the IVR to the IVR Server, this message requests information for a
specified statistic by specifying the Configuration Manager statistic ID.

See Table 67 for a complete list of message parameters.

Developer’s Guide 171

Chapter 9: IVR XML Protocol Messages and Parameters User Data Messages

Table 67: PeekStatReq Message Parameters

Parameter
Message Direction Optional/Required
Name Value

StatName Name of Required
Configuration

Manager statistic
PeekStatReq | IVR to IVR Server definition’s

Requestld Client-determined | Required
reference ID

StatResp

Sent from the IVR Serve to the IVR, this message is the response for a statistic
requests, peek or get.

See Table 68 for a complete list of message parameters.

Table 68: StatResp Message Parameters

Parameter
Message Direction Optional/Required
Name Value
Requestld | Reference ID from the Required
original request
ResultCode| MiscError Required
StatResp IVR Server to IVR NoSuchStat
Success
Result StatServer reported value | Optional

User Data Messages

These messages enable you to access and control data about the actions
performed by callers.

UDataGet
Sent from the IVR to the IVR Server, this message requests values for the
specified keys from the call’s user data. The keys field is a colon delimited
string indicating all required keys.
See Table 69 for a complete list of message parameters.

172 IVR SDK 7.5 XML @

Chapter 9: IVR XML Protocol Messages and Parameters

Table 69: UDataGet Message parameters

User Data Messages

Parameter
Message Direction Optional/Required
Name Value
Keys key1[:key2[keynl] | Required
UDataGet IVR to IVR Server Requestld Client-determined | Required
reference ID
UDataResp

Sent from the IVR Server to the IVR, this message is the response message for
user data requests. It indicates failure or success as well as any relevant results,
which will be in the UDataEx field.

See Table 70 for a complete list of message parameters.

Table 70: UDataResp Message Parameters

Message

Direction

Parameter

Name

Value

Optional/Required

UDataResp

IVR Server to IVR

Requestld

Reference ID from the
original request

Required

Result

FeatureNotSupported
MiscError

NoMatch

NoSuchCall

Success

Required

UDataEx

Matching user data, when
in response to UDataGet

Optional

UDataSet

Developer’s Guide

Sent from the IVR to the IVR Server, this message allows the client to update
the T-Library user data for the associated call. Only the "Replace” operation is
supported for network clients. This operation will nevertheless add a new
key/value pair, if it doesn’t currently exist. The UDataEx only need to indicate
user data which is new, this does not affect existing keys in the T-Library user

data.

See Table 71 for a complete list of message parameters.

173

Chapter 9: IVR XML Protocol Messages and Parameters

Transfer/Conferencing Messages

Table 71: UDataSet Message Parameters

Parameter
Message Direction Optional/Required
Name Value
Action Add Required
Replace
UDataSet IVR to IVR Server| Requestld | Client-determined Required
reference ID
UDataEx AttributeUserData Required

Transfer/Conferencing Messages

CallError

These messages are used to control call transfers and conferencing.

Sent from the IVR Server to the IVR, this message is sent whenever a message
received from the client causes an error. These errors can result from failure to
follow the prescribed call model or from remote errors caused by a particular
request. In the case of remote failure, the T-Library error code will be
provided for reference.

The Fai LedReq parameter can only be one of the two values:
* NoSuchCall
* Unknown

Values not listed here that exist in the DTD file apply to other operational
modes.

See Table 72 for a complete list of message parameters.

Table 72: CallError Message Parameters

Parameter
Message Direction Optional/Required
Name Value
FailedReq NoSuchCall Required
Unknown
CallError | IVR Server to IVR .
TLibErrorCode | AttributeErrorCode (where Optional
applicable)
174 S

IVR SDK 7.5 XML &=

Chapter 9: IVR XML Protocol Messages and Parameters General Messages

General Messages

This message is used for logging.

LogMsg

Sent from the IVR to the IVR Server, this message allows the client application
to write messages into IVR Server logs, at the specified logging level.

See Table 73 for a complete list of message parameters.

Table 73: LogMsg Message Parameters

Parameter
Message Direction Optional/Required
Name Value
MsgType Debug Required
Standard
CallError | IVR to IVR Server Trace
Msg Message to be logged Required

Developer’s Guide 175

Chapter 9: IVR XML Protocol Messages and Parameters General Messages

176 IVR SDK 7.5 XML @

S

GENESYS

AN ALCATEL COMPANY

Appendix

The IVR Server DTD

This appendix includes the entire text of version 4.0 of the IServer.dtd file.

{?xml encoding="15S0-8859-1"?>

{1-- Copyright (c) 2001 - 2006 Genesys Telecommunications --=>
{1-- Laboratories, Inc. ALL rights reserved. -->

CIELEMENT GctiMsg (

(Callld, (NewCall | RouteRequest | RouteResponse |
Connected | EndCall | Failure |
Cancel | CancelCompleted | Reset |
PeekStatReq | GetStatReq | StatResp |
LoginReq | LoginResp | LogMsg |
UDataGet | UDataSet | UDataDel |
UDataResp | CallInfoReq | CallInfoResp |
AccessNumGet | AccessNumCancel | AccessNumResp |
OneStepXfer | OneStepConf | InitConf |
CompleteConf | InitXfer | CompleteXfer |
RetrieveCall | CallStatus | CallError |
MakeCall | TreatCall | TreatStatus |

| |

DialOutInit | DialOutRegistry
DialOutRegistryResp)

) |

DialOut |

DialOutError

)>

FlowControl

CIELEMENT CallId (#PCDATA) >

{l-= ======================= (Qutbound Dialing ==================== --)
< IELEMENT DialOut (UDataEx?, ExtnsEx?)>
CIATTLIST DialOut RefID CDATA #REQUIRED

OrigNum CDATA #REQUIRED

DestNum CDATA #REQUIRED

Developer’s Guide 177

Appendix: The IVR Server DTD

TimeToAnswer CDATA #REQUIRED)

CIELEMENT DialOutError EMPTY)
CIATTLIST DialOutError Error (NotSupported | NoTrunks | MiscError) #REQUIRED
RefID CDATA #REQUIRED>

IELEMENT DialOutRegistry EMPTY)
CIATTLIST DialOutRegistry Command (Add | Remove | RemoveAll) #REQUIRED
DN CDATA #IMPLIED)

CIELEMENT DialOutRegistryResp EMPTY)
CIATTLIST DialOutRegistryResp Result
(MiscFailure | ConfigError | Success) #REQUIRED)

CIELEMENT DialOutInit (CalledNum, ExtnsEx?)>
CIATTLIST DialOutInit RefID CDATA #REQUIRED
Version (2.0 | 3.0) "3.0")

C1ELEMENT NewCall (CalledNum, DNIS?, ANI?,
((UserData?, Extensions?) | (UDataEx?, ExtnsEx?)))>

CIATTLIST NewCall CallControlMode (Genesys | Network) #REQUIRED
Version (1.0 |1 2.013.01 4.0) "1.0"
ANIRestriction (CLIP | CLIR) #IMPLIED)

{IELEMENT MakeCall (UDataEx?, ExtnsEx?)>

{IATTLIST MakeCall OrigNum CDATA #REQUIRED
DestNum CDATA #REQUIRED
Location CDATA #IMPLIED)>

CIELEMENT CalledNum (#PCDATA) >
CIELEMENT DNIS (#PCDATA) >
CIELEMENT ANI (#PCDATA) >
CIELEMENT UserData (NVPair)+)
(

CIELEMENT Extensions (NVPair)+)
CIELEMENT NVPair (NVName, NWVal) >
CIELEMENT NVName (#PCDATA) >
CIELEMENT Nwval (#PCDATA) >

{IELEMENT RouteRequest (CED?,
((UserData?, Extensions?) | (UDataEx?, ExtnsEx?)))>
CIATTLIST RouteRequest RouteDN CDATA #IMPLIED)

CIELEMENT CED (#PCDATA) >
CIELEMENT RouteResponse (Dest?, (Extensions | ExtnsEx)?)>

CIATTLIST RouteResponse RouteType (Default | Normal |
Reroute |RerouteAttended |

178 IVR SDK 7.5 XML @

Appendix: The IVR Server DTD

IELEMENT
< 1ELEMENT

<1ELEMENT
CIATTLIST

IELEMENT
CIATTLIST

RerouteConferenced) #REQUIRED)
Dest (#PCDATA)>

Connected ((Extensions | ExtnsEx)?)>

EndCall (((UserData?, Extensions?) | (UDataEx?, ExtnsEx?)))>

EndCall EndCause (Normal | Abandoned | Resources |
FeatureNotSupported | Invalidversion |
InvalidStateTransition | Timeout |
ServerPaused) #REQUIRED)

Failure ((Extensions | ExtnsEx)?)>
Failure FailureCause (Busy | NoAnswer | ConnectFailed) #REQUIRED)

{!-- UUI_Number is only used for DirectUUI type external routing.

{!-- The value of this parameter must be a 32-bit integer that will

{!-- be passed by the IVR system to the destination switch using
{!-- ISDN User to User Information signalling.
{!-- The value 'DirectAniDnis' for attribute XRouteType is
{!-- reserved for future use.
{IELEMENT AccessNumGet (UDataEx?, ExtnsEx?)>
CIATTLIST AccessNumGet DestDN CDATA
Location CDATA
XRouteType (Default
Reroute
DirectAni
DirectAniDnis

| Route |
| Direct |
| DirectNotoken |
| DirectUUI |
| DnisPool)

-->
-->
-->

#REQUIRED
#REQUIRED

"Default"

IELEMENT
CIATTLIST

IELEMENT

< 1ELEMENT
CIATTLIST

IELEMENT
CIATTLIST

DirectDigits

UUI_Number CDATA #IMPLIED>
AccessNumResp EMPTY)
AccessNumResp Action (Get | Cancel) #REQUIRED

Result (Success | Failure) #REQUIRED

AccessNum CDATA #IMPLIED)
AccessNumCancel EMPTY)

CallStatus EMPTY)

CallStatus Event (Dialing
Retrieved
ConfPartyAdd
XferComplete

| Ringing | Established |
| Busy | Held |
| ConfPartyDel |
| Released) #REQUIRED)

CallError EMPTY)
CallError FailedReq (Unknown | NoSuchCall |
OneStepXfer | OneStepConf |
InitConf | CompleteConf |
InitXfer | CompleteXfer |
MakeCall | RetrieveCall |
AgentControl | NotAllowed)

TLibErrCode CDATA

#REQUIRED
#IMPLIED

Developer’s Guide

179

Appendix: The IVR Server DTD

Reqld CDATA #IMPLIED >
CIELEMENT OneStepXfer (UDataEx?, ExtnsEx?)>
CIATTLIST OneStepXfer DestDN CDATA #REQUIRED
Location CDATA #IMPLIED)
{IELEMENT OneStepConf (UDataEx?, ExtnsEx?)>
CIATTLIST OneStepConf DestDN CDATA #REQUIRED
Location CDATA #IMPLIED)
CIELEMENT InitConf (UDataEx?, ExtnsEx?)>
CIATTLIST InitConf DestDN CDATA #REQUIRED
Location CDATA #IMPLIED)
CIELEMENT CompleteConf (ExtnsEx?) >
CIELEMENT InitXfer (UDataEx?, ExtnsEx?)>
CIATTLIST InitXfer DestDN CDATA #REQUIRED
Location CDATA #IMPLIED>
{IELEMENT CompleteXfer (ExtnsEx?) >
C!ELEMENT RetrieveCall (ExtnsEx?) >
{l-- ====================== (Call Info Retrieval =============z==z==== --)
CIELEMENT CallInfoReq EMPTY)
C!ELEMENT CallInfoResp EMPTY)
CIATTLIST CallInfoResp ANI CDATA #IMPLIED
DNIS CDATA #IMPLIED
CalledNum CDATA #IMPLIED
Connld CDATA #IMPLIED
TSCallld CDATA #IMPLIED
PortDN CDATA #IMPLIED
PortTrunk CDATA #IMPLIED
PortQueue CDATA #IMPLIED
OtherDN CDATA #IMPLIED
OtherTrunk CDATA #IMPLIED
OtherQueue CDATA #IMPLIED
LastEvent CDATA #IMPLIED
FirstHomeLocation CDATA #IMPLIED
UuID CDATA #IMPLIED)
{l-= ======================= (Call Treatments ======================== --)
{!-- Parameters are present for all treatment types except -=>
{!-- RingBack, Silence, Busy and CancelCall -=>
CIELEMENT TreatCall (Parameters?, ExtnsEx?)>
CIATTLIST TreatCall Type (PLlayAnnounce | PlayAnnounceAndDigits |
Music | RAN | Busy |
CollectDigits | CancelCall | SetDefaultRoute
PlayApplication | IVR | RingBack |
Silence | VerifyDigits | RecordAnnounce |
DeleteAnnounce | TextToSpeech | FastBusy |

=

180 IVR SDK 7.5 XML &

Appendix: The IVR Server DTD

< IELEMENT
<IELEMENT
IATTLIST

IELEMENT
IELEMENT

< IELEMENT
CIATTLIST

CIELEMENT
CIATTLIST

IELEMENT
CIATTLIST

< 1ELEMENT
CIATTLIST

IELEMENT
CIATTLIST

CIELEMENT
CIATTLIST

CIELEMENT
CIATTLIST

IELEMENT
CIATTLIST

TextToSpeechAndDigits) #REQUIRED)

Parameters (Node | List)+)

TreatStatus (UDataEx?, ExtnsEx?)>
TreatStatus Status (Started | NotStarted | Completed) #REQUIRED
CED CDATA #IMPLIED>

Cancel EMPTY)
CancelCompleted EMPTY)
=================== TL|b Proxy ===================== ——>
MonitorInfo (Server | Port | Agent)>
MonitorInfo Reqld CDATA #IMPLIED >
Server EMPTY)
Server Name CDATA #REQUIRED

Status (0K | Unavailable) #REQUIRED

Switch CDATA #IMPLIED)

Port EMPTY)
Port PortNum CDATA #REQUIRED
Status (0K | Unavailable) #REQUIRED)

Agent EMPTY)
Agent PortNum CDATA #REQUIRED
Status (LoggedIn | LoggedOut | Ready |
NotReady | Unknown) #REQUIRED»

AgentQuery EMPTY)
AgentQuery Reqld CDATA #REQUIRED
PortNum CDATA #REQUIRED >

AgentLogin EMPTY)

AgentLogin Reqld CDATA #REQUIRED
PortNum CDATA #REQUIRED
Queve CDATA #REQUIRED
AgentId CDATA #REQUIRED
Password CDATA #REQUIRED »

AgentLogout EMPTY)

AgentLogout Reqld CDATA #REQUIRED
PortNum CDATA #REQUIRED
Queue CDATA #REQUIRED >

AgentReady EMPTY)

AgentReady Reqld CDATA #REQUIRED
PortNum CDATA #REQUIRED
Queue CDATA #REQUIRED

WorkMode (AutoIn | ManualIn | Unknown) "Unknown" >

Developer’s Guide

181

Appendix: The IVR Server DTD

< IELEMENT
CIATTLIST

IELEMENT
CIATTLIST

CIELEMENT
IATTLIST

CIELEMENT
CIATTLIST

C1ELEMENT
CIATTLIST

CIELEMENT

IELEMENT
< IELEMENT
< IELEMENT
CIATTLIST

< 1ELEMENT
CIELEMENT
CIELEMENT
CIELEMENT
IELEMENT
IELEMENT

< 1ELEMENT
CIATTLIST

{l-- The '

182

AgentNotReady EMPTY)
AgentNotReady Reqld CDATA #REQUIRED
PortNum CDATA #REQUIRED
Queue CDATA #REQUIRED
WorkMode (AutoIn | Manualln |
Unknown) "Unknown" >
=================== M|§C ===================== ——>

LoginReq EMPTY)

LoginReq Version (1.0 1 2.0 | 3.0 | 4.0) #REQUIRED
ClientName CDATA #REQUIRED
ReportStatus (true | false) #IMPLIED
ServerMonitor (set | clear) #IMPLIED>

LoginResp (ConfigOptions?)>

LoginResp IServerVer CDATA #REQUIRED
Result (Success | InvalidProtocolVer) #REQUIRED

Status (NoSuchClient | InitInProgress | OK) #IMPLIED)

FLowControl EMPTY)
FlowControl Status (On | Off) #REQUIRED)

LogMsg EMPTY)
LogMsg MsgType (Standard | Trace | Debug) #REQUIRED
Msg CDATA #REQUIRED)

Reset ((Extensions | ExtnsEx)?)>

PeekStatReq (RequestId, StatName))
GetStatReq (RequestId, ServerName, StatType, ObjectId, ObjectType)>
StatResp (RequestId, Result?))
StatResp ResultCode
(Success | NoSuchStat | MiscError) #REQUIRED)

RequestId (#PCDATA) >
StatName (#PCDATA) >
ServerName (#PCDATA) >
StatType (#PCDATA)>

Objectld (#PCDATA) >

ObjectType (#PCDATA)>

Result EMPTY)

Result Value CDATA #REQUIRED)

================= |Jser Data Management ——=—=—=—=====—========= ——>
Keys' attribute is a colon separated List of key names to -->

IVRSDKISXML%@

Appendix: The IVR Server DTD

{I-- retrieve. -=>

CIELEMENT UDataGet (RequestId))
CIATTLIST UDataGet Keys CDATA #REQUIRED)

{1-- The UDataEx Llist will only be present when UDataResp is -->
{1-- sent in reply to a UdataGet, and will contain the user data --=>
{1-- items that could be successfully retrieved. In case none of the --)
{!-- supplied key names existed in UserData the UDataEx Llist will ==

{I-- not be present and the 'Result' attribute will be set to NoMatch --)

{IELEMENT UDataResp (RequestId, UDataEx?)>
CIATTLIST UDataResp Result (Success | NoSuchCall | NoMatch |
FeatureNotSupported | MiscError) #REQUIRED)

{I-- If the 'Action' attribute is Add the data in the UDataEx -=>
{!-- will be added to the list, possibly creating duplicate entries -->
{1-- with the same key name. If the 'Action' attribute is Replace --)
{!-- then the data in UDataEx will overwrite any existing entries -=>
{1-- that are already be present in UserData. -=

{IELEMENT UDataSet (RequestId, UDataEx))>
CIATTLIST UDataSet Action (Add | Replace) #REQUIRED)

{l-- If the 'Action' attribute is DeleteAll then all user data will be --)

{1-- deleted and the 'Key' attribute need not be present. If the --=>
{1-- "'Action' attribute is DeleteKey then only attribute 'Key' will be --)
{I-- deleted -=>

{IELEMENT UDataDel (RequestlId)>
CIATTLIST UDataDel Action (DeleteAll | DeleteKey) #REQUIRED
Key CDATA #IMPLIED>

CIELEMENT List (Node | List)+)
CIATTLIST List Name CDATA #REQUIRED)

CIELEMENT Node EMPTY)>

CIATTLIST Node Name CDATA #REQUIRED
Type (Int | Str | Bin) #REQUIRED
Val CDATA #REQUIRED)

CIELEMENT UDataEx (Node | List)+>

CELEMENT ExtnsEx (Node | List)+>

CIELEMENT ConfigOptions (Node)+)

Developer’s Guide 183

Appendix: The IVR Server DTD

184 IVR SDK 7.5 XML @

S

GENESYS

AN ALCATEL-LUCENT COMPANY

Index

A

AccessNumCancel 83
AccessNumGet. 82

AccessNumGet in
Transfer to Remote Site Operation
Example 121
AccessNumResp. 84
AccessNumResp in
Transfer to Remote Site Operation

Example 122

Agent Control in

AgentLogin Call Flow Example 134
Agent State Query in

AgentLogin Call Flow Example 133
AgentSubtype 72
AgentLogin.o 73
AgentLogout oL 74
AgentNotReady 75
AgentQuery L. 72
AgentReady 74
audience

defining 12
B
behindmode 27
C
callcontrol 143
callinformation. 147
callroutingstates. 38
Call Treatment Operation Example 110
call treatmentstates 41
CallError, 87,174
Callld Parameter

using.o 25

validvalues 25
CallinfoReq. 44,88, 168

Developer’s Guide

CallinfoReq and CallinfoResp in

Typical Call Flow Example 102
CallinfoResp. 88, 169
call-scenario examples

AgentLogin Call Flow Example

AgentControl 134
Agent State Query. 133
ErrorCase. 135
Login., 131
PortStatus. 132
Call Treatment Operation Example 110
TreatCall. 110
TreatStatus(Started/Completed) . . . 111
Conference Consult Operation Example . 116
CallStatus(ConfPartyAdd) 120
CallStatus(Dialing). 118
CallStatus(Established) 118
CallStatus(Held) 117
CallStatus(Retrieved) 119
CompleteConf. 119
InitConf 117
MakeCall Operation Example. 112
CallStatus(Dialing). 113
CallStatus(Established) 113
MakeCall 112
One-Step Conference Operation Example 114
CallStatus(ConfPartyAdd) 115
OneStepConf 115
One-Step Transfer Operation Example . . 123
CallStatus(XferComplete) 124
OneStepXfer. 123

Outbound Dialing Call Flow Example
Connection Failure 138
Dialer Error 138
Registration 136
Request Timeout 137
Successful Call Flow 139
Routing Example 106
Connected. 109
185

Index

RouteRequest 107
RouteResponse 108
Transfer Consult Operation Example . . . 125
CallStatus(Dialing) 128
CallStatus(Established) 128
CallStatus(Held) 127
CallStatus(XferComplete) 130
CompletexXfer 129
InitXfer 127
RouteRequest 126
RouteResponse 126
Transfer to Remote Site Operation Example
AccessNumGet 121
AccessNumResp. 122
Transfer to Remote Site Operation
Example 121
Typical Call Flow Example 100
CallinfoReq and CallinfoResp 102
CallStatus(Held/Dialing/Established) . 104
CallStatus(Ringing/Established)102
CallStatus(XferComplete) 105
CompleteXfer 105
EndCall. 106
InitXfer 103
NewCall 101
CallStatus 87
CallStatus(ConfPartyAdd) in
Conference Consult Operation Example . 120
One-Step Conference Operation Example 115
CallStatus(Dialing) in
Conference Consult Operation Example . 118
MakeCall Operation Example 113
Transfer Consult Operation Example . . . 128
CallStatus(Established) in
Conference Consult Operation Example . 118
MakeCall Operation Example 113
CallStatus(Held) in
Conference Consult Operation Example . 117
Transfer Consult Operation Example . . . 127
CallStatus(Held/Dialing/Established) in
Typical Call Flow Example 104
CallStatus(Retrieved) in
Conference Consult Operation Example . 119
CallStatus(Ringing/Established) in
Typical Call Flow Example 102
CallStatus(XferComplete) in
One-Step Transfer Operation Example . . 124
Transfer Consult Operation Example . . . 130
Typical Call Flow Example 105
CallStatusEstablished) in
Transfer Consult Operation Example . . . 128
Cancel 81,147,168
CancelCompleted 81,168
channels 26
186

chapter summaries

defining 14
CompleteConf 86
CompleteConfin

Conference Consult Operation Example . 119

completed, 147
CompleteXfer 86
CompleteXfer in

Transfer Consult Operation Example . . . 129

Typical Call Flow Example 105
Conference Consult Operation Example . . 116
conferencestates 40
Connected. 146, 164
Connected in

Routing Example 109
Connection Failure in

Outbound Dialing Call Flow Example. . . 138
Customer Entered Data (CED)

howtouse 26

inTLibmessages 26
D
datamessages. 25
Dialer Error in

Outbound Dialing Call Flow Example. . . 138
DialOut. 94
DialOutError 94
DialOutlnit 95
DialOutRegistry 93
DialOutRegistryResp 93
document

conventions. 15

versionnumber L. 15
DTD 21
E
endcall 145
EndCall 79,165
EndCall in

Typical Call Flow Example 106
Error Case in

AgentLogin Call Flow Example 135
Error Messages

for connection failures 45

inresponses 45

Tliberrorcodesin. 45
errorresponses 149
ExtnsEx 96
F
failedrouting. 154

IVR SDK7.5C &

N —

Index

failed treatment. 157
Failure 166
connection failure messages 45
Failure ErrorCodes 166
FlowControl 75
G
GDI
about 23
obtaining the specification. 23
GDlheader. 24
GDI Link Interface
seeGLI 23
Generic Data Interface
seeGDI 23
GetStatReq. 43,90,170
GLI
about 23
codeexample 97
defined. 23
functions. 23
|
infrontmode 27
InitConf. 85

InitConf in

Conference Consult Operation Example . 117
InitXfer 85
InitXfer in

Transfer Consult Operation Example . . . 127

Typical Call Flow Example 103
K
Keep-Alive Request 23
L
logging 148
Login in

AgentLogin Call Flow Example 131
LoginReq. 67
LoginResp 68
LogMsg. 69,175

configuringlogfile. 44
M
makecallstates 43
MakeCall in

MakeCall Operation Example 112

Developer’s Guide

MakeCall Operation Example 112
Message Extensions. 25
message parameters
ExtnsEx. 96
UDataEx 96
message type
Keep-Alive Request. 25
Messages
guidelines forcreating 24
special character encoding 24
messages
AccessNumCancel 83
AccessNumGet. 82
AccessNumResp 84
Agent Subtypeo 72
AgentLogin 73
AgentLogouto 74
AgentNotReady. 75
AgentQuery 72
AgentReady. 74
CallError 87
CallinfoReq 88
CallinfoResp 88
CallStatus 87
Cancel, 81
CancelCompleted. 81
CompleteConf. 86
CompleteXfer. 86
DialOut 94
DialOutError. 94
DialOutlnit. 95
DialOutRegistry 93
DialOutRegistryResp 93
EndCall 79
FlowControl 75
GetStatReq 90
InitConf 85
InitXfer L 85
LoginReq 67
LoginResp 68
LogMsg 69
Monitorinfoo 70
NewCall. 76
OneStepConf 85
OneStepXfer 84
PeekStatReq 90
Port Subtype 71
Reset 70
RetrieveCall. 86
RouteRequest. 77
RouteResponse. 78
ServerSubtypeo 70
StatResp 90
TreatCall 80
TreatStatus 80
UDataDel 92
187

Index

UDataGet 91

UDataResp 92

UDataSet 91
modes

behind. 27

infront. 27

network 27
Monitorinfo. 70
N
network mode 27
NewCall 76
NewCall in

Typical Call Flow Example 101
notconnected 146
notstarted 146
o
One-Step Conference Operation Example. . 114
One-Step Transfer Operation Example . . .123
OneStepConf. 85

OneStepConfin

One-Step Conference Operation Example 115
OneStepXfer 84
OneStepXfer in

One-Step Transfer Operation Example . . 123

OperationalModes. 27
P
PeekStatReq 43,90,171
Port Status in

AgentLogin Call Flow Example 132
PortSubtype 71
ports 26
R
Registration in

Outbound Dialing Call Flow Example . . . 136
request instructions 145
Request Timeout in

Outbound Dialing Call Flow Example . . . 137
Reset. 70
RetrieveCall 86
routecall 144
routeresponse 146
RouteRequest 77,163
RouteRequest in

Routing Example 107

Transfer Consult Operation Example . . . 126
RouteResponse 78,164
188

RouteResponse in

Routing Example 108

Transfer Consult Operation Example . . . 126
Routing Example. 106
routing timeout. 154
S
security implementation 24
Server Subtype oL 70
simplerouting 152
simple treatment. 156
sockets. 26
Special Characters

usinginmessages 24
StackLayers. L. 22
startcall 145
startedo 147
Stat Server

configuring statistics 45
state machine diagrams

callroutingstates 38

call treatmentstates. 41

conferencestates. 40

make callstates. 43

transferstates. 39
Statistics

configuring 45

CurrNumberWaitingCalls 43

ExpectedWaitTime 43

requesting. 43
statistics 148
StatResp. 90,172
structure, GDl header 25
Successful Call Flow in

Outbound Dialing Call Flow Example. . . 139
T
Transfer Consult Operation Example 125
transferstates 39
Transfer to Remote Site Operation

Example 121

treatcall 146
TreatCall 80, 167
TreatCall in

Call Treatment Operation Example 110
treatment interrupted by another treatment . 159
treatment interrupted by routing request. . . 158
TreatStatus. 80, 168
TreatStatus(Started/Completed) in

Call Treatment Operation Example 111
Typical Call Flow Example. 100
typographical styles 15

IVRSDK7.5C &,

Index

U
UData Messages. 44
UDataDel. 92
UDataEx 96
howtouse. 26
UDataGe 172
UDataGet. 91
UDataResp. 92,173
UDataSet. 91,173
unsolictedconnect 160
userdatacontrol 149
\"/
version numbering
document 15
X
XML
escaping special characters. 24
message guidelines 24

Developer’s Guide

189

Index

190 IVRSDK7.5C &,

	Table of Contents
	Preface
	Intended Audience
	Usage Guidelines
	Chapter Summaries
	Document Conventions
	Related Resources
	Making Comments on This Document

	Part One: Use of XML and Modes of Operation
	How IVRs Use XML
	How IVR Uses XML
	XML Concepts
	IVR Architecture
	Stack Layers
	The GDI Specification
	The GLI Specification

	XML Message Guidelines
	Attached Data
	Sockets, Ports, Channels, and DNs

	Modes of Operation for IVR
	IVR Server Operational Modes
	Implications of the Different Modes
	Determination of Mode

	Individual Message Support and Behavior
	Supported Messages
	Mode Behavioral Differences

	Part Two: IVR Server InFront and Behind Mode
	IVR In-Front and Behind State Machine Diagrams
	Overview
	Call Routing States
	Transfer States
	Conference States
	Call Treatment States
	Make Call States
	Additional Event Messages
	Anytime Messages
	After CallStatus(Ringing) Messages

	Error Messages
	Configuring Stat Server Statistics

	In-Front and Behind Call Flow Diagrams
	Overview
	Call Routing Call Flow
	Call Treatment
	Call Treatment Failed
	Call Treatment Interrupted
	MakeCall Call Flow
	MakeCall (Busy)
	Conference Call Flow Diagrams
	One-step Conference
	One-step Conference, Scenario 2
	Conference Consult Call
	Conference Consult Call, Scenario 2
	Conference Consult Call (Busy)
	Conference Consult Call (Failed)

	Transfer Call Flow Diagrams
	Transfer to Remote Site
	Single-Step Transfer
	Transfer Consult Call
	Transfer Consult Call (Busy)
	Transfer Consult Call (Failed)

	IVR XML Protocol Messages and Parameters
	Overview
	Important Message Constraints

	General Messages
	LoginReq
	LoginResp
	LogMsg
	Reset
	MonitorInfo
	Server Subtype
	Port Subtype
	Agent Subtype
	AgentQuery
	AgentLogin
	AgentLogout
	AgentReady
	AgentNotReady
	FlowControl

	New Call and Call Routing Messages
	NewCall
	RouteRequest
	RouteResponse
	EndCall

	Call Treatment Messages
	TreatCall
	TreatStatus
	Cancel
	CancelCompleted

	External Routing Messages
	AccessNumGet
	AccessNumCancel
	AccessNumResp

	Transfer/Conferencing Messages
	OneStepXfer
	OneStepConf
	InitXfer
	InitConf
	CompleteXfer
	CompleteConf
	RetrieveCall
	CallStatus
	CallError

	Call Information Messages
	CallInfoReq
	CallInfoResp

	Statistics Messages
	PeekStatReq
	GetStatReq
	StatResp

	User Data Messages
	UDataGet
	UDataSet
	UDataDel
	UDataResp

	Outbound Messages
	DialOutRegistry
	DialOutRegistryResp
	DialOut
	DialOutError
	DialOutInit

	Message Parameters
	UDataEx
	ExtnsEx

	Using the IVR XML Protocol: Examples
	GLI Header
	Call-Scenario Examples
	Interaction Format
	Further Information

	A Typical Call Flow
	NewCall
	CallStatus(Ringing) and CallStatus(Established) Messages
	CallInfoReq and CallInfoResp Messages
	InitXfer
	CallStatus(Held), CallStatus(Dialing), and CallStatus(Established)
	CompleteXfer
	CallStatus(XferComplete)
	EndCall

	Routing
	RouteRequest
	RouteResponse
	Connected

	Call Treatment Operation
	TreatCall
	TreatStatus(Started) and TreatStatus(Completed)

	MakeCall Operation
	MakeCall
	CallStatus(Dialing)
	CallStatus (Established)

	One-Step Conference Operation
	OneStepConf
	CallStatus(ConfPartyAdd)

	Conference Consult Operation
	InitConf
	CallStatus(Held)
	CallStatus(Dialing)
	CallStatus(Established)
	CompleteConf
	CallStatus(Retrieved)
	CallStatus(ConfPartyAdd)

	Transfer to Remote Site Operation
	AccessNumGet
	AccessNumResp

	One-Step Transfer Operation
	OneStepXfer
	CallStatus(XferComplete)

	Transfer Consult Operation
	RouteRequest
	RouteResponse
	InitXfer
	CallStatus(Held)
	CallStatus(Dialing)
	CallStatus(Established)
	CompleteXfer
	CallStatus(XferComplete)

	Agent Login Interface
	Server Side Model
	Client Side Model
	Login
	Port Status
	Agent State Query
	Agent Control
	Error Case

	Outbound Dialing
	Registration
	Request Timeout
	Dialer Error
	Connection Failure
	Successful Call Flow

	Part Three: IVR Server Network Mode
	IVR Network State Machine Diagrams
	Call Control
	Call Information
	Logging
	Statistics
	User Data Control
	Error Responses

	Network Call Flow Diagrams
	Overview
	Simple Routing (Network Control)
	Simple Routing (Genesys Control)
	Failed Routing
	Routing Timeout
	Simple Treatment
	Failed Treatment
	Treatment Interrupted by a Routing Request
	Treatment Interrupted by Another Treatment
	Unsolicited Connect

	IVR XML Protocol Messages and Parameters
	Overview
	New Call and Call-Routing Messages
	NewCall
	RouteRequest
	RouteResponse
	Connected
	EndCall
	Failure

	Call Treatment Messages
	TreatCall
	TreatStatus
	Cancel
	CancelCompleted

	Call Information Messages
	CallInfoReq
	CallInfoResp

	Statistics Messages
	GetStatReq
	PeekStatReq
	StatResp

	User Data Messages
	UDataGet
	UDataResp
	UDataSet

	Transfer/Conferencing Messages
	CallError

	General Messages
	LogMsg

	Appendix
	The IVR Server DTD

	Index

