
Agent Interaction SDK 7.6

Java

Developer’s Guide

The information contained herein is proprietary and confidential and cannot be disclosed or duplicated
without the prior written consent of Genesys Telecommunications Laboratories, Inc.
Copyright © 2004–2010 Genesys Telecommunications Laboratories, Inc. All rights reserved.

About Genesys
Genesys Telecommunications Laboratories, Inc., a subsidiary of Alcatel-Lucent, is 100% focused on software for call
centers. Genesys recognizes that better interactions drive better business and build company reputations. Customer
service solutions from Genesys deliver on this promise for Global 2000 enterprises, government organizations, and
telecommunications service providers across 80 countries, directing more than 100 million customer interactions every
day. Sophisticated routing and reporting across voice, e-mail, and Web channels ensure that customers are quickly
connected to the best available resource—the first time. Genesys offers solutions for customer service, help desks,
order desks, collections, outbound telesales and service, and workforce management. Visit www.genesyslab.com for
more information.
Each product has its own documentation for online viewing at the Genesys Technical Support website or on the
Documentation Library DVD, which is available from Genesys upon request. For more information, contact your sales
representative.

Notice
Although reasonable effort is made to ensure that the information in this document is complete and accurate at the
time of release, Genesys Telecommunications Laboratories, Inc., cannot assume responsibility for any existing errors.
Changes and/or corrections to the information contained in this document may be incorporated in future versions.

Your Responsibility for Your System’s Security
You are responsible for the security of your system. Product administration to prevent unauthorized use is your
responsibility. Your system administrator should read all documents provided with this product to fully understand the
features available that reduce your risk of incurring charges for unlicensed use of Genesys products.

Trademarks
Genesys, the Genesys logo, and T-Server are registered trademarks of Genesys Telecommunications Laboratories,
Inc. All other trademarks and trade names referred to in this document are the property of other companies. The
Crystal monospace font is used by permission of Software Renovation Corporation, www.SoftwareRenovation.com.

Technical Support from VARs
If you have purchased support from a value-added reseller (VAR), please contact the VAR for technical support.

Technical Support from Genesys
If you have purchased support directly from Genesys, please contact Genesys Technical Support at the following
regional numbers:

Prior to contacting technical support, please refer to the Genesys Technical Support Guide for complete
contact information and procedures.

Ordering and Licensing Information
Complete information on ordering and licensing Genesys products can be found in the Genesys Licensing Guide.

Released by
Genesys Telecommunications Laboratories, Inc. www.genesyslab.com
Document Version: 76sdk_dev_ixn_java-agent_04-2010_v7.6.301.00

Region Telephone E-Mail

North and Latin America +888-369-5555 or +506-674-6767 support@genesyslab.com

Europe, Middle East, and Africa +44-(0)-1276-45-7002 support@genesyslab.co.uk

Asia Pacific +61-7-3368-6868 support@genesyslab.com.au

Japan +81-3-6361-8950 support@genesyslab.co.jp

http://www.genesyslab.com
http://www.genesyslab.com
mailto:support@genesyslab.com
mailto:support@genesyslab.co.uk
mailto:support@genesyslab.com.au
http://genesyslab.com/support/dl/retrieve/default.asp?item=B3BFC6DABE22B62AAE32A6D31E6396E3&view=item
mailto:support@genesyslab.co.jp
http://genesyslab.com/support/dl/retrieve/default.asp?item=B6C52FB62DB42BB229B02755A1D12650&view=item

Java—Developer’s Guide 3

Table of Contents
Preface ... 9

Intended Audience... 10
Usage Guidelines .. 10
Chapter Summaries... 12
Document Conventions ... 13
Related Resources .. 15
Making Comments on This Document .. 16

Chapter 1 About Agent Interaction (Java API) .. 17

Library Overview.. 17
Components ... 17
AIL Library .. 18
Scope of Use .. 18

Architecture ... 19
Interfaces to Core Objects .. 20
Core Features... 21
Connectivity and Internal Features ... 23

API Overview... 25
Packages .. 26
Agents... 26
Interactions ... 28
Events... 30
State and Possible Actions ... 33

Chapter 2 About the Code Examples... 35

Setup for Development.. 35
Agent Interaction (Java API) Installation Directory 35
Source-Code Examples.. 36
Required Third-Party Tools ... 37
Environment Setup ... 37
Configuration Data.. 37

Application Development Design... 37
Client Architecture .. 38
Server Architecture ... 38

Table of Contents

4 Agent Interaction SDK 7.6

Topology ... 39
Introducing the Standalone Code Examples....................................... 40
Introducing the Agent Server Code Example 41

Application Essentials.. 43
Use AilLoader ... 43
Use AilFactory .. 45
Use Agent ... 46
Receive Events ... 48
Get Real Time Information.. 49

Chapter 3 Server Applications.. 51

Five Rules to Build an AIL Server Application ... 51
Agent Server.. 53

Connect to AIL .. 54
Implement Multi-Threading ... 55
Submit Login Requests... 58
Wrapping up.. 58

Chapter 4 Voice Interactions... 61

Voice Interaction Design.. 61
Voice Interaction Data... 61
Voice State Event Flow ... 63

Six Steps to an AIL Client Application ... 64
SimplePlace... 65

Implement a Listener .. 66
Connect to AIL .. 67
Set up Button Actions ... 67
Register Your Application.. 69
Synchronize the Widgets .. 69
Add Event-Handling Code .. 69
The Importance of Timing ... 70
Wrapping Up... 71
About the User Interface... 72

SimpleVoiceInteraction .. 73
Implement a Listener .. 74
Connect to AIL .. 74
Set up Button Actions ... 74
Register Your Application.. 75
Synchronize the User Interface .. 75
Add Event-Handling Code .. 76

MultipartyVoiceInteraction ... 77
Set up Button Actions ... 78

Java—Developer’s Guide 5

Table of Contents

Synchronize the User Interface .. 81
Add Event-Handling Code .. 81

Instant Messaging ... 81
Starting an Instant Messaging Session... 82
Handling Instant Messages... 82

SIP Preview... 85
The SIP Preview Interaction ... 85
Managing a SIP Preview interaction... 86

Chapter 5 Switch Facilities.. 87

Switch Design.. 87
T-Server Connections... 87
Voice Model .. 88
Voice State Model ... 89

Switch and DN Management... 91
DN Consolidation.. 91
DN Activation .. 93
Determine Availability of CTI Features ... 94
Calls Mapping ... 96
Event Flow .. 97
Single-Step Rollover to Mute Transfer .. 98

Switch Tuning .. 99
TExtensions .. 99
Workmodes... 100

Chapter 6 PSDK Bridges ... 103

Guidelines.. 103
Protocol Instances .. 103
Message Flow... 104
PSDK Config Bridge ... 105
PSDK Voice Bridge... 105
Managing PSDK Listeners.. 106

Steps for Integrating PSDK Config Bridge... 106

Chapter 7 E-Mail Interactions.. 109

SimpleEmailInteraction.. 109
Set Up Button Actions..111
Add Event-Handling Code .. 113
Synchronize the Widgets .. 115

Handling an E-Mail Interaction .. 115
E-Mail State .. 115
Sending an E-Mail .. 116

Table of Contents

6 Agent Interaction SDK 7.6

Receiving an E-Mail .. 118
Responding to an E-Mail .. 119

Handling Collaborative E-Mail Interactions.. 120
Types of Collaborative E-Mail Interactions 121
Collaboration Status.. 122
Handling a Collaboration Session... 123
Participating in a Collaboration Session ... 126

Handling Workflow... 127
Getting the Workbin Manager ... 129
Workbin Content ... 129
Putting Interactions in Workbins ... 130
Pulling Interactions ... 131

Chapter 8 Chat Interactions .. 133

Chat Interaction Design ... 133
Chat State ... 133
CoBrowse Interactions.. 134

SimpleChatInteraction ... 135
Set up Button Actions ... 136
Add Event-Handling Code .. 137
Add CoBrowse-Handling Code... 138

Handling a Chat Interaction ... 139
Entering a Chat Session ... 139
Chat Parties .. 140
Handling Chat Events ... 140
Handling Chat Messages.. 140
Handling Typing .. 141
Push URL ... 142
Conferencing .. 142
Terminating the Chat Session... 143

Chapter 9 Open Media Interactions.. 145

Open Media Design... 145
Bridging the Contact Center and the Enterprise 146
Basic Capabilities.. 146
Routing Rejected Orders to an Agent ... 147
Working on a CRM Case .. 148

SimpleOpenMediaInteraction .. 151
Set up Action Buttons ... 152
Add Event-Handling Code .. 152

Java—Developer’s Guide 7

Table of Contents

Chapter 10 Contact .. 155

Contact Information ... 155
Getting Contact Information.. 155
Fast Contact Management.. 158
Advanced Search Feature .. 159
Advanced Contact Management... 164

Contact History .. 166

Chapter 11 Standard Responses.. 169

SRL Design ... 169
Standard and Suggested Responses ... 169
Category ... 170
SRL Manager.. 170

Using the SRL Manager .. 170
Getting Categories and Standard Responses 171
Managing Agent’s Favorites ... 173

Handling Suggested Categories.. 173

Chapter 12 Outbound Service... 175

Outbound Design... 175
Outbound Information ... 175
Outbound Actions ... 176
Campaign Dialing Modes.. 176

Steps for Writing an Outbound Application.. 177
Preview Outbound Interactions ... 179

Active Campaigns... 179
Start and Stop Preview ... 180
Handle Regular Preview Calls .. 180
Handle Push Preview Interactions.. 182

Predictive Outbound Interactions .. 183
Active Campaigns... 184
Handling a Predictive Outbound Interaction 184

Handle Outbound Chains .. 185
Mark Processed.. 185
Reschedule the Record .. 185
Close the Chain .. 186

Chapter 13 Routing Points .. 187

Routing Point Design... 187
Routing Point Information ... 188

Steps for Monitoring Routing Points .. 188

Table of Contents

8 Agent Interaction SDK 7.6

Chapter 14 Service Status and Connection... 191

Service Status Design ... 191
Connection Loss ... 192
Reconnection.. 193

Steps for Listening to Service Status ... 193

Chapter 15 Voice Callback .. 195

Callback Design... 195
Scenario.. 195
Callback Information ... 196
Callback Campaign Modes... 197

Steps for Writing a Callback Application.. 197

Chapter 16 Expert Contact .. 201

Expert Contact Design... 201
Usage Scenario .. 201
Expert Contact Components... 202
Expert Contact Information ... 203

Steps for Writing an Expert Contact Application 205

Chapter 17 Additional Details ... 207

Attached Data.. 207
InteractionManager... 208
Handling.. 208

Event-AIL Data .. 210
Log Management... 210

Default AIL logs .. 211
Adding Logs.. 211

Appendix Voice Sequence Diagrams... 213

Make a Phone Call .. 213
Answer a Phone Call ... 214
Conferencing ... 215
Transferring a Phone Call.. 218
Handling a Callback Phone Call .. 220

Index ... 223

Java—Developer’s Guide 9

Preface
Welcome to the Agent Interaction SDK 7.6 Java Developer’s Guide. This
document introduces you to the concepts, terminology, and procedures relevant
to the Agent Interaction (Java API).
This document provides a high-level overview of Agent Interaction (Java API)
7.6 features and functions, together with software-architecture information and
deployment-planning materials.
This document is valid only for the 7.6.x release(s) of this product.

Note: For versions of this document created for other releases of this product,
please visit the Genesys Technical Support website, or request the
Documentation Library DVD, which you can order by e-mail from
Genesys Order Management at orderman@genesyslab.com.

This preface provides an overview of this document, identifies the primary
audience, introduces document conventions, and lists related reference
information:

Intended Audience, page 10
Usage Guidelines, page 10
Chapter Summaries, page 12
Document Conventions, page 13
Related Resources, page 15
Making Comments on This Document, page 16

The 7.6 Agent Interaction (Java API) is built around the Agent Interaction
Layer library, which presents an API for developing voice and multimedia
applications in either client or server modes. Because the library abstracts
features of supported switches, your applications are portable across supported
switches. Because the library supports connectivity with Genesys Multimedia
servers, your applications can combine e-mail, chat, and other interaction
management seamlessly with voice interaction management.

mailto:orderman@genesyslab.com

10 Agent Interaction SDK 7.6

Preface Intended Audience

Intended Audience
This document, primarily intended for programmers developing Java-based
applications for contact center agents, assumes that you have a basic
understanding of:
• Computer-telephony integration (CTI) concepts, processes, terminology,

and applications.
• Network design and operation.
• Your own network configurations.
You should also be familiar with:
• Java programming.
• Genesys T-Server features, events, and call models.
• Genesys Multimedia features.
• Voice Callback Solution features.

Usage Guidelines
The Genesys developer materials outlined in this document are intended to be
used for the following purposes:
• Creation of contact-center agent desktop applications associated with

Genesys software implementations.
• Server-side integration between Genesys software and third-party

software.
• Creation of a specialized client application specific to customer needs.
The Genesys software functions available for development are clearly
documented. No undocumented functionality is to be utilized without
Genesys’s express written consent.
The following Use Conditions apply in all cases for developers employing the
Genesys developer materials outlined in this document:
1. Possession of interface documentation does not imply a right to use by a

third party. Genesys conditions for use, as outlined below or in the Genesys
Developer Program Guide, must be met.

2. This interface shall not be used unless the developer is a member in good
standing of the Genesys Interacts program or has a valid Master Software
License and Services Agreement with Genesys.

3. A developer shall not be entitled to use any licenses granted hereunder
unless the developer’s organization has met or obtained all prerequisite
licensing and software as set out by Genesys.

Java—Developer’s Guide 11

Preface Usage Guidelines

4. A developer shall not be entitled to use any licenses granted hereunder if
the developer’s organization is delinquent in any payments or amounts
owed to Genesys.

5. A developer shall not use the Genesys developer materials outlined in this
document for any general application development purposes that are not
associated with the above-mentioned intended purposes for the use of the
Genesys developer materials outlined in this document.

6. A developer shall disclose the developer materials outlined in this
document only to those employees who have a direct need to create, debug,
and/or test one or more participant-specific objects and/or software files
that access, communicate, or interoperate with the Genesys API.

7. The developed works and Genesys software running in conjunction with
one another (hereinafter referred to together as the “integrated solutions”)
should not compromise data integrity. For example, if both the Genesys
software and the integrated solutions can modify the same data, then
modifications by either product must not circumvent the other product’s
data integrity rules. In addition, the integration should not cause duplicate
copies of data to exist in both participant and Genesys databases, unless it
can be assured that data modifications propagate all copies within the time
required by typical users.

8. The integrated solutions shall not compromise data or application security,
access, or visibility restrictions that are enforced by either the Genesys
software or the developed works.

9. The integrated solutions shall conform to design and implementation
guidelines and restrictions described in the Genesys Developer Program
Guide and Genesys software documentation. For example:
a. The integration must use only published interfaces to access Genesys

data.
b. The integration shall not modify data in Genesys database tables

directly using SQL.
c. The integration shall not introduce database triggers or stored

procedures that operate on Genesys database tables.
Any schema extension to Genesys database tables must be carried out using
Genesys Developer software through documented methods and features.
The Genesys developer materials outlined in this document are not intended to
be used for the creation of any product with functionality comparable to any
Genesys products, including products similar or substantially similar to
Genesys’s current general-availability, beta, and announced products.
Any attempt to use the Genesys developer materials outlined in this document
or any Genesys Developer software contrary to this clause shall be deemed a
material breach with immediate termination of this addendum, and Genesys
shall be entitled to seek to protect its interests, including but not limited to,
preliminary and permanent injunctive relief, as well as money damages.

12 Agent Interaction SDK 7.6

Preface Chapter Summaries

Chapter Summaries
In addition to this preface, this document contains the following chapters and
appendixes:
• Chapter 1, “About Agent Interaction (Java API),” on page 17. This chapter

introduces the Agent Interaction (Java API) with an overview of its design
features along with the structure and key concepts of the library API.

• Chapter 2, “About the Code Examples,” on page 35. This chapter
introduces the supplied source code examples.

• Chapter 3, “Server Applications,” on page 51. This chapter introduces
principles to write agent server applications developed on top of the Agent
Interaction (Java API).

• Chapter 4, “Voice Interactions,” on page 61. This chapter introduces Voice
API features for working with Interaction and Configuration objects using
the SimplePlace.java and SimpleVoiceInteraction.java examples.

• Chapter 5, “Switch Facilities,” on page 87. This chapter discusses how to
work with switch features.

• Chapter 6, “PSDK Bridges,” on page 103. This chapter discusses how to
use the PSDK Voice and Config Bridges.

• Chapter 7, “E-Mail Interactions,” on page 109. This chapter covers
programming techniques for managing multimedia interactions such as e-
mail, and collaborative e-mails.

• Chapter 8, “Chat Interactions,” on page 133. This chapter covers
programming techniques for managing chat interactions, and introduces
CoBrowse in the SimpleChatInteraction example.

• Chapter 9, “Open Media Interactions,” on page 145. This chapter covers
programming techniques for managing open media interactions.

• Chapter 10, “Contact,” on page 155. This chapter covers programming
techniques for managing contacts.

• Chapter 11, “Standard Responses,” on page 169. This chapter covers
programming techniques for managing standard response information.

• Chapter 12, “Outbound Service,” on page 175. This chapter covers
programming techniques for outbound campaign interaction management.

• Chapter 13, “Routing Points,” on page 187. This chapter covers
programming techniques for routing management, with references to
supplied source-code examples.

• Chapter 14, “Service Status and Connection,” on page 191. This chapter
covers programming techniques for administration management of the
connected services.

• Chapter 15, “Voice Callback,” on page 195. This chapter examines the API
features that support voice callback.

Java—Developer’s Guide 13

Preface Document Conventions

• Chapter 16, “Expert Contact,” on page 201. This chapter examines the API
features that support an Expert Contact application.

• Chapter 17, “Additional Details,” on page 207 presents details about
handling user data, understanding AIL events, and working with library
logging as well as your own application’s logging.

• The appendix, “Voice Sequence Diagrams” on page 213 presents event call
flows for voice interactions.

Document Conventions
This document uses certain stylistic and typographical conventions—
introduced here—that serve as shorthands for particular kinds of information.

Document Version Number

A version number appears at the bottom of the inside front cover of this
document. Version numbers change as new information is added to this
document. Here is a sample version number:
76fr_ref_08-2006_v7.6.1.001.00

You will need this number when you are talking with Genesys Technical
Support about this product.

Type Styles

Italic

In this document, italic is used for emphasis, for documents’ titles, for
definitions of (or first references to) unfamiliar terms, and for mathematical
variables.

Examples: • Please consult the Genesys Migration Guide for more information.
• A customary and usual practice is one that is widely accepted and used

within a particular industry or profession.
• Do not use this value for this option.
• The formula, x +1 = 7 where x stands for . . .

Monospace Font

A monospace font, which looks like teletype or typewriter text, is used for
all programming identifiers and GUI elements.
This convention includes the names of directories, files, folders, configuration
objects, paths, scripts, dialog boxes, options, fields, text and list boxes,
operational modes, all buttons (including radio buttons), check boxes,

14 Agent Interaction SDK 7.6

Preface Document Conventions

commands, tabs, CTI events, and error messages; the values of options; logical
arguments and command syntax; and code samples.

Examples: • Select the Show variables on screen check box.
• Click the Summation button.
• In the Properties dialog box, enter the value for the host server in your

environment.
• In the Operand text box, enter your formula.
• Click OK to exit the Properties dialog box.
• The following table presents the complete set of error messages T-Server

distributes in EventError events.
• If you select true for the inbound-bsns-calls option, all established

inbound calls on a local agent are considered business calls.
Monospace is also used for any text that users must manually enter during a
configuration or installation procedure, or on a command line:

Example: • Enter exit on the command line.

Screen Captures Used in This Document

Screen captures from the product GUI (graphical user interface), as used in this
document, may sometimes contain a minor spelling, capitalization, or
grammatical error. The text accompanying and explaining the screen captures
corrects such errors except when such a correction would prevent you from
installing, configuring, or successfully using the product. For example, if the
name of an option contains a usage error, the name would be presented exactly
as it appears in the product GUI; the error would not be corrected in any
accompanying text.

Square Brackets

Square brackets indicate that a particular parameter or value is optional within
a logical argument, a command, or some programming syntax. That is, the
parameter’s or value’s presence is not required to resolve the argument,
command, or block of code. The user decides whether to include this optional
information. Here is a sample:
smcp_server -host [/flags]

Angle Brackets

Angle brackets indicate a placeholder for a value that the user must specify.
This might be a DN or port number specific to your enterprise. Here is a
sample:
smcp_server -host <confighost>

Java—Developer’s Guide 15

Preface Related Resources

Related Resources
Consult these additional resources as necessary:
• Interaction SDK 7.6 Java Deployment Guide, which details important

configuration data.
• Genesys 7 Events and Models Reference Manual, which contains

information about T-Server features, events, and call models. This is in
addition to the information provided by your T-Server deployment guide.

• Agent Interaction SDK 7.6 Java API Reference, which is located in the
doc/ subdirectory within the product installation directory tree.

• Source code examples are located in .zip and .tar.gz archive files on the
documentation DVD and on the Genesys Developer website, the DevZone,
http://devzone.genesyslab.com.

• Genesys Voice Callback 7.6 Deployment Guide, which provides
configuration information for the Voice Callback Solution.

• Genesys Voice Callback 7.6 Getting Started Guide, which provides an
introduction to the voice callback Solution.

• Genesys Outbound Contact Getting Started Guide, which provides an
introduction to the Outbound Contact Solution.

• Media Interaction SDK 7.6 Java Developer’s Guide, which provides
information on the Media Interaction SDK.

• Agent Interaction SDK 7.6 Application Blocks Guide describes the
Connector, Agent, Simple Open Media Interaction Handling, and Complex
Open Media Interaction Handling Application Blocks.

• Genesys Multimedia 7.6 Deployment Guide describes deployment
procedures for all Multimedia components.

• Genesys Multimedia 7.6 Reference Manual provides a reference listing of
all configuration options and of field codes used in standard responses.

• The Genesys Technical Publications Glossary, which ships on the Genesys
Documentation Library DVD and which provides a comprehensive list of
the Genesys and CTI terminology and acronyms used in this document.

• The Genesys Migration Guide, also on the Genesys Documentation
Library DVD, which provides a documented migration strategy from
Genesys product releases 5.1 and later to all Genesys 7.x releases. Contact
Genesys Technical Support for additional information.

• The Release Notes and Product Advisories for this product, which are
available on the Genesys Technical Support website at
http://genesyslab.com/support.

Information on supported hardware and third-party software is available on the
Genesys Technical Support website in the following documents:
• Genesys Supported Operating Environment Reference Manual

http://devzone.genesyslab.com
http://genesyslab.com/support
http://genesyslab.com/support/dl/retrieve/default.asp?item=B6C52FB62DB42BB229B02755A3D92054&view=item

16 Agent Interaction SDK 7.6

Preface Making Comments on This Document

• Genesys Supported Media Interfaces
Genesys product documentation is available on the:
• Genesys Technical Support website at http://genesyslab.com/support.
• Genesys Documentation Library DVD, which you can order by e-mail

from Genesys Order Management at orderman@genesyslab.com.
• Genesys Developer website, the DevZone,

http://devzone.genesyslab.com.

Making Comments on This Document
If you especially like or dislike anything about this document, please feel free
to e-mail your comments to Techpubs.webadmin@genesyslab.com.
You can comment on what you regard as specific errors or omissions, and on
the accuracy, organization, subject matter, or completeness of this document.
Please limit your comments to the information in this document only and to the
way in which the information is presented. Speak to Genesys Technical
Support if you have suggestions about the product itself.
When you send us comments, you grant Genesys a nonexclusive right to use or
distribute your comments in any way it believes appropriate, without incurring
any obligation to you.

http://genesyslab.com/support/dl/retrieve/default.asp?item=A9CB309AF4DEB8127C5640A3C32445A7&view=item
http://genesyslab.com/support
mailto:orderman@genesyslab.com
http://devzone.genesyslab.com
mailto:techpubs.webadmin@genesyslab.com

Java—Developer’s Guide 17

Chapter

1 About Agent Interaction
(Java API)
This chapter introduces the Agent Interaction Java API, its components,
features, and scope of use. In this chapter, you will find the following topics:

Library Overview, page 17
Architecture, page 19
API Overview, page 25

Library Overview
The Agent Interaction (Java API) lets you build applications to control and
manage voice and multimedia interactions issued by, or intended for, a contact
center agent.
The 7.6 release is backward-compatible with the 7.x releases. It is backward-
compatible with the 6.5.6 release for voice features if your application uses
voice features only.

Components
The Agent Interaction (Java API) comprises the following:
• The Agent Interaction Layer (AIL) library, highly portable, is written

entirely in the Java language, delivered as a set of .jar files.
• The Agent Interaction SDK 7.6 Java API Reference, which is an HTML

tree in the docs/ directory of the installed product directory.
• A set of code examples that exercise some important features of the API,

delivered in .zip and .tar.gz format on the documentation DVD.
• A set of Application Blocks available on the Product CD. See the Agent

Interaction SDK 7.6 Application Blocks Guide for further details.

18 Agent Interaction SDK 7.6

Chapter 1: About Agent Interaction (Java API) Library Overview

AIL Library
The heart of the Agent Interaction (Java API) is the Agent Interaction Layer
(AIL) library. The library can be thought of as two parts: a library core and an
API.

Library Core

The library core manages connections to Genesys solution components. It is
designed to work only with the set of telephone system switches that are
described in the Interaction SDK 7.6 Java Deployment Guide.
The core maintains connections to components of the Genesys Framework,
Genesys Multimedia, Outbound Contact Solution 7.x, and other Genesys
solutions.
The core internally maintains objects used by your applications. These internal
objects are not directly available through the API. Rather, the library maintains
an AilFactory object, which provides you with access to API objects.

Warning! You cannot directly use or modify classes and methods in the
library core. The Agent Interaction (Java API) is restricted to the
use of the library API as described in the Agent Interaction SDK
7.6 Java API Reference delivered with this product.

Library API

The library API provides access to the features, statuses, and events managed
by the library core. It provides a complete set of classes and interfaces to
handle data of the underlying Genesys solutions with which you can design
your own multimedia application.
The example Java programs that accompany this product illustrate the use of
the interfaces for the most commonly used objects and their events (DNs,
places, agents, contacts, and so on), as well as interactions for such services as
voice and callback.

Scope of Use
The Agent Interaction (Java API) enables you to develop applications for the
following purposes:
• Creating a contact-center agent desktop application for Genesys software

implementations.
• Integrating Genesys software with third-party software.
• Creating other, specialized applications specific to your needs.

Java—Developer’s Guide 19

Chapter 1: About Agent Interaction (Java API) Architecture

Typical usage scenarios include:
• Managing agent login activity.
• Monitoring agent status.
• Handling e-mail and collaborative e-mail interactions: sending, receiving,

replying.
• Handling voice interactions: calling, receiving, callback, outbound.
• Handling chat interactions.
• Handling open media interactions.
• Handling outbound campaign participation.
• Handling collaboration sessions.
• Accessing the Standard Response Library.
Your application can handle any inbound interaction, regardless of media:
• Answer a phone call.
• Accept an e-mail.
• Accept a request for a chat session.
• Accept an open media interaction.
Your application can initiate outbound interactions, regardless of media:
• Make a phone call.
• Send an e-mail.
• Make a preview outbound call.
• Make a predictive outbound call.
• Submit an open media interaction.
The AIL library offers you two primary modes of deployment or application
development:
• A stand-alone application client. Your application code binds with the AIL

library at runtime.
• A server application in n-tier architecture. You can write a server

application that binds with the AIL library at runtime, or you can design
your application to work within a container, such as Tomcat, to respond to
web-browser client requests.

Refer to the Interaction SDK 7.6 Deployment Guide for configuration
information pertinent to these two modes.

Architecture
The AIL library core is responsible for maintaining connections to servers,
maintaining context, managing media, consolidating data, obtaining real-time
object information, and providing switch facilities.

20 Agent Interaction SDK 7.6

Chapter 1: About Agent Interaction (Java API) Architecture

The API exposes objects, such as DNs, interactions, and agents, as interfaces
that give access to all necessary information. The core manages the objects
with respect to state machines that guarantee that the model is coherent with
other Genesys components (for example, multimedia solutions) across
supported switches. Changes in the object states are available through events.

Interfaces to Core Objects
You do not access core objects of the Agent Interaction (Java API) library
directly. Rather, you get interfaces on them using the AilFactory.
Your application uses the AilLoader class to get an interface to the internal
AilFactory object. The AilLoader class’ methods establish connections at
application startup, and provide access to the AilFactory.
The internal AilFactory object is itself available as an interface, through which
you access the core Agent Interaction Layer factory object. The AilFactory
object is a singleton.
Because of its singleton design, only one instance of the core AilFactory object
exists at runtime. All AilFactory interfaces obtained through the AilLoader
refer to this same object.
The AilFactory instantiates internal classes and makes them available through
interfaces, as illustrated in Figure 1. You do not instantiate objects directly by
using a new instruction. You rather get an interface by calling a get() method.

Figure 1: Core Factory Interface

Java—Developer’s Guide 21

Chapter 1: About Agent Interaction (Java API) Architecture

The library provides a reference system of unique object IDs that are standard
String objects. Thus, your application manipulates each object by passing its
unique ID as a parameter in methods of the AilFactory interface.

Core Features
The library core is designed around the following features:
• Switch Facilities
• Multithread Implementation
• Synchronization and Error Handling
• Persistence
• Cache Mechanisms
• Back-End Server Connections Management (hot standby, ADDP)

Switch Facilities

The Agent Interaction (Java API) provides a general state model for all media,
including voice, which relies on T-Server–switch pairings. Therefore, the
library core takes into account switch-specific features on suitable switch
facilities. For extensive details about writing applications with respect to
switch features, see Chapter 5, “Switch Facilities,” on page 87.

Multithreaded

The Agent Interaction Layer library is thread-safe and can therefore be run in a
multithreaded environment.
On startup, it creates a thread that maintains all Genesys server connections, a
thread for processing T-Server requests, a thread for publishing events to the
API, and so on. Events from a given T-Server are always forwarded to the API
listeners in the same order as they were received from the T-Server.

Synchronization and Error Handling

Usually, communication with the underlying servers is asynchronous. So an
acknowledgment or result of a request is returned through the common flow of
events sent by a server.
To relieve the developer from managing such asynchronous requests, methods
of the API are made synchronous: the server reply is awaited before the
requesting method returns.
The API uses exceptions for notification about standard errors, communication
errors with the Genesys servers, unavailable actions errors, or status errors.
Moreover, final results of actions are forwarded as events to the registered
listeners.

22 Agent Interaction SDK 7.6

Chapter 1: About Agent Interaction (Java API) Architecture

Because the API is synchronized, a request will block the current thread until it
returns. For voice applications, the request will block until the request has been
completed on the switch or an error occurs.
A request that goes up to the switch or the database might take time. Because
this is not what you want in a single-threaded application, you may want to
develop a multi-threaded application.
The library implements a timing loop that you can configure in the constructor
parameters at the time you create a new AilLoader. This is a defense
mechanism to allow application recovery following switch, network, T-Server,
or other connection failures.
In the event of a failure, an exception is thrown. See the Javadoc API
Reference for details.

Persistence

The Agent Interaction Layer library can establish a link with a Contact Server
and provides a high-level representation of its objects through the interfaces of
the API.
Note that when you have a reference on an object, it can be modified by
another thread. For example, a T-Server event can change the status of an
interaction. If you call the getStatus() method twice on an InteractionVoice,
the other party might have released the call in between. Then the first
getStatus() method will return TALKING and the second getStatus() method
will return IDLE.
The objects Contact and Interaction have a representation in the Contact
Server and thus can be saved. They implement the Savable interface that
controls the coherence between the objects and the Contact Server.
These objects can be manipulated with their identifiers.
For a client application to directly retrieve an Interaction object from the
Contact Server, it can use the getContactServerId() method to get the internal
DBID of the Interaction object.

Cache Mechanism

To improve performance one step further, two different cache mechanisms are
implemented:
• An interaction cache on current manipulated interactions.
• A configuration cache for the objects found in the Configuration Layer,

such as objects implementing the interfaces Agent, Dn, or Place.
Depending on the way you configure your environment, the configuration
cache can be entirely preloaded on startup. This creates a load time
proportional to the amount of data in the Configuration Layer.

Java—Developer’s Guide 23

Chapter 1: About Agent Interaction (Java API) Architecture

The configuration cache is fully dynamic: a modification in the Configuration
Layer is immediately updated in the cache.

Connectivity and Internal Features
The library core provides the event mechanism, through which your Agent
Interaction (Java API) application can notify users about servers’ statuses
(notably, the loss of a connection).
The library core can maintain connections to multiple T-Servers.
The library core is designed to work in a single-tenant environment. It is
possible to create applications that work in multi-tenant environments, but in
this case, Configuration Layer objects that your application uses must be
specified in the application’s Tenants tab (in Configuration Manager), and
these names must be unique. See the Interaction SDK 7.6 Java Deployment
Guide for details.

Framework Compatibility

The Agent Interaction (Java API) connects to the following Genesys servers
within the Genesys Framework:
• Configuration Layer—The Configuration Layer stores configuration

information (such as application parameters) and objects’ descriptions
(such as DNs, places, and persons). The library core monitors the
Configuration Layer to respond to modifications. The library provides full
integration with Genesys Configuration Layer objects such as Agent,
Place, and DN.

• Stat Server—this core component keeps track of resource state for your
Genesys environment.

• T-Server—The Telephony Server handles telephone requests and events by
communicating with switches.

For voice-only mode, your application should connect to the
Configuration Layer and to at least one T-Server. For details about supported
switches, refer to the Genesys Supported Media Interfaces document.

Multimedia Compatibility

The Agent Interaction (Java API) is compatible with Genesys Multimedia, and
provides full multimedia support for voice, e-mail, chat, and open media
interactions.
The Agent Interaction Layer library connects to the following Genesys
Multimedia servers:
• Interaction Server. This server manages non-voice interaction information.

24 Agent Interaction SDK 7.6

Chapter 1: About Agent Interaction (Java API) Architecture

• Chat Server. This server manages chat interactions between agents and
web visitors.

• Universal Contact Server (UCS). This database server is used to retrieve
and store e-mails, history, and contact information. You can manipulate the
contact history and the standard response library.

For e-mail handling, your application should connect to a Configuration Layer,
and a Universal Contact Server and an Interaction Server (both included with
Multimedia).
For chat handling, your application should connect to a Configuration Layer, a
Chat Server, an Interaction Server, and a Universal Contact Server (all three
both included with Multimedia).
For open media handling, your application should connect to a Configuration
Layer, an Interaction Server and optionally a Universal Contact Server (both
included with Multimedia).

Outbound Campaign Support

The Agent Interaction (Java API) connects to the Genesys Outbound Solution
through the Outbound Campaign Server. This server controls and organizes
outbound campaigns.
For outbound campaign handling, your application should connect to, if using
voice outbound, to a Configuration Layer, an Outbound Contact Server, a
T-Server, and, optionally, UCS. If you are using outbound proactively, you
should connect to Interaction Server and at least one T-Server.

Voice Callback Support

The Agent Interaction (Java API) connects to the Genesys Universal Callback
Solution through the Callback Server. This server controls and organizes
callback records.
For Voice Callback handling, the Agent Interaction (Java API) should connect
to a Configuration Layer, a Callback Server, and at least one T-Server.

Multi-Tenancy Support

The Interaction SDKs are not suited for multi-tenant deployments. Although
you can use them for a given tenant in a multi-tenant environment, you would
need a separate instance of your application for each tenant using it. (As an
alternative, the Genesys Platform SDK supports multi-tenancy.)

Java—Developer’s Guide 25

Chapter 1: About Agent Interaction (Java API) API Overview

API Overview
The Agent Interaction (Java API) presents a common programmatic interface
to working with interactions between agents and customers, or between agents,
regardless of media. The API abstracts the Configuration Layer objects and
interaction event flow to a generally common model.
Your client application design is largely a matter of managing the event flow of
an interaction from the agent’s arriving to his or her leaving. You do this by
implementing event listeners on objects. As events reflect changes in the state
of an interaction, your application should test which actions are possible and
make method calls accordingly. Figure 2 shows some commonly used objects
that deal with events, including interactions.

Figure 2: Objects and Events in AIL (Not applicable to all scenarios)

To ensure good performance and avoid deadlocks, listeners should not run a
time-consuming process, but rather should use a thread to do the work (see the
section “Implementation” on page 31).
To optimize the network activity, the API also includes fast access through
summary classes which provide lightweight interfaces to commonly required
data for main objects. These concepts are illustrated for agent and interactions
in Figure 3.

Agent

Place

Dn

Interaction

1

0..1

1

*

*

*

PlaceListener

DnListener

InteractionListener

AgentListener

DnEvent

Media1
*

*

0..1

1

AgentEvent

PlaceEvent

InteractionEvent

ObjectEvent

26 Agent Interaction SDK 7.6

Chapter 1: About Agent Interaction (Java API) API Overview

Figure 3: Some Lightweight Interfaces for Agents and Interactions

Packages
The Agent Interaction SDK 7.6 Java API Reference (open index.html in the
product installation directory’s docs/ subdirectory) shows that the API
comprises the following packages:
• com.genesyslab.ail—Exposes the interfaces and classes for interactions,

media, and configuration objects.
• com.genesyslab.ail.event—Exposes interfaces and classes pertinent to

Event and Listener interfaces for interactions, media, and configuration
objects.

• com.genesyslab.ail.exception—Exposes the classes and exceptions for
errors that occur.

• com.genesyslab.ail.collaboration—Exposes interfaces for collaboration
features.

• com.genesyslab.ail.srl—Contains interfaces to manage standard
responses.

• com.genesyslab.ail.srl.event—Contains interfaces to manage standard
response events.

• com.genesyslab.ail.workflow—Contains interfaces to manage workbins.
• com.genesyslab.ail.monitor—Contains interfaces to get real-time

information about agent status.

Agents
The Agent interface contains the data for a Person and allows this person to
work in a Place. The Place is a set of media and DNs. Media include e-mail,
chat, and open media. DNs are specific to voice interactions.

Agent

Interaction

Person PersonSummary

InteractionSummary HistoryItem

Java—Developer’s Guide 27

Chapter 1: About Agent Interaction (Java API) API Overview

Figure 4: The Agent Model

The Agent interface includes the following features:
• Access to data for the Person corresponding to this agent.
• Management of the agent’s activity (login, logout, ready, not ready) on the

Place and its media.
• Management of the agent’s status on the Place and its media.
• Access to the Place’s features:

Create interactions according to the available media (including voice).
Use the outbound and callback services of this place.
Monitor the agent status on the place’s media and DNs.

Place, DNs, and Media

To access CTI features as well as multimedia features, the agent must be
logged in. If the agent is logged into one media type or DN of the place, the
agent is logged into the place. In this case the place, its DNs, and its media are
associated with the agent.
The DNs and medias assigned to a place are defined in the Configuration
Layer, and both are managed through separated and distinct methods of the
Agent and Place objects.
At runtime, the medias only exist in the Interaction Server. To get the media of
a place, your application must perform a login to at least one media type by
calling the loginMultimedia() method. As a result, the available media are
added to the place, and the ones specified in the request are logged in. If your
application logs out media per media, the Interaction Server considers that the
place is still logged in. To definitely logout of the place, your application must
perform a logoutMultimedia(null, reason, description) call, that will logout
all medias at once, including in the Interaction Server.

Exists as CME Objects

Agent

Place

Dn

Interaction
Voice

1

1

1

1

n

n

28 Agent Interaction SDK 7.6

Chapter 1: About Agent Interaction (Java API) API Overview

Figure 5 shows the place PLACE_0, where agent agent0 has logged into a DN
DN_0 and to the place’s e-mail media.

Figure 5: Place and Agent Login

As shown in Figure 5, if the agent logs out from all the media, they are
removed from the place. Once the agent is logged in to the place, that agent has
to log out of that place before another agent can use the place.

Interactions
An Interaction object represents an interaction between a customer and an
agent. This is true regardless of what media the interaction relies on, and
regardless of whether a customer or an agent initiated the interaction.

agent0 requests to logout of
all media, not only EMAIL

agent0 requests to logout
DN_0: agent0 logs out of
PLACE_0

PLACE_0

agentId = "agent0" MediaStatus
LOGGED _IN

EMAIL

MediaStatus
LOGGED _OUT

CHAT

VoiceMediaStatus
LOGGED_IN

DN_0

PLACE_0

agentId = "agent0" MediaStatus
LOGGED _OUT

EMAIL

MediaStatus
LOGGED _OUT

CHAT

VoiceMediaStatus
LOGGED_IN

DN_0

PLACE_0

agentId = "agent0" MediaStatus
LOGGED _OUT

EMAIL

MediaStatus
LOGGED _OUT

CHAT

VoiceMediaStatus
LOGGED _OUT

DN_0

Java—Developer’s Guide 29

Chapter 1: About Agent Interaction (Java API) API Overview

Types of Interactions

Because of its Factory-based design, the API provides interfaces for
interactions on all media. These are abstractions of mechanisms and objects
found in the Genesys servers, or consolidated views of them. Therefore, they
might not exactly match the Genesys objects, but might instead represent them
with a higher level of abstraction.
An interaction can be an e-mail, a voice call, a chat session, or any number of
other types of media. Several interfaces describe the available interactions, as
illustrated in Figure 6.

Figure 6: Interaction Hierarchy

In the 7.x releases, some interactions have disappeared as, for example,
InteractionVoiceCallback, and InteractionVoiceOutbound. New interactions
have been added to offer new features and to consolidate the interaction model.
For example, InteractionMultimedia is the superinterface for any interaction
handled by a media type, and InteractionInvitation* are collaborative
interactions. For further information, see Chapter 7, “E-Mail Interactions,” on
page 109.
An agent can use interactions according to:
• The underlying media: Interactions depend on the media available on the

place. For example, if an agent is logged into a place and its DNs, he or she
can use voice interactions. If an agent is not logged into the e-mail media
of a place, the agent cannot use any e-mail interactions.

Interaction

InteractionChat

InteractionVoice

InteractionMail

InteractionMailInInteractionMailOut

InteractionMultimedia

InteractionInvitation
ParentInInteractionInvitationOut InteractionInvitationInInteractionInvitation

ReplyOut

Interaction
OpenMedia

30 Agent Interaction SDK 7.6

Chapter 1: About Agent Interaction (Java API) API Overview

• The underlying servers connected to the factory: According to the type of
server connected, the corresponding feature is either available or not. For
example, if no interaction server is connected, the agent cannot use e-mail
interactions.

Note also that an interaction can be created and manipulated well before it
actually exists in the Genesys servers. It may still exist afterwards, as well.

Interaction Characteristics

An interaction has the following characteristics:
• A type that is associated with its interface. For example,

Interaction.Type.EMAILIN is associated with the InteractionMailIn
interface describing an incoming e-mail interaction.

• A status that is refreshed in events. The different interaction statuses are
available in the Interaction.Status enumeration. For example, your
application can use the interaction status for informative purposes, or for
GUI purposes, such as displaying panels.

• Agent actions that correspond to the methods of the interaction’s interface.
Your application can determine whether an action is possible at a certain
time by calling the methods of the interaction’s Possible superinterface.

• Attached data, available as key-value pairs. These include Business
Attributes defined in the Configuration Layer. See “Attached Data” on
page 207 for further details.

The com.genesyslab.ail package includes an AbstractInteraction interface,
which is the base for all interactions, including agent and routing interactions.
An interaction’s status is made available through the event mechanism, as
explained in the following sections.

Events
The event mechanism provides your application with the means of detecting
changes in the status or structure of some objects.
Some objects have either a status (such as RINGING), or a structural relationship
(such as a DN that has an Interaction), or both. Because such objects are
active, they may change their state themselves. Alternately, another object may
change an object’s state because of some external event.
In general, there are two techniques by which applications can become aware
of changes in other objects: the pull model and the push model.
• In the pull model, the application constantly requests state or relationship

changes from objects (pulling).
• In the push model, also known as the event model or callback model, the

application implements a well-known method or class as an interface for
the objects to call at the time their states or structures change (interrupt).

Java—Developer’s Guide 31

Chapter 1: About Agent Interaction (Java API) API Overview

Event Listeners

The AIL library core provides the push model through the Observer pattern.
Objects such as Interaction, Dn, or OutboundService implement this pattern.
The mechanism is that of sending an event on an object to a listener. This
permits each object to implement its own set of listeners and methods.
Generally, a listener declares only one method, a handleXxxEvent() method,
that takes an event interface as an inbound parameter. The inbound event
interface is highly dependent on the original interface for which it is intended.

Implementation

To receive notifications of events on an object, your application must have a
class that implements the listener interface that the object requires. Your
application must also register its listener class with the object by using an
explicit addXxxListener() method on the object interface. As events occur on
the object, the library passes event interface objects to the listener’s event-
handling method with information about changes in the object’s state.
Generally, the pattern can be defined as follows: An object, Xxx, implements
the event-listener pattern by defining two methods, the addXxxListener()
method and the removeXxxListener() method, that take as an inbound
parameter a reference to an interface XxxListener. The XxxListener class
within the application declares a handleXxxEvent() method, which takes an
XxxEvent as its inbound parameter.
For example, the Place interface provides two methods: the
addPlaceListener() method and the removePlaceListener() method. These
two methods take an argument that is a reference to a PlaceListener interface.
Consult the Javadoc API Reference to see which methods the interface
PlaceListener contains.
Your application must define a class that implements a PlaceListener
interface. This class must define, at least, a handlePlaceEvent() method that
takes a PlaceEvent argument. (Alternately, your application can reuse an
existing class, redefining its method). Then your application registers this
listener class by calling the addPlaceListener() method on the Place object,
referencing your PlaceListener class as the argument.
When something has changed on the Place object, the AIL core directly calls
the handlePlaceEvent() method of your listener, passing in a PlaceEvent
reference, and executing the code you defined there. See the Javadoc API
Reference for features of the PlaceEvent.
To discontinue event communication between the Place object and your
application, call the removePlaceListener() method on the Place.
The code you write for a listener should be extremely lean, primarily passing
event data to another thread in your application that first determines events and
their attributes as they occur, and then takes appropriate actions.

32 Agent Interaction SDK 7.6

Chapter 1: About Agent Interaction (Java API) API Overview

The library propagates some events through several listeners. For example,
InteractionEvent is sent to the InteractionListener, then to the DnListener of
the Dn handling the interaction, then to the PlaceListener of the Place to which
the Dn belongs, and finally to the AgentListener of the Agent logged into the
Place.
Thus PlaceListener inherits from DnListener, and AgentListener inherits from
PlaceListener. Eventually, an AgentListener receives AgentEvents,
PlaceEvents, DnEvents, and InteractionEvents.
Table 1 shows an example of which events the listeners can receive.

Threading

AIL events are time-ordered and should be published in listeners as soon as
they occur to ensure workflow and information consistency. Therefore, the
library core manages listeners with respect to the events’ order, using a special
thread—the Publisher Thread—dedicated to this task. When an event occurs,
this Publisher Thread directly calls the registered listeners. It sequentially

Table 1: Received Events’ Example

Agent
Listener

Place
Listener

Dn
Listener

Interaction
Listener

Campaign
Listener

Interaction
Callback
Listener

Interaction
Chat
Listener

Interaction
Outbound
Listener

Agent
Event

X

Place
Event

X X

DnEvent X X X

Interaction
Event

X X X X

Campaign
Event

X

Interaction
Callback

Event

X

Interaction
Chat

Message
Event

X

Interaction
Outbound

Event

X

Java—Developer’s Guide 33

Chapter 1: About Agent Interaction (Java API) API Overview

executes the listeners’ code: a listener must return (terminate) in order for the
following listener to execute. If a listener undertakes an extended operation, it
delays the following processes:
• The propagation of the current event for the following listeners.
• The propagation of new incoming events.
Moreover, a deadlock may occur if a listener waits for the return of an AIL
method that itself may be waiting for an event.
If you want to perform an extended treatment, or a treatment making calls to
AIL methods, be sure that your application implements such code in a separate
thread, as illustrated in the following code snippet:

// Avoid:
public void handleXxxEvent(XxxEvent myEvent){

///...
// my treatment
///

}

// Prefer:
public void handleXxxEvent(XxxEvent myEvent){

java.lang.Runnable treatEvent = new java.lang.Runnable() {
public void run() {

//...
// my treatment
///...

}
}
java.lang.Thread doTreatment = new java.lang.Thread(treatEvent);
doTreatment.start();

}

The above code snippet shows one example of thread implementation. You
should choose the thread implementation that best fits your application
requirements.

State and Possible Actions
As activities occur on configuration objects and interactions, the AIL core
updates their states and fires events accordingly. But for any one state, your
application can make only a limited set of method calls.
For example, at the time an agent starts your application, the agent must first
log into a DN. Only after logging in can the agent become ready to work. In
other words, an agent cannot become ready if the state of the DN is LOGGED_OUT.
Assume you are creating an agent-facing GUI application that implements a
set of buttons to allow actions, each button corresponding to a particular
appropriate method. Your application should activate buttons only for those

34 Agent Interaction SDK 7.6

Chapter 1: About Agent Interaction (Java API) API Overview

actions that are possible with respect to current state, graying out GUI buttons
for actions that are not possible. For example, at startup, your application
might make only its login button active. After the agent has logged in, your
application might make its ready button and its logout button active, graying
out the login button.
Clearly, your application must test current state before calling any methods.
The API features designed to let your application respond to the states of
interactions and Genesys objects include:
• An event-listener mechanism that passes information, particularly changes

in state, about configuration objects (such as a DN) and interactions.
• A Status enumeration class with values for each possible state.
• An Action enumeration class with values that match associated methods.

For example, the READY action value of a DN is associated with the ready()
method on an Agent.

• An isPossible() method that takes an action value as its parameter and
returns true in the case that your application can call the method associated
with the particular action value. The isPossible() method is available on
objects that inherit from the Possible superinterface.

When an agent attempts to log into a DN, your application’s event listener for
that DN receives an event reflecting the state of the DN. The success of the
agent’s login is not predictable, so your application must test the state of the
DN. If the agent has successfully logged in to the DN, the status of the Dn
object is READY or NOT_READY. Your application must use the Dn.isPossible()
method, passing in the Dn.Action.READY value, to test if it is possible to call the
Agent.ready() method.
In the case that the dn.isPossible(Dn.Action.READY) method returns true, your
application can activate the button that calls the Agent.ready() method.

Java—Developer’s Guide 35

Chapter

2 About the Code Examples
This chapter introduces the code examples that accompany this developer’s
guide. It presents essential design considerations and also some initial tasks
that an application undertakes in using the Agent Interaction (Java API). This
chapter contains the following sections:

Setup for Development, page 35
Application Development Design, page 37
Application Essentials, page 43

Setup for Development
When you install Agent Interaction (Java API), be sure that you have the
required tools, environment-variable values, and configuration data. See the
Interaction SDK 7.6 Java Deployment Guide for details.
The Agent Interaction (Java API) product includes all Genesys libraries and
third-party libraries needed for proper operation, while the Genesys
Documentation CD includes the Agent Interaction SDK 7.6 Java Code
Examples and a PDF version of this developer’s guide.

Agent Interaction (Java API) Installation Directory
The installation directory contains the following subdirectories:
• The ConfigLayerTemplates\ subdirectory contains the .apd files you must

use to create proper client application objects in Genesys’ Configuration
Layer.

• The doc\ subdirectory contains the Javadoc API Reference.
• The lib\ subdirectory contains the .jar files for the Agent Interaction

(Java API).

36 Agent Interaction SDK 7.6

Chapter 2: About the Code Examples Setup for Development

Source-Code Examples
Discussions in subsequent chapters of this guide refer to the supplied source-
code examples. These examples are provided on the Genesys Documentation
CD both in a .tar.gz and in a .zip archive file.
The code examples illustrate the use of the most common features of the Agent
Interaction (Java API). The examples are not tested and are not supported by
Genesys.
When you expand the 76sdk_exmpl_ixn_java-agent archive file containing the
code examples, you will find two directories, which divide code examples into
two categories: standalone and server.
Each directory contains java source files, as well as batch files and shell scripts
designed for compiling and running the examples with reference to that
directory structure.
The structure of the StandAloneExamples directory tree is:
• The top-level directory contains the following files:

README.HTML provides instructions for compiling and running the
examples.
compile.sh and compile.bat are shell scripts (respectively for UNIX
and for Windows) that, with a little editing, you can use to compile the
examples. They take a single argument, which is the name of the
example you want to compile (without the .java extension).
go.sh and go.bat are shell scripts (respectively for UNIX and for
Windows) that, with a little editing, you can use to run the compiled
examples. They take a single argument, which is the name of the
compiled class you want to run.
an agentInteraction.properties file (used by the Common class in
Common.java).

• The agent/ directory contains the example source files.
• The classes/ directory is where the scripts store or access compiled

classes.
• The doc/ directory contains the Javadoc API reference of the code

examples.
The AgentServer directory has a different structure and contains a single
example. This directory should be copied to the webapps directory of your
Jakarta Tomcat server:
• The top-level directory contains the following files:

README.HTML provides instructions for compiling and running these
examples.
.jsp files, that the Jakarta Tomcat Server runs.

• Both source and class files are stored in the WEB-INF/ directory, including
shell scripts that you use to compile the example before you launch the
Agent Server example.

Java—Developer’s Guide 37

Chapter 2: About the Code Examples Application Development Design

Required Third-Party Tools
In order to develop applications with the Agent Interaction (Java API), you
will need a compiler, such as the one delivered in the Java 2 Platform, Standard
Edition, Development Kit (JDK), version 1.4.2, 1.5, or 1.6, from Sun
Microsystems.
In this guide, the 1.4.2 and 1.5 JDKs were used to compile and run the code
examples.

Environment Setup
In order to compile and run, the compiler or the JVM needs access to the
libraries of the Agent Interaction Layer. They are located in the lib/
subdirectory of the Agent Interaction (Java API) product installation directory.
Set the following environment variables:
• Specify all Agent Interaction (Java API) .jar files in the CLASSPATH

environment variable.
• Specify the location of the Java Runtime Environment in the JAVA_HOME

environment variable.

Configuration Data
For the examples provided for this document to work, they need valid
configuration data, including connections to servers and configuration objects
such as Place, Dn, Agent, and so on.
See the Interaction SDK 7.6 Java Deployment Guide for configuration details.
The following items are particularly important:
• The Application Name in the Configuration Layer is used by the AilLoader.
• Your application must use either the Client or the Server templates.
• Be sure the examples are using correct information for the Configuration

Layer host and port, as well as correct information for configuration
objects such as agents, places, media, and DNs.

Application Development Design
The AIL library is designed to work across any network that presents TCP/IP
access to Genesys servers.
You can create a stand-alone client application or an application service for
multiple clients.
• A client application is represented in the Configuration Layer by the client

application template.

38 Agent Interaction SDK 7.6

Chapter 2: About the Code Examples Application Development Design

• A server application is represented in the Configuration Layer by the
server application template.

Client Architecture
If the AIL library is used for a client application (for example, for a stand-
alone agent desktop application), then as a matter of deployment, the AIL
library runs in the same JVM as do the client application code, the GUI, and
other related processes. This is illustrated in Figure 7.

Figure 7: Client Architecture

Usually, in this case, the AIL library manages only one agent per instance of
the application. The library lives as long as the enclosing application.

Server Architecture
There are two variations that a server application may take:
• The classic server model, in which the application manages network

connections, making itself available on a TCP port.
• The web server model, in which the application and AIL library are

embedded in a web container, such as Tomcat.
In server applications in which the library is loaded in a web container, a
presentation service instantiates the AIL library, which establishes the
connections to the Genesys servers. This is shown in Figure 8.

Figure 8: Web Container Server Architecture

Application

Agent Interaction Layer Genesys Framework

Servlet

Agent Interaction Layer Genesys Framework

Application Server

Web ServerBrowser

Java—Developer’s Guide 39

Chapter 2: About the Code Examples Application Development Design

Clients access the web server, which requests pages from the web container.
A servlet requests data from the AIL library to build a page according to the
current states and events.
Either type of server application is likely to handle multiple agents and
sessions simultaneously. The AIL library is designed to support such activity.
See Chapter 3, “Server Applications,” on page 51, for details on server
development.

Topology
The Agent Interaction (Java API) uses a distributed architecture. It can connect
to the Genesys servers, wherever they are, via TCP/IP. This is illustrated in
Figure 9.
The network topology requirement is that the instance of the Interaction SDK
library must be able to connect to Genesys servers.
The Agent Interaction (Java) library core listens to the events coming from
such services as the Configuration Layer, the T-Server, the Interaction Server,
and so forth. The core manages the status of the different objects, and it filters,
preprocesses, and forwards consolidated events to the application using the
library.
Event features are similar, whatever the media. Thus, the Agent Interaction
(Java) library handles activities of all media in a similar way.

Figure 9: Server Application Topology

40 Agent Interaction SDK 7.6

Chapter 2: About the Code Examples Application Development Design

Introducing the Standalone Code Examples
The set of standalone code examples was designed to be interactive. It was also
designed to isolate API-related code from presentation code as much as
possible. Both of these features should make it easier for you to learn the
functionality of the Agent Interaction (Java API).
In order to isolate the API code, separate classes have been set up to read
properties information and to create the application’s graphical user interface,
as shown in Figure 10. As you are learning the API functionality, you can
ignore the AgentInteractionData and AgentInteractionGUI classes.
In 7.6, code examples include some of the Agent Interaction Application
Blocks for Java, which present best practices for the Agent Interaction (Java
API). All examples are built on top of the Connector application block that
connects to the Agent Interaction Layer.
The examples include the SimplePlace class, which is explained in the next
chapter. This class implements the PlaceListener interface and is the base
class for the examples that demonstrate the use of various interaction and event
types. SimplePlace also calls the GUI class and thereby makes various GUI
components, or widgets, available to the examples.

Figure 10: Architectural Overview of the standalone Code Examples

Figure 11 shows the user interface for the standalone code examples. The
window title shows the name of the current example, SimplePlace. The upper-
left corner of the window has a light green background. This shows you which
section of the GUI is active for the example you are working on.
To the right are four tabs. When you are working on voice, e-mail, open media,
or chat examples, the corresponding tab will be selected.

Agent sampleAgent
Place samplePlace
Dn sampleDn

SimplePlace
PlaceListener

Connector
(Application Block)

SimpleConnector

AgentInteractionGui

getUserName()
getPlaceId()
getLoginId()
getPassword()
...

AgentInteractionData

GUI objects only—
no API code

Presents configuration
data read from
agentInteraction.properties

Interaction-based
code examples

Java—Developer’s Guide 41

Chapter 2: About the Code Examples Application Development Design

Figure 11: User Interface for the Standalone Code Examples

There are two main sections on the right side of the user interface. Status
information is provided on the top, and three sets of radio buttons in the middle
allow you to control the display of the event messages that appear in the user
interface’s bottom pane.
The examples generate DN, place, and interaction events. Using the radio
buttons, you can display any of them, or none of them. You can also determine
how much information you want displayed for each log event.
In order to make the event messages easier to tell apart, they have been
assigned their own colors. DN events appear in blue, as shown in Figure 11.
Place events appear in green and interaction events appear in red.
If you have comments on these examples, please contact Genesys, as described
in “Making Comments on This Document” on page 16.

Introducing the Agent Server Code Example
The Agent Server code example was designed to be interactive, and to
illustrate a possible implementation of a web server application on top of the
Agent Interaction (Java API).
The source code of the Agent Server code example separates API code from
the web dynamic code used to display the web graphical user interface,
available in a web browser.
The Agent Server java classes include several thread implementation, used to
collect or update data, and also to notify the clients with the changes reported
by the Agent Server. Also, this code example extends the Connector

42 Agent Interaction SDK 7.6

Chapter 2: About the Code Examples Application Development Design

application block, used to connect to the Genesys framework, as shown in
Figure 12.

Figure 12: Architectural Overview of the Agent Server Code Example

The servlet of the Agent Server code example is composed of several .jsp
pages, that enable the user to send requests to the Agent Server, as shown in
Figure 13.

Figure 13: Web User Interface for Starting the Agent Server

Figure 13 shows a .jsp page used to start the Agent Server. After the server is
started, further .jsp pages are associated with a jsp session that registers for the
being notified by the Agent Server. This makes possible to send agent login
and logout requests, and also to pull events to get data changes.

AgentServer

NotifyThread

StartMonitor
Thread

GetPlaceInfo
Thread

AgentMonitor
Listener

MonitorListener

AgentServer
Listener

used by clients to
be notified of data
changes

notification

Connector
(extended

Application Block)

Java—Developer’s Guide 43

Chapter 2: About the Code Examples Application Essentials

Application Essentials
This section discusses some of the essential API features needed for every
application. The discussion refers to the SimplePlace.java example in the
StandAloneExamples/agent/interaction/samples/ directory, or to the
Connector Application Block.
Before running this example, be sure to edit the agentInteraction.properties
file to specify the correct data in your Configuration Layer (host, port,
application name, and so on). In addition to compiling SimplePlace.java, you
will also need to compile Agent Interaction Java Application Blocks, and the
following code example files: AgentInteractionData.java,
AgentInteractionGui.java, and SimpleConnector.java.
Every application, whether client or server, must use the AilLoader class to get
a reference to the AilFactory, passing correct configuration data arguments.
The Connector Application Block is in charge of this task. Connector is a very
simple class that shows how to get an instance of the AilLoader and then uses
the AilLoader.getAilFactory() method to get the AilFactory interface.

Use AilLoader
The AilLoader is a wrapper to the startup process of the AIL library. Its
primary goal is to pass configuration information to the core factory and to
return an AilFactory interface on the AilFactory object in the library core.
Use the AilLoader object to make connections to Framework components, to
set up logging, and to get a reference to the AilFactory. Be sure that your
arguments to the AilLoader constructor match the data in the Configuration
Layer.

Get Configuration Data

Before you create a new AilLoader object, you must set or obtain the following
minimum configuration data:
• Configuration Layer host name
• Configuration Layer port
• Backup Configuration Layer host name
• Backup Configuration Layer port
• Application login name to the Configuration Layer
• Application login password
• Interaction SDK application mode: either CLIENT or SERVER
• Connection checking time period
• Server request timeout limit

44 Agent Interaction SDK 7.6

Chapter 2: About the Code Examples Application Essentials

The following code snippet is from the Connector class:

// Connect to the Agent Interaction Layer
if(applicationParameters != null) {

 mAppParam = applicationParameters;
 mAilLoader = new AilLoader(
 mAppParam.getPrimaryHost(),
 mAppParam.getPrimaryPort(),
 mAppParam.getBackupHost(),
 mAppParam.getBackupPort(),
 mAppParam.getDefaultUsername(),
 mAppParam.getDefaultPassword(),

 mAppParam.getApplicationName(),
 AilLoader.ApplicationType.getApplicationType(

mAppParam.getApplicationType().toInt()),
 mAppParam.getReconnectionPeriod(),
 mAppParam.getTimeout());

Set Up Logging

As you can see from the Javadoc description in the com.genesyslab.ail
package, the AilLoader class includes methods for setting logging.
To set the logging level to debug, use this statement:

ailLoader.debug();

Likewise, to turn off the console log, issue this statement:

ailLoader.noTrace();

Similarly, you can issue a method that tells the Agent Interaction Layer not to
output log messages to a file:

ailLoader.noLogFile();

AIL allows you to change the location of your log file. The default log file
destination is ./ail.log. You can specify a different log file directory location
and a new filename for the log file, as shown in the Connector application
block, like this:

if(mAilLoader != null) {
if(file != null) {

mAilLoader.setDefaultLogFileName(file);
}if(path != null) {

mAilLoader.setDefaultLogFilePath(path);
}

}

Java—Developer’s Guide 45

Chapter 2: About the Code Examples Application Essentials

Get a Reference to AilFactory

Use the AilLoader class to get a reference to the AilFactory interface.

// Initialize and return the AIL Factory
ailFactory = AilLoader.getAilFactory();

Use AilFactory
If you supply the correct parameters to AilLoader, the call to the
AilLoader.getAilFactory() method triggers the startup process (if the core
factory of the Agent Interaction Layer has not yet been instantiated). This is
what AIL does:
• Creates the instance of the core Agent Interaction Layer factory.
• Creates and initializes connections to the Genesys Server.
• Initializes the caches.
• Returns an AilFactory interface to the core factory.
The AilFactory, when instantiated, requests an application name from the
Configuration Layer.
When the getAilFactory() method returns, the Agent Interaction Layer is
initialized and ready. (If NULL, an error occurs. See initexception.)
Through the AilFactory interface, you can now instantiate almost all of the
objects your application needs. When each object is created, the core assigns it
a unique String identifier. Retrieving an object’s identifier is important if your
application works with more than one instance of an object type (for instance,
multiple DNs on a place).

Get Application Information

The AilFactory.getApplicationInfo() method returns an ApplicationInfo
object that has methods for retrieving most of the data that the Configuration
Layer has about your application. See the Javadoc description for the
ApplicationInfo class in the com.genesyslab.ail package.

ApplicationInfo appInfo = ailFactory.getApplicationInfo();

The following code snippet shows some of the information available from
ApplicationInfo.

int appID = appInfo.mApplicationDBID;
String appName = appInfo.mApplicationName;
String appVer = appInfo.mApplicationVersion;
Map appOpts = appInfo.mOptions;

46 Agent Interaction SDK 7.6

Chapter 2: About the Code Examples Application Essentials

Use Agent
Once you have your AilFactory object, you can log in an agent to start
working. An agent is a person sitting at a place. A place contains a set of DNs
and media that the agent uses to work. The Dn object identifies an access point
in a switch that can handle a phone call. The Media object identifies a media
type that handles multimedia interactions.
The Agent and Place interfaces have two distinct sets of methods, one for agent
activity occurring on the non-voice media of a place and one for agent activity
occurring on the DNs of the place.
For example, to have your application associate an agent with a place’s media,
you would use the loginMultimedia method. This method enables you to
specify the media types to link to the agent’s session.
If, on the other hand, you want to allow the agent to use the place’s DNs, your
application can either:
• Use the login method, which attempts to associate the agent with every

one of a place’s DNs.
• Retrieve the place’s DNs with the Place.getDns() method, and attempt to

link the agent to a restricted set of DNs.

Note: Although agents can log into only a single place, they can also be
linked to DNs or media types that are not associated with that place.

The event flow for an agent login on the DNs of a place is illustrated in
Figure 14.

Java—Developer’s Guide 47

Chapter 2: About the Code Examples Application Essentials

Figure 14: Configuration and Logging In

Figure 14 shows the DnEvent events received due to two consecutive agent
actions, login and ready, performed on DNs. Those events propagate the status
changes of the DNs as a result of the agents’ actions.
Similarly, when performing agent actions on media, your application receives
PlaceEventMediaStatusChanged events propagating media status changes.
The following code snippet gets an Agent object interface from the
AilFactory.getPerson() method. It passes in a String that names an agent
person in the Configuration Layer, and casts the returned person as an Agent.
The Agent.checkPassword() method takes the agent’s password as a String and
returns true if the password is correct.

Place place = ailFactory.getPlace(place_name);
Agent agent = (Agent) ailFactory.getPerson(agentname);
if (agent.checkPassword(agentpassword)) {

agent.login(place, loginId, agentpassword,
queuename, Dn.Workmode.MANUAL_IN, null); }

The Agent.login() method activates the login() methods on the place and its
DNs. The arguments to the Agent.login() method are:
• place—Place interface for the Agent’s place.
• loginId, agentpassword, and queuename—String names for valid

Configuration Layer objects.

AIL Client Gensys Solution

ailFactory
:AilFactory agent:Agent Dns:Dn

getAgent()
create

checkPassword()

login()
login ()

RequestLogin

Event Logged In

DnEvent notReady
DnEvent notReady

ready()
ready()

RequestReady

Event Logged In

DnEvent Not Ready, reason logged-in

DnEvent Not Ready, reason logged-in

48 Agent Interaction SDK 7.6

Chapter 2: About the Code Examples Application Essentials

• Dn.Workmode.MANUAL_IN—Constant value that sets the workmode for the
default DN on the agent’s place.

• The final argument, in this case null, is a Map object that stores reasons for
the login event on the DN.

After the Agent.login() method successfully executes, the agent is logged in
on all the DNs of its default place. The agent must change its status to ready.
After the call to the Agent.ready() method, the agent is ready to receive voice
events and interactions. This same ready() method is available on the Agent,
Dn, and Place interfaces.

Receive Events
To receive events on an object requires a class that implements the appropriate
listener interface and implements all the methods for the listener interface. The
class must register as a listener on that object. Each event sends an appropriate
event object to a well-known listener event-handling method in the class. The
code for the handler inspects the inbound event object and takes appropriate
action.
This follows the Observer Design Pattern, similar to the listeners in the JDK.
Take, for example, the job of tracking event flow on an agent. The API features
involved include the Agent interface (in the com.genesyslab.ail package)
along with the AgentEvent interface and the AgentListener interface (in the
com.genesyslab.ail.event package).

Agent Interface

To work with a particular agent, get an Agent interface from the AilFactory for
the agent:

Agent mAgent;
mAgent = ailFactory.getPerson(strAgentName);

The Agent interface has many methods, but this discussion concerns its
addAgentListener() method. The following call registers this class as a listener
for events on mAgent:

mAgent.addAgentListener(this);

AgentListener Interface

Create a class that implements the AgentListener interface and implements all
of the AgentListener methods. There are several methods on the AgentListener
interface: implement methods according to your application requirements. For
instance, if your application needs to be updated with interaction status, you
should implement the handleInteractionEvent() method.

Java—Developer’s Guide 49

Chapter 2: About the Code Examples Application Essentials

For every interaction event on the agent, this handler method receives an
InteractionEvent object, which stores current status and other updated
information.
The other AgentListener methods can be empty if you are not interested in
inspecting their inbound event objects.

InteractionEvent Interface

The InteractionEvent interface supports a variety of methods; its getStatus()
method returns the status of the interaction object at the time the event
occurred:

Interaction.Status getStatus()

The handler code should pass the current state and other information (such as
the InteractionId for the interaction) to another thread that can take
appropriate actions. Design your handlers to return as quickly as possible,
because the library core works with all handlers sequentially, waiting for each
handler to return before working with the next handler.

Get Real Time Information
The com.genesyslab.ail.monitor.Monitor interface provides monitoring
features for agent status. You can subscribe to an agent, and get real-time
information about that agent’s status which is available in the
AgentCurrentState category from the Stat Server.
To get a Monitor instance, call the AilFactory.getMonitor() method, as shown
here:

Monitor mMonitor = ailFactory.getMonitor();

Then, to monitor status changes, implement a MonitorListener class that
receives MonitorEvent events, as shown in the following code snippet:

public class SimpleMonitorExample implements MonitorListener
{

public SimpleMonitorExample (Monitor exampleMonitor,String object_id)
{

//Adding the listener
exampleMonitor.subscribeStatus(ObjectType.PERSON, object_id,

Notification.CHANGES_BASED, this);
}

public void handleMonitorEvent(MonitorEvent event)
{

 //Implementation of the listener method

50 Agent Interaction SDK 7.6

Chapter 2: About the Code Examples Application Essentials

 //...
}

}

The Agent Server code example deals with the com.genesyslab.ail.monitor
package. For further details, see “Agent Server” on page 53.

Java—Developer’s Guide 51

Chapter

3 Server Applications
This chapter introduces principles to write agent server applications developed
on top of the Agent Interaction (Java API).
As explained in Chapter 2, Genesys is developing two sets of examples. This
chapter will detail the server code example that demonstrates these voice
interactions. It consists of the following sections:

Five Rules to Build an AIL Server Application, page 51
Agent Server, page 53

Five Rules to Build an AIL Server
Application

Now that you have been introduced to the Agent Interaction (Java API), it is
time to outline the rules you will need to observe if you wish to develop a
server application.
There are five basic things you will need to do in your server applications:
• Get the AilFactory singleton. When your application gets the reference

on this factory, your application should test whether it is null to get the
corresponding exception, as shown in the getAilFactory() method of the
Connector application block.

mAilFactory = AilLoader.getAilFactory();
if(mAilFactory == null) {

ServiceException _es = AilLoader.getInitException();
throw new RequestFailedException("AilFactory is not

initialized " + _es);
}

52 Agent Interaction SDK 7.6

Chapter 3: Server Applications Five Rules to Build an AIL Server Application

Note: Using the Connector application block ensures that your server
application properly handles connection.

• Manage the AilFactory singleton. At runtime, your application deals
with a unique instance of the AilFactory. If you need to restart the AIL
library and its connections to Genesys servers, first kill your instance of
AilFactory by calling the AilLoader.killFactory() method, as shown in
the release() method of the Connector application block.

mAilLoader.killFactory();

If this method call succeeds, you can get a new reference on the AilFactory
singleton as previously detailed in this section.

Note: Genesys recommends the use of ailLoader.getFactory() in your
AIL client application (instead of having a reference to the
singleton throughout the code). This decreases the risk of reference
issues associated with killFactory usage.

• Keep references on AIL objects. If your server application gets a
reference on an AIL object, for example a Place instance by calling the
AilFactory.getPlace() method, this instance exists as long as you keep its
reference alive. When the reference no longer exists, the object is garbage-
collected.
In terms of performance, if your application is likely to use this object
often, your application should keep a reference to it to avoid having to
rebuild the instance. Building AIL objects is time consuming, as it requires
collecting data from Genesys servers.

• Implement multi-threading for event-handling. As explained in
Chapter 1 on page 32, a Publisher thread ensures that AIL events are
published sequentially with respect to their time order. So, in listeners’
methods, your server application should use multi-threading to process
events, and thereby avoid deadlocks.

• Implement a PlaceListener or an AgentListener. If your server
application listens to a place, you are sure to get all interaction, DN, and
media events that occur on the place.

The Agent Server code example has been designed to provide you with a very
simple server that makes stand out two of these rules, that is, multi-threading
implementation and AilFactory management through the Connector
application block.
Now it is time to see how they are implemented in the Agent Server example.

Java—Developer’s Guide 53

Chapter 3: Server Applications Agent Server

Agent Server
The Agent Server code example contains two types of files to be installed on a
Tomcat server:
• The java source files, used to build the server application, as shown in

Figure 12 on page 42.
• The JSP files, which compose the servlet part of this example. They

provide clients with a GUI and manage both client sessions and requests
for the server.

When the user loads the main_frame.jsp page in a browser, a form appears to
launch the server if it is not started, as shown in Figure 15.

Figure 15: Agent Server at Startup

When the Agent Server is running, it provides the JSP client application with
agents’ monitoring status. The JSP client application displays these status,
registers for monitoring changes, and includes a frame that can send login and
logout requests to the Agent Server, as shown in Figure 16.

54 Agent Interaction SDK 7.6

Chapter 3: Server Applications Agent Server

Figure 16: Agent Server is Started

Because the AgentServer example uses classes of the
com.genesyslab.ail.monitor package to monitor agent status, this example
does not deal with PlaceListener or AgentListener classes.

Connect to AIL
The Agent Server example uses an extended Connector application block to
perform AIL connection. This extension consists in adding a few lines of code

Java—Developer’s Guide 55

Chapter 3: Server Applications Agent Server

to the inner ServiceListenerAdapter class of the Connector application block,
in order to start monitoring agent status as soon as the statistic service is
available.
The following code snippet show the source code added to the
ServiceListenerAdapter.handleServiceStatusChanged() method.

/// Added source code specific to AgentServer example
if(service_type == ServiceStatus.Type.STAT && agentServer != null)
{

if(service_status == ServiceStatus.Status.ON)
 agentServer.setMonitorListener(true);
else

agentServer.setMonitorListener(false);
}

Note: The extended Connector application block corresponds to the
agentserver.Connector class of the Agent Server code example.

Implement Multi-Threading
The AgentServer class implements three inner threads to handle Agent
Interaction (Java API) events:
• GetPlaceInfoThread to collect place data.
• StartMonitorThread to start monitoring agent status.
• NotifyThread to handle monitor events.

Collect Place Data

At the server’s startup, the AgentServer() constructor retrieves two types of
data:
• The list of available agents to build a map that client application will

display.
• The list of default places for further login actions.

//Get agent summaries to build the status map
buildStatusMap();
//Get default places for future login actions
GetPlaceInfoThread p = new GetPlaceInfoThread();
p.start();

To get the list of available agents, the buildStatusMap() method retrieves agent
summaries by calling the AilFactory.getAgentSummaries() method. This
method returns light objects and is not time-consuming.

56 Agent Interaction SDK 7.6

Chapter 3: Server Applications Agent Server

statusMap= new HashMap();
Iterator itAgents = factory.getAgentSummaries().iterator();
while(itAgents.hasNext())
{

String id = ((PersonSummary) itAgents.next()).getId();
statusMap.put(id, new String[]{"unknown","unknown"});

}

Because there is no method to get a list of places in the Agent Interaction (Java
API), the AgentServer() constructor runs a GetPlaceInfoThread thread to get
an Agent instance for each agent of the status map and retrieve the associated
default place name, if it exists. This operation is time-consuming because the
AIL library has to build numerous Agent and Place instances, which are not
light objects.

class GetPlaceInfoThread extends Thread {
public void run()
{

//...
Iterator itAgents = statusMap.keySet().iterator();

while(itAgents.hasNext())
{

String agentId = (String) itAgents.next();

Agent myAgent =(Agent) factory.getPerson (agentId);
Place p = myAgent.getDefaultPlace() ;
if(p!= null)

placeVector.add(p.getId());
}

}
}

Start Monitoring Agent Status

The ServiceListenerAdapter.handleServiceStatusChanged() method calls the
AgentServer.setMonitorListener() method to start monitoring agent statuses
if the statistic service is available.
This method creates a StartMonitorThread thread which retrieves person
summaries and registers an AgentMonitorListener for each agent, as shown
here:

Iterator itAgents = factory.getAgentSummaries().iterator();
monitorListener = new AgentMonitorListener();

while(itAgents.hasNext())
{

Java—Developer’s Guide 57

Chapter 3: Server Applications Agent Server

PersonSummary itAgentSummary = (PersonSummary) itAgents.next();
try
{

monitorManager.subscribeStatus(IdObject.ObjectType.PERSON,
itAgentSummary.getId(),
monitorManager.getChangesBasedNotification(1),
monitorListener);

}
catch(RequestFailedException __e)
{

System.out.println(__e.getMessage());
}

}

dataAvailable = true;
notifyListeners("Agent Server is monitoring agent information.");

For further details about the AgentMonitorListener implementation, see below.

Handle Monitor Event

The AgentServer class implements the MonitorListener interface to handle
MonitorEvent events that occur on monitored agents, as shown here:

class AgentMonitorListener implements MonitorListener
{

public void handleMonitorEvent(MonitorEvent event)
{

System.out.println("Event: "+event.getClass().toString());
if(event instanceof MonitorEventAgentStatus)
{

MonitorEventAgentStatus agentEvent =
(MonitorEventAgentStatus) event;

NotifyThread th = new NotifyThread(agentEvent);
th.start();

}
}

}

When a MonitorEvent occurs, the AgentServer instance creates a NotifyThread
which updates the agent status map and notifies all registered clients with this
event, as shown in this code snippet:

class NotifyThread extends Thread {
MonitorEventAgentStatus agentEvent;
public NotifyThread(MonitorEventAgentStatus m_agentEvent)
{

agentEvent = m_agentEvent;
}

58 Agent Interaction SDK 7.6

Chapter 3: Server Applications Agent Server

public void run()
{

MonitorEventAgentStatus.AgentStatus agentStatus =
agentEvent.getStatus();

HashMap status = getAgentStatusMap(0);
status.put(agentEvent.getUserName(),

new String[]{agentEvent.getPlaceId(),
agentStatus.toString()});

notifyListeners(agentEvent.toString());
}

}

The AgentServer.notifyListener() method parses the content of the
listenerVector vector which contains the listeners that registered to get
notified of this event.

Iterator itListeners = listenerVector.iterator();
while(itListeners.hasNext())
{

AgentServerListener listener =
(AgentServerListener) itListeners.next();

listener.handleEvent(msg);
}

Submit Login Requests
The AgentServer class does not requires a place name to perform login actions.
It uses the list of default places built at startup by the GetPlaceInfoThread
thread to perform a login action (see “Collect Place Data” on page 55).

String availablePlace = (String) placeVector.get(0);
String log_message = new String();

Place m_place = factory.getPlace(availablePlace);
m_agent.login(m_place,loginId, password,
 queue, Dn.Workmode.MANUAL_IN,null,null);
placeVector.remove(availablePlace);

notifyListeners(availablePlace+" is no longer available.");

Wrapping up
Previous sections list how the Agent Server class implements Agent
Interaction (Java API) to manage data and events. Now, let’s see how client
applications, that is, servlets made of JSP files, interact with the AgentServer
instance.

Java—Developer’s Guide 59

Chapter 3: Server Applications Agent Server

The main page of the JSP client application is main_frame.jsp. If the server is
not started, it loads the startServerForm.jsp page which displays a form to be
filled in (refer to Figure 15 on page 53). When the user clicks on the Submit
button, the start.jsp page creates a new AgentServer instance, as shown here:

//source from start.jsp
AgentServer agentServer =

new AgentServer(configServerHost,configServerPort,
userName,userPassword,applicationName);

application.setAttribute("agentServer",agentServer);

Then, the main_frame.jsp page can create a client session to connect to the
AgentServer instance, and loads four JSP pages in frames.

//source from main_frame.jsp
<frame src="loginForm.jsp"/>
<frame src="stopServerForm.jsp"/>
<frame src="displayStatus.jsp"/>
<frame src="pullJob.jsp"/>

The loginForm.jsp page displays a GUI to fill in before submitting a login or
logout request. According to the clicked button, it runs the login.jsp or
logout.jsp page, which submits a login or logout request to the server.

//source from login.jsp
String msg = agentServer.login(username,loginID,password,queue);

The StopServerFrom.jsp page displays event information and includes buttons
to quit the client application or to stop the Agent Server. When the user clicks
the Stop button, the stop.jsp page is loaded an stops the Agent Server, as
shown here:

//source from stop.jsp
agentServer.stopAgentServer();

The displayStatus.jsp page is in charge of displaying agent monitoring
information. Because the agent and place information is not available when the
server starts, the servlet tests whether it can retrieve data by calling the
agentServer.isDataAvailable() method as shown in the following code
snippet:

// source from DisplayStatus.jsp
HashMap agentStatusMap = null;
Vector placeVector = null;
if(agentServer.isDataAvailable())
{

agentStatusMap = agentServer.getAgentStatusMap(index);
placeVector = agentServer.getPlaceVector();

60 Agent Interaction SDK 7.6

Chapter 3: Server Applications Agent Server

}

To get events (including monitor events), the client application registers an
AgentServerListener by calling the AgentServer.addListener() method.

// source from DisplayStatus.jsp
AgentServerListener listener = (AgentServerListener)

session.getAttribute("agentServerListener");
if(listener == null)
{

listener = new AgentServerListener();
agentServer.addListener(listener);
session.setAttribute("agentServerListener", listener);

}

The pulljob.jsp page is in charge of pulling events every second, as shown
here:

// source from pulljob.jsp
while(! event)
{

//...
AgentServerListener listener = (AgentServerListener)

session.getAttribute("agentServerListener");
if(listener != null)
{

event = listener.gotEvent;
String msg = listener.getEvent();
if(msg != null)
{

session.setAttribute("event",msg);
}
}else

break;
Thread.sleep(1000);

}
}

When the pulljob.jsp page pulls an event, the application reloads the
main_frame.jsp page to refresh all frames.

Java—Developer’s Guide 61

Chapter

4 Voice Interactions
This chapter shows you how to write AIL client applications that can log in
and out; send, receive, and transfer phone calls; and set up conference calls.
As explained in Chapter 2, Genesys is developing two sets of examples. This
chapter will explain how to use standalone examples that demonstrate these
voice interactions. It consists of the following sections:

Voice Interaction Design, page 61
Six Steps to an AIL Client Application, page 64
SimplePlace, page 65
SimpleVoiceInteraction, page 73
MultipartyVoiceInteraction, page 77
Instant Messaging, page 81
SIP Preview, page 85

Voice Interaction Design
To follow the discussion in this chapter, you will need the Agent Interaction
SDK 7.6 Java API Reference, which is located in the doc/ subdirectory under
the Agent Interaction (Java API) product installation directory, and the source
code for the SimplePlace.java and SimpleVoiceInteraction.java examples.
Refer to the discussion in Chapter 2 for more information on how to use these
examples.

Voice Interaction Data
Voice interactions are available through the InteractionVoice interface of the
com.genesyslab.ail package. The InteractionVoice interface inherits the
Interaction interface, and thus provides a set of interaction data to manage the
interaction; the following list is not exhaustive:
• The interaction ID available through the getId() method.

62 Agent Interaction SDK 7.6

Chapter 4: Voice Interactions Voice Interaction Design

• The date the interaction was created, available with the getDateCreated()
method. This method is only available when a Universal Contact Server is
connected.

• The subject of the interaction available with the getSubject() method.
This method is available only when a Universal Contact Server is
connected.

The InteractionVoice interface manages voice-specific data that characterize a
voice interaction, such as:
• Dialed Number Identification Service (DNIS) number available with the

getDNIS() method.
• Automatic Number Identification (ANI) number available with the

getANI() number.
• The call type defined with the InteractionVoice.CallType enclosed class

and available through the getCallType() method.
The InteractionVoice interface also includes a set of methods that allow your
application to perform agent actions on the interaction. The
InteractionVoice.Action class describes the possible agent actions on voice
interactions, and each of its values corresponds to a method of the
InteractionVoice interface. For instance, InteractionVoice.Action.HOLD
corresponds to the InteractionVoice.holdCall() method.
Since InteractionVoice inherits Possible, your application can use an
InteractionVoice.Action value to test whether or not an action can be
requested at a certain point in time.
InteractionEvents propagate:
• The results of the actions taken on a voice interaction. If successful, those

actions can change the status of the voice interaction.
• Changes in status or information (for example, in attached data, parties, or

extensions).
• The availability of, and changes to, possible actions.
Your application receives an InteractionEvent that has an
InteractionEvent.EventReason.POSSIBLE_CHANGED reason when only the
possible actions of the monitored interaction have changed. This can happen
due to third-party changes that your application might not monitor. (Refer to
the Interaction SDK 7.6 (Java) Deployment Guide for further details).

Note: Do not rely on event reasons to update your application; instead, use a
refreshed list of possible actions. Event reasons, while they may
change the value of what is possible, are primarily for information
purposes.

Java—Developer’s Guide 63

Chapter 4: Voice Interactions Voice Interaction Design

Voice State Event Flow
The current state of a voice interaction is available with the getStatus()
method as an Interaction.Status value.
The status of a voice interaction changes if:
• A successful action is confirmed by an event sent from the Genesys

servers; for example, if the InteractionVoice.Action.HOLD action has been
performed on the call, the voice interaction status changes to
Interaction.Status.HELD.

• A CTI event changed it; for example, if a call is no longer dialing but now
ringing, the voice interaction status changes to
Interaction.Status.RINGING

The voice state diagram in Figure 17 is a generalized example that shows the
main possible states of a voice interaction during its life cycle, considering it as
an incoming or an outgoing phone call.

Figure 17: Generalized Example of a Voice State Diagram (Incomplete)

RINGING

NEW

DIALING

TALKING HELD

DIALING_
HELD

IDLE

dialing

PREVIEW

RINGING
_HELD

retrieved

held

retrieved

held

retrieved

held

ringing

established established

destination_busy
diverted

abandoned
abandoned

released released

done

Note: The state transitions in this diagram are event reasons.

64 Agent Interaction SDK 7.6

Chapter 4: Voice Interactions Six Steps to an AIL Client Application

Warning! With respect to other roles for your custom application, that
diagram is intended as a generalized example only. It does not
include all possible life cycle for voice interactions. Both states,
transitions, and EventReasons are switch specific.

Refer to the T-Server Deployment Guide for your environment, to the Genesys
7 Events and Models Reference Manual for model details, and to the Agent
Interaction SDK 7.6 Java API Reference for the full lists of reference material
relating to the Agent Interaction (Java API).
Statuses are switch-specific and are not available for switches that do not
support the feature associated with this status. For example, if the held feature
is not available on a particular switch, the InteractionVoice.Action.HOLD
action is not available. This has consequences for Interaction.Status.HELD
and Interaction.Status.DIALING_HELD status:
• If InteractionVoice.Action.HOLD is unavailable, the

Interaction.Status.HELD and Interaction.Status.DIALING_HELD status are
not reachable.

• Some switches have the Interaction.Status.HELD feature but do not
allow its use during the dialing of the call, in which case the
Interaction.Status.DIALING_HELD status is not reachable.

The possible statuses, transitions and event workflow differ from one switch to
another. For additional details, see also “Switch Facilities” on page 87.

Six Steps to an AIL Client Application
Now that you have been introduced to the Agent Interaction (Java API), it is
time to outline the steps you will need to work with its events and objects.
There are six basic things you will need to do in your AIL applications:
• Implement a listener from among those provided by AIL. The new

examples use a PlaceListener, since this listener has access to all three of
the event types you will most likely need—namely, Dn events, Place
events, and Interaction events. Here is how SimplePlace does this:

public class SimplePlace implements PlaceListener {

• Connect to AIL. The code examples use the Connector application block
to do this, as explained in “Application Essentials” on page 43:

Connector connector = new Connector();
connector.init(agentInteractionData.getApplicationParameters());

Java—Developer’s Guide 65

Chapter 4: Voice Interactions SimplePlace

• Set up button actions (or actions on other GUI components) tied to AIL
functions. The standalone code examples have a linkWidgetsToGui()
method that does this.

• Register your application for events on the object that your listener refers
to. The standalone code examples use a PlaceListener, so they use this
method call to register with the Place object:

samplePlace.addPlaceListener(this);

• Synchronize the user interface with the state of the AIL objects to which
your application refers. The standalone examples have two methods for
this: setPlaceWidgetState() and setInteractionWidgetState(). These
methods make use of the isPossible() method to determine whether the
action linked to a particular button is possible. If it is, the button is enabled,
like this:

loginButton.setEnabled(sampleDn.isPossible(Dn.Action.LOGIN));

• Add event-handling code to the appropriate AIL event handler. The
standalone code examples use the handleDnEvent(), handlePlaceEvent(),
and handleInteractionEvent() methods, which are required by the
PlaceListener interface.

The standalone code examples have been designed to make these steps stand
out so that you can quickly learn to write your own real-world applications.
Now it is time to see how they are implemented in the SimplePlace example.

SimplePlace
The SimplePlace example provides a GUI-based desktop application that lets
agents log in, set their status to ready, and perform other preliminary tasks.
These tasks use Dn and Place events.
The buttons for these tasks are in a single panel in the upper-left corner of the
user interface, as described in Chapter 2, “About the Code Examples” and
shown again in Figure 18.

66 Agent Interaction SDK 7.6

Chapter 4: Voice Interactions SimplePlace

Figure 18: SimplePlace Example at Launch Time

The panel containing these buttons has a light green background. Note that the
buttons themselves will be changing from enabled to disabled, and back again,
as the agent status changes based on the flow of Dn and Place events.
There is also some status information on the left, on the right and a log panel at
the bottom of the application window.
This section will focus on the API features for working with Dn and Place
events, but most of the concepts you will learn here can be applied to
Interaction events, too.
The following subsections show how SimplePlace carries out the six steps to
writing an AIL standalone application.

Implement a Listener
This is a simple step, which is accomplished in the class declaration:

public class SimplePlace implements PlaceListener {

AIL has four listener interfaces. SimplePlace uses PlaceListener because it can
handle the three types of events used in the code examples:
• DnEvent—The standalone code examples use a login method that ties an

agent to a DN. DnEvents inform the application of the agent’s status in
relation to the DN; for instance, whether the agent can log in, or whether
he or she can be made ready to make and receive calls.

Java—Developer’s Guide 67

Chapter 4: Voice Interactions SimplePlace

• PlaceEvent—The standalone code examples also use a multimedia login
that is associated with a place. This login allows the agent to process things
like e-mail or open media interactions. These events are similar to DnEvents
and inform the application whether the agent can log in for multimedia
processing, and whether he or she can be made ready to send and receive
multimedia interactions.

• InteractionEvent—These events are generated as interactions go through
their life cycle. For instance, when there is an incoming call, the
application will receive an interaction event with a status of RINGING.
When the agent answers the call, the status of the interaction changes to
TALKING and the application will receive an event to that effect.

Connect to AIL
The standalone code examples include the SimpleConnector class which
implements a WindowListener. This class makes calls to the Connector
application block to establish the all-important connection to the AIL, and to
release the connection when the user closes the application.
For more information on how the Connector application block connects, please
refer to the “Application Essentials” section of Chapter 2. For the purposes of
this example, here is all you need to do:

Connector connector = new Connector();
connector.init(agentInteractionData.getApplicationParameters());

Set up Button Actions
SimplePlace can carry out the five actions that an agent takes to set his or her
status: log in, log out, become ready, become not ready, and carry out after-call
work. The AgentInteractionGui class has created buttons for each of these
actions, but at this point they do nothing. It is the job of SimplePlace to bring
these buttons to life.
To do this, SimplePlace has a method called linkWidgetsToGui() that links to
the GUI buttons and then sets up actions for them. For each button, there is a
statement like this:

loginButton = agentInteractionGui.loginButton;

Now that loginButton is available, SimplePlace can assign an action to it:

loginButton.setAction(new AbstractAction("Log In") {
 public void actionPerformed(ActionEvent actionEvent) {
 try {

if(voice)
// Perform a voice-only login

68 Agent Interaction SDK 7.6

Chapter 4: Voice Interactions SimplePlace

samplePlace.login(agentInteractionData.getLoginId1(),
agentInteractionData.getPassword1(),
agentInteractionData.getQueue(), null, null, null);

else if(mediaList != null)
// Perform a multimedia login (this login is for all
// media types other than voice)
samplePlace.loginMultimedia(sampleAgent, mediaList, null, null);

 } catch (Exception exception) {
 exception.printStackTrace();
 }
 }
});

As mentioned above, there are two logins here. The first one is for voice use
only. While the login() method is explicitly associated with a place, the
Configuration Layer already has information on the agent’s DN. This DN will
be the basis for the DnEvent activity associated with this login. For more
information on the voice-based login method, see Place in the API Reference.
The second login (loginMultimedia) is for non-voice media and uses a
Collection of media types that inherited multimedia examples set up in the
setSampleType() method, as shown here.

// Collection of media types for multimedia methods
mediaList = new LinkedList();
// Add the media types used by these examples
mediaList.add("email");
voice = false;

Since inherited examples will be working with e-mail, chat, and open media
interactions, they disable voice and add the required media to the mediaList,
using the Configuration Layer’s terms for each of them (email, chat, and
workitem, respectively). As pointed out in the API Reference, you can also
issue the loginMultimedia() method with a parameter of null instead of an
explicit media list. This will log the agent into all of the media types available
for the specified place.
Now that the agent is logged in, SimplePlace needs to update the GUI by
calling setInteractionWidgetState() and setPlaceWidgetState(). This will be
explained in detail below.
The other buttons have a similar structure that allows them to perform logout,
ready, not ready, and after-call-work functions.
After the buttons have been set up, there are a few lines of code that link
various status fields to the GUI and populate them with configuration
information.

loginNameLabel = agentInteractionGui.loginNameLabel;
loginNameLabel.setText("Login Name: "

Java—Developer’s Guide 69

Chapter 4: Voice Interactions SimplePlace

+ agentInteractionData.getAgent1UserName());
...

Register Your Application
The next step is to register your application so it can send and receive the
events you will need to work with interactions. This is the last thing done by
linkWidgetsToGui():

try {
 // THIS IS AN IMPORTANT STEP:
 // Register this application for events on the sample place
 samplePlace.addPlaceListener(this);
} catch (Exception exception) {
 exception.printStackTrace();
}

SimplePlace has access to a DN (sampleDn), an agent (sampleAgent), media
(sampleEmail, sampleChat, and sampleOpenMedia), and a place (samplePlace).
Since it is using the PlaceListener interface, it adds a place listener to
samplePlace.

Synchronize the Widgets
The standalone code examples use two similar methods to synchronize their
user interface widgets with the application state: setPlaceWidgetState() and
setInteractionWidgetState(). SimplePlace implements only the first one,
since it does not process interactions. Each of these methods uses the
isPossible() method to determine whether a particular button should be
enabled. Here is the code to enable or disable the loginButton for voice
examples:

loginButton.setEnabled(sampleDn.isPossible(Dn.Action.LOGIN));

As you can see if you look in the API Reference, this method is checking
whether the LOGIN action is possible on the sample DN. If it is, the button will
be enabled. Otherwise, it will be disabled.
The same thing is done for each of the other buttons in the SimplePlace user
interface.

Add Event-Handling Code
Each type of event handled by the PlaceListener interface has its own event-
handling method. Classes implementing this interface must include each of
these methods, although the method bodies may be empty. Because

70 Agent Interaction SDK 7.6

Chapter 4: Voice Interactions SimplePlace

SimplePlace is interested in DN and place events, it has functional
handleDnEvent() and handlePlaceEvent() methods.
As explained in the “Threading” section in Chapter 1, the standalone code
examples use threads to avoid delaying the propagation of events.
In this purpose, the SimplePlace uses DnEventThread, PlaceEventThread, and
InteractionEventThread classes to respectively process DnEvent, PlaceEvent,
and InteractionEvent events.
Most of the code in these classes writes messages to the log panel at the bottom
of the SimplePlace user interface. SimplePlace is not actually processing
interactions, but further examples use place actions for widgets used to create
interactions, so the code in each of the run() methods of these DnEventThread
and PlaceEventThread classes is:

// THIS IS AN IMPORTANT STEP:
// As the status changes, enable or disable the buttons
setPlaceWidgetState();
setInteractionWidgetState();

As the comments indicate, this is an important step. If you do not have a line
like this in your event-handling threads, the user interface will be out of sync
with the state of the objects and events with which you are working.
As for the handlePlaceEvent() and handleDnEvent() methods, the
handleInteractionEvent() method code uses the InteractionEventThread
classes to write messages to the log panel. However, it does not include event-
handling logic. The SimpleVoiceInteraction example will handle interaction
events. At that point, you will see some more complicated event-handling
code, but for this example, this is all you have to do for your event handlers.

The Importance of Timing
It is important to note that if you want your application to work, certain steps
must be executed before others. For example, you need to register your
application—by issuing the samplePlace.addPlaceListener(this) method
call—before you can receive events.
Figure 19 shows the sequence of method calls and events involved for
managing login with the SimplePlace example.

Java—Developer’s Guide 71

Chapter 4: Voice Interactions SimplePlace

Figure 19: Timing For Login

Likewise, you will need to synchronize the user interface every time you
handle an event, or else your buttons will not reflect the appropriate
capabilities. This synchronization can be tricky, but if you experiment with the
code examples, you will start to get a feel for how things fit together. You
might want to run the examples with certain lines commented out, or placed in
a different order, so that you can see how this affects your event handling.

Wrapping Up
If you can master the preceding six steps, you will have the foundation for
writing your own AIL standalone applications. However, there is also some
code in the SimplePlace constructor that you might be curious about. In order
to make it easier to understand this example—and the other standalone
examples—here is a brief explanation of how the SimplePlace() constructor
performs the setup tasks for the SimplePlace object.

Set Sample Type

The first statement calls the setSampleType() method, which sets the value of a
field that will tell the GUI which example is being executed.

Connect to AIL and Make Configuration Data Available

Next, the SimplePlace() constructor creates a new instance of Connector. This
class reads the configuration data from AgentInteraction.properties and
connects to AIL, as described in “Application Essentials” on page 43.

SimplePlace samplePlace
:Place

Genesys
Framework

addPlaceListener ()

DnEvent « Logged out » (*)

login

DnEvent « Not ready »
DnEvent « Not Ready »

RegisterRequest

loginMultimedia
RequestAddMedia

PlaceEventMediaAdded

PlaceEventMediaStatusChanged
« Not ready »PlaceEventMediaStatusChanged

« Not ready »

PlaceEventMediaAdded

Method called in the
linkWidgetsToGui ()
method

Login button clicked

72 Agent Interaction SDK 7.6

Chapter 4: Voice Interactions SimplePlace

After Connector returns, the constructor links to the AgentInteractionData
instance that makes Configuration Layer data available to the examples,
including the IDs of an Agent, Place, and Dn, which are retrieved via the
AilFactory instance:

sampleAgent = (Agent) connector.ailFactory.getPerson(
agentInteractionData.getAgent1UserName());

samplePlace = connector.ailFactory.getPlace(
agentInteractionData.getPlace1());

sampleDn = connector.ailFactory.getDn(
agentInteractionData.getDn1());

Create and Link to the GUI

At this point, the constructor calls AgentInteractionGui, which creates the
graphical user interface.

// Create the GUI
agentInteractionGui =

new AgentInteractionGui(windowTitle, sampleType);

With the GUI components created, it is possible to link them to actions that
affect AIL objects. This is done with a call to the linkWidgetsToGui() method.
As explained above, this method also includes the statement that registers the
application to receive events on samplePlace.

// Link the GUI components to API functionality
linkWidgetsToGui();

Start the Application

Finally, there are a few lines of code that set up the GUI and make it visible.

// Start the application
agentInteractionGui.mainGuiWindow.setDefaultCloseOperation(

JFrame.DO_NOTHING_ON_CLOSE);
agentInteractionGui.mainGuiWindow.addWindowListener(connector);
agentInteractionGui.mainGuiWindow.pack();
agentInteractionGui.mainGuiWindow.setVisible(true);

About the User Interface
Now that you understand the basics of the SimplePlace application, you can
start running it in your environment. As you do so, you will notice that you are
receiving event messages in the log panel at the bottom of the application
window. The user interface is designed to make it easy for you to track these
messages by giving each type its own color. The DnEvent messages are blue,
PlaceEvent messages are green, and InteractionEvent messages are red.

Java—Developer’s Guide 73

Chapter 4: Voice Interactions SimpleVoiceInteraction

You can also turn off each of the message types so that you can focus on
certain messages. To do this, use the radio buttons on the right side of the
application window. In addition, you can get more detailed messages by
clicking the Debug radio button for a given message type. If you want to, you
can customize the log messages created in the event handlers. As you
experiment with these messages, you will get a better understanding of the
event flow in your application.

SimpleVoiceInteraction
SimpleVoiceInteraction extends SimplePlace. While SimplePlace shows how
to log your agent in and out and otherwise change his or her status,
SimpleVoiceInteraction shows how to make and receive calls.
SimpleVoiceInteraction uses the same user interface as SimplePlace, but one
more section of the GUI is activated, as shown in Figure 20.

Figure 20: SimpleVoiceInteraction at Launch Time

To make or receive calls, your agent must be logged in and ready, as shown in
Figure 21. As you can see, the Make Call button is enabled, indicating that the
agent can type a number into the Target DN field and press the button to initiate
the call. Likewise, if there is a call waiting for the agent to answer it, the
Answer button will be enabled and the agent can click it to receive the call.

74 Agent Interaction SDK 7.6

Chapter 4: Voice Interactions SimpleVoiceInteraction

Figure 21: Agent Is Ready

As you might expect, the Hold button allows you to put a call on hold, the
Retrieve button re-activates the call, the release button cuts your connection
to the call, and the Mark Done button marks the interaction as done.
Now that you have an idea of what this example does, here is a description of
how it carries out the six steps in writing an AIL application.

Implement a Listener
SimpleVoiceInteraction is a subclass of SimplePlace. Because of this, it
already implements the PlaceListener interface. Here is the class declaration
for SimpleVoiceInteraction:

public class SimpleVoiceInteraction extends SimplePlace {

Connect to AIL
This step has been done for you already, since the SimpleConnector constructor
calls Connector to make the connection to AIL. For further details, see
“Connect to AIL” on page 67.

Set up Button Actions
Since SimpleVoiceInteraction needs to use the SimplePlace buttons, the first
thing done by the linkWidgetsToGui() method is call the superclass method:

super.linkWidgetsToGui();

Java—Developer’s Guide 75

Chapter 4: Voice Interactions SimpleVoiceInteraction

The voice-interaction-based examples share the same tab in the middle of the
user interface, as you can see in Figure 20 on page 73.
Now SimpleVoiceInteraction can link to the GUI buttons and add button
actions to them. The code to carry out these actions must be wrapped in a
try/catch block, but beyond that, it can be fairly simple, as shown in these
examples for the Answer and Release buttons:

sampleInteraction.answerCall(null);
...
sampleInteraction.releaseCall(null);

Other buttons require a bit more code to allow the application to process the
interaction. For example, the Make Call button needs to create a new voice
interaction that is associated with sampleInteraction before making the call, as
shown below.

// Create a new interaction for use in making the call
sampleInteraction =

(InteractionVoice) samplePlace.createInteraction(MediaType.VOICE,null,
agentInteractionData.getQueue());

if (sampleInteraction instanceof InteractionVoice) {
// Make the call, using the phone number provided by
// the agent
sampleInteraction.makeCall(

simpleVoiceTargetDn.getText(), null,
InteractionVoice.MakeCallType.REGULAR, null,null, null);

}

For more information about these steps, see the Agent Interaction SDK 7.6 API
Reference.

Register Your Application
This step was done for you by SimplePlace when you called
super.linkWidgetsToGui(), as described in the previous section.

Synchronize the User Interface
The setInteractionWidgetState() method is very similar to the
setPlaceWidgetState() method used by SimplePlace. It is called by the
handleInteractionEvent() handler, but it can also be called in any other
situation requiring an update to the interaction-related buttons.
This method checks to see whether there is a voice interaction associated with
the application. At that point, it uses the isPossible() method to enable or
disable the user interface buttons, as shown here for the Answer button:

76 Agent Interaction SDK 7.6

Chapter 4: Voice Interactions SimpleVoiceInteraction

if (sampleInteraction!=null) {
answerButton.setEnabled(sampleInteraction

.isPossible(InteractionVoice.Action.ANSWER_CALL));
makeCallButton.setEnabled(sampleInteraction

.isPossible(InteractionVoice.Action.MAKE_CALL));
//...
}

If there is no interaction associated with the application, the buttons are all
disabled, except the Make Call button. This button is enabled if the MAKE_CALL
action is available for sampleDn, as shown here:

answerButton.setEnabled(false);
makeCallButton.setEnabled(
sampleDn.isPossible(Dn.Action.MAKE_CALL));
releaseButton.setEnabled(false);
doneButton.setEnabled(false);
holdButton.setEnabled(false);
retrieveButton.setEnabled(false);

Add Event-Handling Code
Because SimplePlace implements the PlaceListener interface, it must
implement the handleInteractionEvent() method. But since SimplePlace does
not process interactions, this method body does not include event-handling
logic, and only writes messages to the log console. SimpleVoiceInteraction,
on the other hand, is designed to handle voice interactions. This means there
needs to be interaction-related, event-handling code.
As explained in the “Threading” section in Chapter 1, the standalone examples
use threads to avoid delaying the propagation of events. The
SimpleVoiceInteraction uses VoiceInteractionEventThread instances to
process InteractionEvent events.
Since SimpleVoiceInteraction needs to write a message to the log console, the
first thing that the handleInteractionEvent() method does is to call the
superclass method (which will create a thread to process this task):

super.handleInteractionEvent(event);

As with SimplePlace, the event-handling code in VoiceInteractionEventThread
is fairly simple. It checks several statements and implements the following
action items:
1. Check whether the interaction event involves a voice interaction:

if(event.getSource() instanceof InteractionVoice)

Java—Developer’s Guide 77

Chapter 4: Voice Interactions MultipartyVoiceInteraction

2. If no voice interaction is associated with the application, check whether the
event provides notification of a RINGING voice interaction. In this case, the
event means there is an incoming phone call: sampleInteraction needs to
be associated with the event’s interaction so the application can process the
call:

if (sampleInteraction == null
&& event.getStatus() == Interaction.Status.RINGING) {

// Associate sampleInteraction with the event source
sampleInteraction = (InteractionVoice) event.getSource();

//...
}

3. Check whether the interaction associated with the example is idle and is
done. If so, the interaction is removed:

// If the interaction is idle and done,
// the example no longer handles it.
if (sampleInteraction!=null

&& interaction.getId() == sampleInteraction.getId()
&& event.getStatus() == Interaction.Status.IDLE
&& sampleInteraction.isDone())

{
sampleInteraction = null;
simpleVoiceTargetDn.setText("");

}

4. Finally, the GUI must be updated to keep in sync with the state of the
application:

setInteractionWidgetState();

Notice that the interaction-related widgets are updated here—not the place
widgets. Interaction events do not normally affect the status of the DN.
As you can see, there were only a few additional items to take care of when
extending SimplePlace to handle voice interactions.

MultipartyVoiceInteraction
You now know how to make and receive calls. But what if your agents need to
transfer a call or set up a three-way conference call?
The MultipartyVoiceInteraction example shows how to do this. As you can
see in Figure 22, the Multiparty Voice Interaction panel is activated in the
user interface.

78 Agent Interaction SDK 7.6

Chapter 4: Voice Interactions MultipartyVoiceInteraction

Figure 22: MultipartyVoiceInteraction at Launch Time

This panel has fields to enter the DN to which you want to transfer, or
conference with, and the reason for this action. It also has buttons to carry out
the conference or transfer and then, if you are doing a dual-step transfer or a
conference call, to complete it. At the bottom of the panel there are three radio
buttons letting you choose the type of transfer you want to carry out.
As we have seen in “Six Steps to an AIL Client Application” on page 64, there
are six steps you will need to carry out to write this application. But this
example is a subclass of SimpleVoiceInteraction, so many of the steps you
would otherwise need to accomplish have already been done for you. In
discussing this example, we will omit those steps.
However, it is important to note that this example involves actions that require
a call to be in progress. So before you can conference or transfer a call, you
will have to use the buttons in the upper panel to answer or make a call. At that
point, you will have an interaction available for further action.

Set up Button Actions
Since MultipartyVoiceInteraction needs to use the SimplePlace and
SimpleVoiceInteraction buttons, the first thing the linkWidgetsToGui()
method does is call the superclass method:

super.linkWidgetsToGui();

Java—Developer’s Guide 79

Chapter 4: Voice Interactions MultipartyVoiceInteraction

After that, it links the application to the GUI widgets, this time including two
text fields and toggle buttons:

multipartyVoiceTargetDnLabel =
agentInteractionGui.multipartyVoiceTargetDnLabel;

multipartyVoiceTargetDnText =
agentInteractionGui.multipartyVoiceTargetDnTextField;

multipartyVoiceReasonText =
agentInteractionGui.multipartyVoiceReasonTextField;

singleStepTransfer =
agentInteractionGui.singleStepTransferRadioButton;

dualStepTransfer = agentInteractionGui.dualStepTransferRadioButton;
muteTransfer = agentInteractionGui.muteTransferRadioButton;

Now you can set up the button actions. In this example, these actions are
generally more complicated than in SimpleVoiceInteraction. One reason for
this is that you have to keep track of whether you are going to do a transfer or a
conference call. In order to help with this, there is a boolean field called
thisIsAConferenceCall. This field will be set to true if you are making a
conference call, or to false for a transfer.
The toggle buttons indicate which type of conference or transfer is selected.
When the user clicks each radio button, the user interface deselects the others.
The Transfer and Conference buttons invoke dedicated methods that take this
selection into account and perform the appropriate action, as shown here to
transfer a call:

thisIsAConferenceCall = false;
performTransfer();

The performTransfer() method has to take into account the possibilities that
you are doing a single-step, a dual-step, or a mute transfer. For each transfer,
the method call is fairly simple, but all transfer types have to be accounted for.
A try/catch block surrounds the following code snippet:

// If "Single step" is selected...
if (singleStep.isSelected() && sampleInteraction != null) {

// ...a single step conference is required
sampleInteraction.singleStepConference(getTransferTarget(),

null, null, null, null);

// If "Dual step" is selected...
} else if (dualStep.isSelected() && sampleInteraction != null) {

// ...a dual step conference is required

sampleInteraction.initiateConference(getTransferTarget(),
null, null, null, null);

80 Agent Interaction SDK 7.6

Chapter 4: Voice Interactions MultipartyVoiceInteraction

// If "Mute" is selected...
} else if (muteTransfer.isSelected() && sampleInteraction != null) {

// ...by default, a single step conference is performed

sampleInteraction.singleStepConference(getTransferTarget(),
null, null, null, null);

}

The Complete button must take into account whether you are doing a transfer or
a conference, but it is otherwise fairly simple:

if (thisIsAConferenceCall) {
sampleInteraction.completeConference(null, null);

} else {
sampleInteraction.completeTransfer(null, null);

}

Now you can set up which toggle buttons are visible. Not all switches can
perform every transfer and conference function. The Switch class tells you
which functions are available through its isCapable() method. The
MultipartyVoiceInteraction example displays only those toggle buttons
whose mode is available at some point during runtime.

if(sampleDn instanceof Dn)
{

Switch theSwitch = sampleDn.getSwitch();
if (theSwitch != null) {

switchCanDoSingleStep =
theSwitch.isCapable(InteractionVoice.Action.SINGLE_STEP_TRANSFER)
|| theSwitch.isCapable(InteractionVoice.Action.SINGLE_STEP_CONFERENCE);

switchCanDoMuteTransfer =
theSwitch.isCapable(InteractionVoice.Action.MUTE_TRANSFER);

switchCanDoDualStep = theSwitch.isCapable(InteractionVoice.Action.INIT_TRANSFER)
|| theSwitch.isCapable(InteractionVoice.Action.CONFERENCE);

}
}
singleStep.setVisible(switchCanDoSingleStep);
muteTransfer.setVisible(switchCanDoMuteTransfer);
dualStep.setVisible(switchCanDoDualStep);

For further details about switch features, refer to Chapter 5, “Switch
Facilities,” on page 87.

Java—Developer’s Guide 81

Chapter 4: Voice Interactions Instant Messaging

Synchronize the User Interface
The first step for the setInteractionWidgetState() method is, as usual, to call
the superclass method. After that, you do the usual checks to see if the various
buttons and radio buttons should be enabled or disabled.
The Transfer and Conference buttons are enabled if at least one type of transfer
or conference is available, as shown in the following code snippet.

//The transfer button should be enabled if at least one type
// of transfer is available:
// single step OR mute OR dual step
boolean transfer =

(sampleInteraction.isPossible(InteractionVoice.Action.SINGLE_STEP_TRANSFER))
|| (sampleInteraction.isPossible(InteractionVoice.Action.MUTE_TRANSFER))
|| (sampleInteraction.isPossible(InteractionVoice.Action.INIT_TRANSFER));

transferButton.setEnabled(transfer);

Add Event-Handling Code
The first step for the handleInteractionEvent() method is, as usual, to call the
superclass method and create a thread to process the interaction event. Since
MultipartyVoiceInteraction handles multiparty interactions, interaction
events may include multiparty-related information. This information is
described in InteractionEvent.Extension and is available by calling the
InteractionEvent.getExtension() method.

HashMap map = (HashMap) event.getExtensions();
String info ="";
if(map.containsKey(InteractionEvent.Extension.RINGING_TRANSFER_REASON))
{

info += "Transferred ("
+ ((String)map.get(InteractionEvent.Extension.RINGING_TRANSFER_REASON))+")";

multipartyVoiceReasonText.setText(info);
}

Instant Messaging
The Instant Messaging feature is available only for places which include a SIP
DN that is configured for multimedia. Because of this relationship to a place,
your application needs an InteractionVoice instance to handle instant
messaging features. The Instant Message (IM) interactions have a
MediaType.CHAT and are tightly coupled to IMInteractionContext objects.
Handling Instant Messaging also leads your application to deal with additional
classes of the com.genesyslab.ail.im package, as explained in following
subsections.

82 Agent Interaction SDK 7.6

Chapter 4: Voice Interactions Instant Messaging

Note: The Agent Interaction Code Samples include an instant messaging
example, the SimpleIM class.

Starting an Instant Messaging Session
To start an instant messaging session, your application should first create a
voice interaction of MediaType.CHAT, as shown in the following code snippet:

InteractionVoice sampleInteraction = (InteractionVoice)
samplePlace.createInteraction(MediaType.CHAT, null,
agentInteractionData.getQueue());

Your application can then retrieve an IMInteractionContext instance tight to
this interaction by calling the AilFactory.getIMInteractionContext() method,
as shown here:

sampleContext =
ailFactory.getIMInteractionContext(sampleInteraction);

Then to connect a party, make a call, as shown below:

sampleInteraction.makeCall("SIP DNID", null,
InteractionVoice.MakeCallType.REGULAR, null, null, null);

Handling Instant Messages

Send a Message

To send a message, your application needs a call to the
IMInteractionContext.sendMessage(String, String) method, as shown here:

sampleContext.sendMessage(“My instant message”, "text/plain");

Get the Session Transcript

When your application gets an IMInteractionContext instance, it can retrieve
all the session transcript messages and party events by calling the
getTranscript() method. The following code snippet shows how to read the
transcript.

Iterator it = sampleContext.getTranscript().iterator();
while (it.hasNext())
{

IMEvent ev = (IMEvent) it.next();

Java—Developer’s Guide 83

Chapter 4: Voice Interactions Instant Messaging

// Process the event
if(ev instanceof IMMessage)
{

IMMessage msg = (IMMessage) ev;
IMParty party = msg.getParty();
System.out.println(party.getNickname()+"> "+msg.getContent());

} else if(ev instanceof IMPartyJoined)
{
 System.out.println(ev.getParty().getNickname()+" has joined ");
}
else if(ev instanceof IMPartyLeft)
{

System.out.println(ev.getParty().getNickname()+" has left ");
}

}

Handle Events

At runtime, AIL provides two types of events that your application can handle
by implementing the PlaceListener interface:
• InteractionEvent for status changes and information modification (when a

party sends a message, or joins, or leaves).
• PlaceEventIMInteractionContextInfo to get the IMEvent that contains a

new message or the modified party’s information.
When your application starts a new session and is connected to parties and
ready for sending and receiving instant messages, the Interaction.Status of
your interaction changes to TALKING, as shown in Figure 23.

84 Agent Interaction SDK 7.6

Chapter 4: Voice Interactions Instant Messaging

Figure 23: New Instant Messaging Session

Then, when your application receives a message, it gets an InteractionEvent
and a PlaceEventIMInteractionContextInfo.

Figure 24: New Instant Message

IM application

AIL

Place.createInteraction(MediaType.CHAT)

InteractionEvent, NEW

InteractionVoice.makeCall

InteractionEvent, DIALING

InteractionEvent, TALKING

PlaceEventIMInteractionContextInfo, IMEvent (party joined)

PlaceEventIMInteractionContextInfo, IMEvent
(IMApplication joined)

AilFactory.getIMInteractionContext
This event and
the following are
received when
the instant
message pops up
on the party’s
desktop.

IM application

AIL

InteractionEvent, TALKING (Info Changed)

PlaceEventIMInteractionContextInfo (IMMessage)

Java—Developer’s Guide 85

Chapter 4: Voice Interactions SIP Preview

Terminate the Instant Messaging Session

To terminate the Instant Messaging session, your application releases the
InteractionVoice instance. An IMEvent notifies your application as a party left,
and the interaction can be mark done, as shown here:

Figure 25: Terminating the Instant Messaging Session

SIP Preview
The Agent Interaction SDK offers a preview feature which enables your
application to accept or reject incoming SIP interactions. Previously, SIP
interactions were incoming in RINGING status. The agent using the AIL
application had no choice but accept the call, or (in the worst case) terminate it.
The SIP Preview feature solves this issue. If the agent is not willing to process
the call, he or she can refuse it and redistribute the call in the system.

Note: The code snippets presented in this section extends the
SimpleVoiceInteraction sample.

The SIP Preview Interaction
SIP Preview Interactions are similar to standard voice interactions and do not
require a specific integration effort. Your application should handle them
identically to other voice interactions.
The SIP Preview feature is an addition to the InteractionVoice interface, and
does not modify the event cycle and the management of the interaction.

IM application

AIL

releaseCall

InteractionEvent, IDLE (Released)

markDone

InteractionEvent, IDLE (Done)

IMEvent, party left

86 Agent Interaction SDK 7.6

Chapter 4: Voice Interactions SIP Preview

Managing a SIP Preview interaction
Instead of receiving an interaction in RINGING status, your application receives
an interaction in Interaction.Status.PREVIEW status.

if (event.getStatus() == Interaction.Status.PREVIEW) {

// Associate sampleInteraction with the event source
sampleInteraction = (InteractionVoice) event.getSource();

As shown in Figure 17 on page 63, the PREVIEW status occurs prior to the
RINGING status.
At this point, the application can accept the call by calling the
InteractionVoice.acceptPreview() method, and as a result, the interaction
status changes to RINGING. Your application can then call the
InteractionVoice.answerCall() to change the interaction status to TALKING.
Otherwise, if the application rejects the interaction by calling the
InteractionVoice.rejectPreview(), the interaction status changes to IDLE.
As for standard voice interactions, your application can benefit from
InteractionVoice.Action.ACCEPT_PREVIEW and
InteractionVoice.Action.REJECT_PREVIEW enumerate types to check whether
the SIP preview feature is available.

if(sampleInteraction.isPossible(InteractionVoice.Action.ACCEPT_PREVIEW)
sampleInteraction.acceptPreview(null, null);

else if(sampleInteraction.isPossible(InteractionVoice.Action.REJECT_PREVIEW)
sampleInteraction.rejectPreview(null, null);

If one of these actions is successful, your application receives an
InteractionEvent as notification of the status change, indicating the new
interaction status.

Note: For instant messaging interactions, if your application accepts the
interactions, then the interaction status automatically changes to
TALKING (your application does not need to answer the call).

Java—Developer’s Guide 87

Chapter

5 Switch Facilities
This chapter describes the switch facilities provided by the Agent Interaction
(Java API). The following sections describe how to handle switch factors when
building your applications:

Switch Design, page 87
Switch and DN Management, page 91
Switch Tuning, page 99

Switch Design
The Agent Interaction (Java API) provides easy access to available switch
features and data, and facilitates development when different switches are
involved.
To ensure both data persistence and consistency, the core library manages
connections with Genesys components and deals with incoming information
by maintaining corresponding objects.
So forth, the Agent Interaction (Java API) uses a voice state model to manage
components related to voice features (such as outbound, callback, and so on),
and CTI objects corresponding to the use of particular switches across their T-
Servers.
As far as they are able, state machines guarantee that the voice state model is
coherent with other Genesys components (for example, multimedia solutions)
across supported switches. This facilitates the integration of these services and
applications. In contrast, developers using the Platform SDK must build their
own state machines, which increases the integration complexity.

T-Server Connections
The AIL library core does not directly connect to any switches, but rather to
the T-Servers that manage the switches. The AIL core library integrates with

88 Agent Interaction SDK 7.6

Chapter 5: Switch Facilities Switch Design

the Platform SDK to communicate with the T-Server that drives the switch, as
illustrated in Figure 26.
Therefore, the AIL’s CTI features are limited to T-Server CTI features: The
AIL library provides you only with what the T-Servers can perform.

Figure 26: AIL Driving the T-Server via the Platform SDK

Through the Platform SDK, the AIL core library sends requests to the T-Server
in order to perform agent actions (See “Calls Mapping” on page 96.) The T-
Server manages its connection with the switch and generates requests to drive
the switch
Then, the T-Server notifies the AIL core library with TEvents. The AIL core
library updates its model, then notifies listeners with an event built from
information contained in the TEvents.

Warning! The AIL library makes no assumption about the success or failure
of any request processed through the API to the T-Server and only
updates with TEvents.

Voice Model
The voice model is consistent with the models defined for other media. Prior to
any voice manipulation, your application must log in an agent on a voice
media (a DN) which is available in a Place. Through this logged DN, you get
interactions that enable voice actions. Managing the interaction on the switch
involves manipulating the Dn and InteractionVoice interfaces.
The voice model that relies on the main AIL classes—Agent, Place, and Dn—is
presented in Figure 27.

Switch T-Server

Agent Interaction (Java API)

CorePlatform
SDK

Java
API

CTI link
requests

T-Events

Java—Developer’s Guide 89

Chapter 5: Switch Facilities Switch Design

Figure 27: The Voice Model

Voice State Model
The Switch interface accesses general information, that do not change at
runtime, in contrast to the Dn and InteractionVoice instances that agent actions
affect. For these two last classes, the AIL library provides you with a voice
state model, defined as follows:
• States: These are the results of actions. Your application is notified of these

actions as the switch performs them. The current state affects the range of
actions that your application can perform.

• Transitions: These depend on the success of the last action. They are
performed according to the last notified TEvent and are labeled according
to the TEvent name.

States

Internally, the AIL core library manages both Dn and InteractionVoice objects
through their own state machines. These and other objects inherit from the
Possible interface, which offers the isPossible() method to test whether an
action can be performed from the current state, as illustrated in Figure 28.

Exists as CME Objects

Agent

Place

Dn

Interaction
Voice

1

1

1

1

n

n

90 Agent Interaction SDK 7.6

Chapter 5: Switch Facilities Switch Design

Figure 28: Possibility of Performing an Action on the Switch

Figure 28 shows the isPossible() method dependencies. This method takes
into account the current state of the object, and whether the switch is capable
of a particular action, to determine the action’s possibility with respect to
current state. For details, see “Determine Availability of CTI Features” on
page 94.

Transitions

Because the TEvent is an acknowledge action coming from the T-Server, the
AIL core library first updates its model, then it builds the corresponding
DnEvent or InteractionEvent events that notify your client application. These
events’ reason correspond to TEvent names.
The T-Server call flow differs from one switch to another: it is affected by
switches, switch settings, and T-Server settings. Therefore, the library cannot
impose uniformity on the transition sequences. The routes in state models are
switch-dependent, as illustrated in Figure 29.

Figure 29: Reasons and Routes

 Reason (Event)

isPossible (Action)?

Dn - InteractionVoice

S?

Switch:
isCapable(Action)?

Current state

Si

Reason (Event)

Action

Existing transitions

Route 2 for switch 2
Route 1 for switch 1

Reason a

Reason b

Reason 1

S2S1

S3

Java—Developer’s Guide 91

Chapter 5: Switch Facilities Switch and DN Management

The figure shows that from one switch to another, the TEvent sequence is
different and is associated with different reasons and routes in the state models.
To cite a concrete example, an application monitoring a Routing Point has a
state sequence that is different on Avaya G3 versus Nortel Meridian switches.

Note: You should design your applications with respect to object status rather
than event reasons. The state model ensures coherence and reliability,
whereas event reasons are strongly switch-specific.

Warning! Do not make any assumptions about incoming events. Refer to the
T-Server Deployment Guide for your environment, to the Genesys 7
Events and Models Reference Manual for model details, and to the
Agent Interaction SDK 7.6 Java API Reference for the full lists of
reference material relating to the Agent Interaction (Java API).

Switch and DN Management
Now that you have been introduced to the switch implementation in Agent
Interaction (Java API), it is time to outline the consideration you will need to
work with switches.
First, in order to log in properly on DNs, you must learn about the “DN
Consolidation”, that explains the DN consolidation through the Dn interface. It
presents how you identify and access consolidated DNs defined for a given
switch.
Then, before you make calls to voice features, you check whether these calls
are available, as explained in “Determine Availability of CTI Features” on
page 94.
After you checked the feature is available, you can perform a method call. This
call is mapped with the Platform SDK, as detailed in See “Calls Mapping” on
page 96.
As the Agent Interaction Java API makes no assumption about action result, to
get acknowledge of successful actions, you listen to events, as explained in
“Event Flow” on page 97.

DN Consolidation
Regardless of the DN types that the switch handles, the DN consolidation
model provides a single Dn interface with a unique DN ID, that a voice
interaction reaches through its callable number, as detailed in the following
subsections.

92 Agent Interaction SDK 7.6

Chapter 5: Switch Facilities Switch and DN Management

DN Types

Switch DNs’ types—for example, ACD position or extension—are mostly
switch-specific. This affects the use of such features as login, logout, ready
actions, and so on.
The AIL library provides consolidation of the Dn object and its model so that
you do not have to write the code to manage this in your application. In all
cases, the library exposes a single Dn, even if the configuration of a place
requires more DNs in the Configuration Layer according to the underlying
switch.
To find the required configuration for each switch, and thus find which DN
type is visible, refer to the Interaction SDK 7.6 Java Deployment Guide.

Warning! You must respect this DN consolidation model if your applications
are to handle DNs properly.

For example, to work in regular mode with an A4400 switch, the AIL:
• Registers the ACDPosition and Extension.
• Exposes a single Dn object.
The Agent Interaction (Java API) presents a single DN to transparently
manages the requests to hidden ACDPositions and Extensions. For A4400, the
DN ID exposed in the API is the ACDPosition, as shown in Figure 30.

Figure 30: A4400 - DN Consolidation

As another example, to work in substitute mode on an A4400 switch, your
application must manage activities of an extension on a Place. When no agent
is logged in, the extension is visible and the ACD position DN is not visible.
When an agent is logged in, the ACD position DN is visible in the place and
the extension is not visible in the place. For details about the corresponding
events, refer to “DN Events” on page 98.

AIL Voice Model

Dn

ACD
Position Extension

Switch features

manages

Java—Developer’s Guide 93

Chapter 5: Switch Facilities Switch and DN Management

DN ID

The DN ID is used to retrieve the corresponding Dn instance through the
AilFactory.getDn() method.
In this product’s 6.5 releases, the DN ID used to be the Configuration Layer’s
DN callable number. This restriction did not allow two distinct switches to
declare two identical DN numbers. To avoid any ambiguity and to ensure
unique DN IDs, a DN ID is now defined in accordance with the following rule:
<DN_CME_Name>@<switch_name>

Note: Set the enabled option to false in the dn-at-switch section to disable
this rule and retrieve DN IDs as defined in 6.5 releases.

Callable Number

The callable number is the number that your application must use to reach a
DN when, for instance, making a call. Depending on the switch, the DN
number declared in the Configuration Layer might not be the number to dial
for call actions, such as make call, transfer, or conference. For example, you
must remove some leading numbers to reach a Nortel DMS 100’s DN.
The number to dial can also depend on the DN status. For example, if an agent
is logged into the DN, you have to dial the agent ID.
Finally, because of the consolidation model, some DNs can be hidden but still
be the real ones to dial instead of their visible counterpart. Once again, the
callable number of a visible DN properly returns the hidden DN’s number.
To determine the callable number of a Dn instance at runtime, call the
Dn.getCallableNumber() method.

Note: Genesys recommends using callable numbers to access CTI features.

DN Activation
To perform telephony actions and receive telephony events for a DN on a
T-Server, the library uses an internal Dn object, represented in the Agent
Interaction (Java API) by the Dn interface.
Typically, when an agent uses your application to log in, the library creates a
new Dn object for the agent’s DN, but also creates a new monitoring session for
the new Dn object. The library uses the monitoring session to register the Dn on
its T-Server and then to monitor activity through the life of the Dn object.
Usually, the DN’s monitoring session is released at garbage collection time.
Typically, when developing a server application, it is possible that after one
agent logs out, another agent may log in to work with the same DN. Your
application can keep a Dn object alive in the time period between one agent’s

94 Agent Interaction SDK 7.6

Chapter 5: Switch Facilities Switch and DN Management

logout and another agent’s login, but in that case, monitoring could cause
unwanted interactions.
To kill a monitoring session for a DN, use the Dn.unactivate() method, which
unregisters the DN on the T-Server and kills the monitoring session.
Later, at the time another agent is about to log in to start work with the same
DN, the internal Dn object is still alive but inactive because it is not registered
to its T-Server and it has no monitoring session. Before the agent can log in,
your application must create a new session that re-registers the DN on the
T-Server and lets the library perform actions and receive events. To create a
new monitoring session, call the Dn.activate() method. This registers the DN
on the T-Server, allowing the new login, and instantiates a new monitoring
session for that Dn object.

Note: By default, registering and unregistering actions are handled by the
library. If your client application calls the activate() or unactivate()
method, your application is responsible for managing the monitoring
session of the relevant DN.

The activate() and unactivate() methods are documented in the Agent
Interaction 7.6 Java API Reference as members of the AbstractDn interface,
which is a Superinterface for the Dn interface.

Determine Availability of CTI Features
After your agent has successfully logged in on a DN, your application will
access CTI features only if these features are available on the DN’s switch.
Examples of such possibly unavailable features on a switch are Transfer,
Conference, Callback, and Holding. Refer to your T-Server documentation to
see which features are available on a given switch.
The Agent Interaction (Java API) is agent-oriented. This means that for a
logged in agent at runtime, you are provided with all possible CTI features, and
even methods to determine which features are available. These methods
indicate switch capabilities and possibilities, as detailed in the following
subsections.

Capability

You access capability through the Switch interface, which has the following
characteristics:
• An instance of the Switch class is a static object.
• Access to a Switch object is given by the Dn.getSwitch() method, or

AilFactory getSwitch(java.lang.String name).
The Switch.isCapable() method takes into account the switch’s features and
returns the switch’s capability to perform the InteractionVoice.Action during

Java—Developer’s Guide 95

Chapter 5: Switch Facilities Switch and DN Management

the entire runtime session. The result is independent from the voice DN’s
current state.
Capability testing enables your application to determine what features are
available on the switch and behave appropriately—for example, to show or not
show buttons, menus, and so on.
For example, the MultipartyVoiceInteraction example tests transfer
capabilities to determine whether it should display or not buttons for the
transfer and conference features, as show in the following code snippet:

if(sampleDn instanceof Dn)
{

Switch theSwitch = sampleDn.getSwitch();
if (theSwitch != null) {

switchCanDoSingleStep =
theSwitch.isCapable(InteractionVoice.Action.SINGLE_STEP_TRANSFER)

|| theSwitch.isCapable(InteractionVoice.Action.SINGLE_STEP_CONFERENCE);
switchCanDoMuteTransfer =

theSwitch.isCapable(InteractionVoice.Action.MUTE_TRANSFER);
switchCanDoDualStep = theSwitch.isCapable(InteractionVoice.Action.INIT_TRANSFER)

|| theSwitch.isCapable(InteractionVoice.Action.CONFERENCE);
}

}
singleStep.setVisible(switchCanDoSingleStep);
muteTransfer.setVisible(switchCanDoMuteTransfer);
dualStep.setVisible(switchCanDoDualStep);

Possibility

According to the current state of the objects (Dn or Interaction), a feature may
be temporarily unavailable, although the switch is capable of performing the
corresponding action. For instance, in most cases, if your agent is not logged in
on a DN of the switch, your agent will not be able to create a new voice
interaction with the corresponding Dn interface.
After the agent will be logged in, the Agent Interaction Java API will get an
event that will change its DN status, so that creating a voice interaction will
become possible.
Possibility, managed through the Possible superinterface with the
isPossible() method, is applied to actions that you wish your application to
perform. To determine an action possibility, the isPossible() method
concatenates:
• The object’s current state, as calculated by the AIL.
• The switch capability to perform the action.
This is illustrated in Figure 28, “Possibility of Performing an Action on the
Switch,” on page 90.
Genesys recommends using this isPossible() method to determine feature
accessibility each time an event occurs.

96 Agent Interaction SDK 7.6

Chapter 5: Switch Facilities Switch and DN Management

Warning! The isPossible() method does not reflect the availability of
features that depend on DN type, T-Server options, or the switch
environment (ACD, Genesys Routing, proprietary call distribution,
and so on.)

A GUI application should use the isPossible() method to enable or disable
buttons according to events. The following code snippet is extracted from this
method and manages three radio buttons, enabling the agent to select the
transfer to perform:

//The complete button should be enabled if a transfer or a conference
//can be completed
boolean complete = sampleInteraction.isPossible(InteractionVoice.Action.COMPLETE_TRANSFER)

|| sampleInteraction.isPossible(InteractionVoice.Action.COMPLETE_CONFERENCE);
completeButton.setEnabled(complete);

Note: Remember that the current state changes with events. Your event
handlers should continually validate the availability of features.

Calls Mapping
The AIL core library handles switch specifics internally to allow easy,
consistent management of voice features across all switches that AIL supports.
Refer to the Interaction SDK 7.6 Java Deployment Guide for the list of
supported switches.
When you make calls to voice methods, the AIL core library transparently
takes over the required calls to Platform SDK functions, regardless of the
switch type.
For Platform SDK users, the mapping of the Platform SDK features is
straightforward because the naming convention is similar to that for Platform
SDK functions. By contrast, building an application using the Platform SDK
would require that you write code to deal with switch specifics in your function
calls.
One example is the DMS100 switch and its specific implementation of a
makeCall() method. Using the Platform SDK, your application must first create
a RequestMakeCall object and then the RequestAnswerCall object, as illustrated
in the following code snippet. If it does not do both, the agent must manually
go off hook to begin the call.

//requesting a MakeCall to the TServer using the Platform SDK
server.send(RequestMakeCall.create(
 _dn,
 _otherdn,
 _make_call_type,
 _location,

Java—Developer’s Guide 97

Chapter 5: Switch Facilities Switch and DN Management

 _userdata,
 _reasons,
 _textensions);
//....
//This is a DMS100 switch: requesting an AnswerCall
server.send(RequestAnswerCall.create(
 _dn,
 NULL_CONNECTION_ID,
 _reasons,
 _textensions);
//...

The benefit of hiding these switch-specific interventions is that your code is
less complex and your feature management is easier, available, and works for
all switches supported by AIL. The AIL code corresponding to the previous
Platform SDK code snippet is:

//...
// Dial the call
voice.makeCall(myDn.getCallableNumber(),//callable number to dial

_location,//location
InteractionVoice.MakeCallType.REGULAR, //Type
_userdata,//User data
_reasons,//Reasons
_textensions);//Textensions

//...

Although the Agent Interaction (Java API) simplifies switch management, you
can still tune method calls with switch-specific parameters. Refer to “Switch
Tuning” on page 99 for further details.

Event Flow
The AIL core library makes no assumption of the method call’s result. As
explained in “Voice State Model” on page 89, after the request succeeds, the
AIL core library will get a TEvent that will generate a DnEvent or
InteractionEvent event (according to the called method.)
In case the method call fails, you should get an exception. Refer to the Agent
Interaction 7.6 API Reference for further details about method exceptions.

Note: Because a Place reflects all Dn and Interaction events, Genesys
recommends that you use a PlaceListener rather than using separate
listeners for each Dn or Interaction.

98 Agent Interaction SDK 7.6

Chapter 5: Switch Facilities Switch and DN Management

DN Events

Through the Place.handleDnEvent() method, your application gets DnEvent
events, that is information about successful login, logout, ready, not ready
actions performed on the consolidated DNs of this place.
Through these events, you will get accurate information about DN status, in
particular for some DNs that become invisible due to the consolidation (as
explained in “DN Consolidation” on page 91).
As an example, to work in substitute mode on an A4400 switch, your
application must manage activities of an extension on a Place. When an agent
logs in successfully, the Place.handleDnevent() method gets two events:
• dnRemoved provides notification that the extension is no longer visible.
• dnAdded provides notification that a Dn of type ACD position is now visible.
Successful agent login generates a login event; the login event and all
subsequent event and request activities occur with respect to the ACD position
DN, not the extension.
When the agent logs out, logout is performed through the ACD position DN,
and upon successful logout, the Place.handleDnevent() method gets four
events:
• An event carrying notification of successful logout.
• A dnRemoved event carrying notification that the ACD position DN is no

longer visible.
• A dnAdded event with notification that the extension is now visible.
• An event carrying notification of the extension status.
When no agent is logged in, the extension is visible and the ACD position DN
is not visible. When an agent is logged in, the ACD position DN is visible in
the place, and the extension is not visible in the place.

Single-Step Rollover to Mute Transfer
The Agent Interaction (Java API) provides you with a hidden mute transfer in
the singleStepTransfer() method:
• If the switch is not capable of performing the single-step transfer, AIL

transparently performs a mute transfer instead.
• The isCapable(InteractionVoice.Action.SINGLE_STEP_TRANSFER) call

takes into account the hidden mute capability.
• The isPossible(InteractionVoice.Action.SINGLE_STEP_TRANSFER) call

takes into account the hidden mute possibility.
Even if true single-step transfer is not available, the capability and possibility
results indicate whether your application can perform the mute transfer instead.
So, you can rely on this result to perform your transfer with the
singleStepTransfer() method.

Java—Developer’s Guide 99

Chapter 5: Switch Facilities Switch Tuning

Switch Tuning
To fine-tune your application according to your switch, the Agent Interaction
(Java API) provides you with TExtensions and workmodes.

Warning! Managing some switch-specific data implies a dependency on the
corresponding particular switch.

TExtensions
TExtensions are Map data structures that take into account switch-specific
features and information that cannot be described in a request parameter. The
library transmits them as parameters in Platform SDK calls used to tune
T-Server operations.
To get details about the list of extensions associated with a switch, refer to the
corresponding T-Server documentation.
TExtensions exist for both Dn and InteractionVoice interfaces. You get them
by calling the getTExtensions() methods. Refer to the Genesys Platform SDK
7.6 Developer’s Guide for further information.

In Method Calls

To add TExtensions in a method call, you just need to create a Map of key-value
pairs and pass it as parameter in your voice method call.
For example, if you are working on an application dedicated to the G3 switch,
you may want to specify the Trunk TExtension for the makeCall() method, as
shown in the following code snippet.

String myTrunk = "...";
HashMap myTExtension = new HashMap();
myTExtension.put("Trunk", myTrunk);
voice.makeCall(DN,

null,
InteractionVoice.MakeCallType.REGULAR,
null,
null,
myTExtension);

Note: TExtensions that apply only to a given switch are described in the
corresponding individual T-Server manual.

100 Agent Interaction SDK 7.6

Chapter 5: Switch Facilities Switch Tuning

In Events

Both DnEvent and InteractionEvent events propagate TExtensions, that are
switch-specific TEvent Extensions. These TExtensions are copied from the
TEvent and are additional data provided for switch-specific interventions.
You can retrieve these TExtensions in a Map returned by calling
InteractionEvent.getTEventExtensions() or DnEvent.getTEventExtensions().
As TExtensions are switch-specific, refer to your T-Server documentation to
learn more about its TExtensions.
The following code snippet shows how to deal with TExtension Maps.

// Implementation of the Agent.HandleInteractionEvent() method
public void handleInteractionEvent(InteractionEvent _ie) {

//...
//Retrieval of the map containing the TExtensions
Map myTExtensions = ie.getTEventExtensions();
//Testing if there is TExtension attached in the event
if (mTExtensions != null) {

// Retrieving an iterator for the key set
Iterator it = mTExtensions.keySet().iterator();
while (it.hasNext()) {

String key = (String) it.next();
System.out.println("Key: "+key+" Value:
"+mTEventExtensions.get(key));

}
}

//...
}

Warning! TExtensions can be optional in a TEvent, so the library propagates
them only if they exist. Refer to your T-Server documentation for
more information.

Workmodes
Like the Platform SDK, the Agent Interaction (Java API) provides you with
dedicated methods to handle workmodes. Workmodes are used in agent
events to provide more detailed information about an agent’s actual state.
For example, the Manual in workmode for a log action indicates that the agent
must validate the action manually on the phone. The After Call Work
workmode indicates the agent is still working on the last call.
Workmodes are identified by the Dn.Workmode class. Refer to the Javadoc API
Reference to get the list of workmodes taken into account by the API.
Workmodes can be specified in the parameters of dedicated methods related to
Dn.Action. You can use them in the Agent, Place, and Dn interfaces for calls to
their respective login(), logout(), ready(), and notready() methods.

Java—Developer’s Guide 101

Chapter 5: Switch Facilities Switch Tuning

Note: If you use a workmode in a method call performed from an Agent or
Place object, all the associated voice DNs can be affected by the
workmode that you specify.

Workmodes

To test available workmodes, the Agent Interaction (Java API) provides you
with specific methods in the Switch and Dn interfaces:
• Switch.isWorkmodeCapable(Dn.Workmode)—true if the switch supports the

DN workmode.
• Dn.isWorkmodePossible(Dn.Workmode)—true if the DN workmode is

available for the next action on the Dn.
• Dn.getPossiblebleWorkmodes(): returns, in a table of boolean values, the

availability of the different workmodes for the next action on the Dn.
You can use these possibility and capability tests in the same manner as the
standard tests, which are described in “Capability” on page 94 and
“Possibility” on page 95.

Note: The provided workmode tests reflect only the T-Server’s workmode
availability. AIL does not take into account any action to perform.

The following code snippet shows how to use the Dn.isWorkmodePossible()
method:

//...
if(mDn.isWorkmodePossible(Dn.Workmode.NO_CALL_DISCONNECT)==true) {

mDn.ready(mQueue, Dn.Workmode.NO_CALL_DISCONNECT, null, null);
}
//...

Warning! This capability test is not processed by the T-Server and does not
take into account any T-server or switch settings. Refer to your
T-Server documentation to enable your workmodes.

After Call Work

The API provides additional afterCallwork() methods in the Agent, Place, and
Dn classes specific to the After Call Work mode. You can call these methods
without specifying any workmode, as shown in the following code snippet:

myAgent.afterCallwork(null, null, null);

102 Agent Interaction SDK 7.6

Chapter 5: Switch Facilities Switch Tuning

The afterCallwork() methods are equivalent to a notReady() call with the
workmode AFTER_CALL_WORK passed as a parameter, as shown in this code
snippet:

myAgent.notready(null, Dn.Workmode.AFTER_CALL_WORK,null,null);

The afterCallwork() methods enable you to put the concerned DNs into the
associated status: Dn.status.AFTERCALLWORK. This status is an extension of the
NotReady state: it means that the agent is not ready to receive another call,
because he or she is working on another task.

Warning! If the After Call Work workmode is not supported by the
underlying switch, afterCallwork() methods are unavailable.

Java—Developer’s Guide 103

Chapter

6 PSDK Bridges
The Voice and Configuration PSDK Bridges are two distinct APIs that are
integrated into the to the Agent Interaction Java API. They are intended to be
used for implementing additional controls on objects that the Agent Interaction
Java API does not handle.
Using this API requires an advanced level of coding experience with Agent
Interaction Java API. Any custom code on top of these bridges requires
requires testing in a production-like environment prior to any deployment.
This chapter contains the following sections:

Guidelines, page 103
Steps for Integrating PSDK Config Bridge, page 106

Guidelines
As mentioned above, the PSDK bridges are particular APIs integrated into the
Agent Interaction Java API. They provide access points to PSDK protocol
instances in order to implement additional controls through the Platform SDK
API:
• com.genesyslab.platform.voice.protocol.TServerProtocol

• com.genesyslab.platform.configuration.protocol.ConfServerProtocol

As explained in the following sections, the use of these classes is restricted to
the Call Center objects that do not interfere with the AIL Core. For more
details about these protocol classes, refer to the Platform SDK 7.6
documentation.

Protocol Instances
When your application calls the PsdkConfigBridge.
getConfigServerProtocol() or the PsdkVoiceBridge.getTServer() method, it

104 Agent Interaction SDK 7.6

Chapter 6: PSDK Bridges Guidelines

retrieves the PSDK protocol instance that the AIL Core uses to communicate
with the Configuration Server or with the specified switch.
Even when using the bridge, AIL manages connections, disconnections, HA
and ADDP. (In any case, as a general guideline, your application should not
deal with any of them through the AIL’s PSDK bridges.)

Warning! Do not call the close() methods of the protocol instances that you
get from the PSDK bridges. You would close the AIL’s connections
and make unavailable the server and the associated features until
AIL reconnects.

Use special care when working with the Platform SDK since it exposes low-
level APIs for the underlying servers. Because you deal directly with the
PSDK protocol instances and not with some interfaces as for other Call Center
objects (Agent, Place, DN, and so on), the AIL Core is not aware of requests
that you make through PSDK bridges.
The PSDK Config Bridge’ usage is restricted to monitoring objects or
retrieving information. The PSDK Voice Bridge, in addition to monitoring
features, supports some voice requests. The customization of your application
with the PSDK bridges can bring some overhead with the event flow or put
AIL out of synchronization, as explained in the following sections.

Note: Prior to the deployment of this customization, you must perform unit
tests on your application, and also load tests in production-like
environments.

Message Flow
When you deal with the PSDK bridges, you create a new message flow using
the com.genesyslab.platform.voice.protocol.TServerProtocol and
com.genesyslab.platform.configuration.protocol.ConfServerProtocol

classes.
The PSDK bridges’ protocol instances enable you to send requests and, for
those requests, if you get responses, AIL receives those too. As a result, AIL
generates an event flow according to the responses received, as it does when
no PSDK bridge is implemented. The difference is that you receive responses
low-level requests that you might not otherwise. Usually AIL only handles
messages that are responses to its own requests.
For this reason, AIL may generate unexpected events from an agent
application’s point of view. It is not possible to assume what the PSDK’s
additional message flow is, because it strictly depends on how your application
makes use of the PSDK bridges.

Java—Developer’s Guide 105

Chapter 6: PSDK Bridges Guidelines

Figure 31: Message Flow

PSDK Config Bridge
The PSDK Config Bridge is an access point to the Configuration Platform
SDK which enables you to monitor objects in the Configuration Layer of your
Genesys environment. Use special care when working with the Platform SDK
since it exposes low-level APIs for the underlying servers.
For instance, you should avoid sending modification requests to the
Configuration Server because the AIL Core would not be notified of these
changes, and the AIL cache would be out of synchronization.

PSDK Voice Bridge
The PSDK Voice Bridge is an access point to the Voice Platform SDK which
enables you to monitor voice interactions from a traditional or IP-based
telephony device. In addition, you can also perform requests with the
following packages:
• com.genesyslab.platform.voice.protocol.tserver.requests.dtmf

• com.genesyslab.platform.voice.protocol.tserver.requests.special

• com.genesyslab.platform.voice.protocol.tserver.requests.queries

• com.genesyslab.platform.voice.protocol.tserver.requests.iscc

• com.genesyslab.platform.voice.protocol.tserver.requests.voicemail

Customized
application AIL API AIL Core PSDK Bridges Genesys

Servers

action
action

request

response
event

event
action

request

response

Unexpected
responseUnexpected Flow

Unexpected
Flow

response

106 Agent Interaction SDK 7.6

Chapter 6: PSDK Bridges Steps for Integrating PSDK Config Bridge

Use special care when working with the Platform SDK since it exposes low-
level APIs for the underlying servers. Although AIL handles unsolicited
telephony events, modifying devices or interactions may lead to data
inconsistency, for instance, in connection with the result of the isPossible()
method calls or in reference IDs that AIL creates for Interaction instances.

Warning! Do not modify DN registration with the PSDK Voice Bridge.

Managing PSDK Listeners
Even when using the bridge, AIL manages connections, disconnections, HA
and ADDP. (In any case, as a general guideline, your application should not
deal with any of them through the AIL’s PSDK bridges.)

Warning! Do not call the close() methods of the protocol instances available
through the PSDK bridges. That would close the AIL connection
and make unavailable the server and the associated features till
AIL reconnects.

In case of disconnections, the listeners (that your application registered to get
protocol messages) are removed. So, your application must listen to
configuration and telephony service statuses to get notified of disconnections.
When AIL reconnects, the customer application must register its listeners
again to get PSDK protocol messages. See also the section Steps for
Integrating PSDK Config Bridge, page 106.

Steps for Integrating PSDK Config Bridge
This section offers a short implementation example to handle properly the
notification of protocol messages for the PSDK Config Bridge.
1. Create a new class implementing the ServiceListener interface.

public class ConfigBridgeAdapter implements ServiceListener {
AilFactory myFactory;

In the constructor, add your listener to the listener list of the CONFIG service
which monitors the connection to the Configuration Server, as shown below.

public ConfigBridgeAdapter(AilFactory _myFactory) {
myFactory = _myFactory ;
myFactory.addServiceListener(ServiceStatus.Type.CONFIG,this);

}

2. Then, implement the handler for the status changed events.

Java—Developer’s Guide 107

Chapter 6: PSDK Bridges Steps for Integrating PSDK Config Bridge

When the connection to the Configuration Server is in ON status, you must
register a PsdkConfigBridge.Listener instance to get protocol messages. To
correctly process events, you should use two class variables, including a
QueuedExecutor instance:

// Class variables
QueuedExecutor mQueue = new QueuedExecutor();
PsdkConfigBridge.Listener mListener;

public void serviceStatusChanged(
ServiceStatus.Type service_type,
java.lang.String service_name,
ServiceStatus.Status service_status) {

// handle Service.Status on disconnections
if(service_status.toInt() == ServiceStatus.Status.OFF_) {

//...
// TODO: implement what your application should do
// when connection is turned OFF
//...

} else if(service_status.toInt() == ServiceStatus.Status.ON_)
{

registerBridge();
}

}

public void registerBridge()
{

// Create the listener
mListener = new PsdkConfigBridge.Listener() {

public void handle(Message message) {
mQueue.execute(new Runnable() {

public void run() {
myHandler(message);

}});
}};

PsdkConfigBridge.addConfigServerListener(mListener);
// Your application now receives protocol messages

}

public void myHandler(Message message) {
/**
 * TODO Implement the message handling
 **/

}
} // End of ConfigBridgeAdapter class

108 Agent Interaction SDK 7.6

Chapter 6: PSDK Bridges Steps for Integrating PSDK Config Bridge

As soon as you add your ConfigBridgeAdapter instance to the listener list of
the CONFIG service, your class is notified of the connection status and is added
to the protocol’s listener list.
3. Now, you can retrieve the protocol instance and start customizing your

application.

// Get the factory
AilFactory my_factory = AilFactory.getAilFactory();
// Listen to CONFIG service
ConfigBridgeAdapter myAdapter = new ConfigBridgeAdapter(my_factory);

// Get Protocol instance
com.genesyslab.platform.configuration.protocol.ConfServerProtocol
ailConfigProtocol = PsdkConfigBridge.getConfigServerProtocol() ;

/**
* TODO: implement customization
*/

Java—Developer’s Guide 109

Chapter

7 E-Mail Interactions
Multimedia interactions are interaction interfaces inheriting the
InteractionMultimedia interface, that is, common e-mails, collaborative
e-mails, chat interactions, and open media interactions.
This chapter presents SimpleEmailInteraction, a code example that lets a user
receive and answer e-mails. It also covers collaborative e-mails and workbin
interactions.
The chapter is divided into the following topics:

SimpleEmailInteraction, page 109
Handling an E-Mail Interaction, page 115
Handling Collaborative E-Mail Interactions, page 120
Handling Workflow, page 127

SimpleEmailInteraction
This example is similar to SimpleVoiceInteraction, which was introduced
earlier. It uses the same graphical user interface and the same internal structure,
inheriting from SimplePlace. When you launch this example, which is in the
StandAloneExamples directory, you will see the user interface presented in
Figure 32.

Note: For the sake of simplicity, this example is designed to handle one
e-mail at a time. Set up a capacity rule limiting the agent to a single
e-mail at a time in your routing strategy. For further details, see
Universal Routing 7.6 Documentation.

110 Agent Interaction SDK 7.6

Chapter 7: E-Mail Interactions SimpleEmailInteraction

Figure 32: SimpleEmailInteraction at Launch Time

When an e-mail arrives for this agent, the Accept button will be enabled. At
this point, the agent can accept the e-mail. This displays the text of the
incoming e-mail, and also enables the Reply button, as shown in Figure 33.

Figure 33: Accepting an E-Mail

If the agent clicks the Reply button, a new window is created for the agent to
type and send a response, as shown in Figure 34.

Java—Developer’s Guide 111

Chapter 7: E-Mail Interactions SimpleEmailInteraction

Figure 34: The E-Mail Reply Window

After the agent sends the e-mail, the processing of the inbound e-mail is
finished and the example releases all the associated interactions.
As in the SimplePlace and SimpleVoiceInteraction examples, there are only
six steps to follow in writing this application. As some of these steps have been
done by SimplePlace, which is the superclass for this example, they will not be
repeated here.

Set Up Button Actions
After calling the superclass method and setting up the tab, the
linkWidgetsToGui() method is ready to set up the buttons. The Accept button is
very simple. All it does is “answer the call” when an e-mail comes in:

sampleEmailIn.answerCall(null);

This changes the status of the incoming e-mail from RINGING to TALKING.
The Reply button issues a call to the createReply() method of
SimpleEmailInteraction. This method first creates an outbound reply e-mail:

// Getting a queue to which to send the reply email.
String outboundQueue = getOutboundQueues();
sampleEmailReply = sampleEmailIn.reply(outboundQueue, false);

Then it makes call to an agentInteractionGui method, as shown here:

// Create a dialog box to enable the user to enter the reply text.
// The subject, the addresses, and part of the message are
// already created in the interaction.
agentInteractionGui.createReplyWindow(

sampleEmailReply.getSubject(),
sampleEmailReply.getFromAddress().toString(),

112 Agent Interaction SDK 7.6

Chapter 7: E-Mail Interactions SimpleEmailInteraction

sampleEmailReply.getMessageText());

This method creates a new window allowing the agent to enter a reply to the
incoming e-mail in the widget and include a Send button. As for the
linkWidgetsToGui() method, the createReply() method links widgets for
managing the sending of the e-mail response.

// Linking widgets
sendButton = agentInteractionGui.sendButton;
replyWindow = agentInteractionGui.replyWindow;
responseTextArea = agentInteractionGui.responseTextArea;

When the agent has finished the reply, he or she can click the Send button in the
reply window, which will do several things, as described here.
First, you will need to get the name of a queue. This is because you are about
to send an e-mail interaction, and e-mail interactions must have a queue to go
into. After getting a queue name, which will be explained in a moment, you
must set the text of the outgoing e-mail based on the text entered by the agent:

String outboundQueue = getOutboundQueues();

// Set the message text to the reply
sampleEmailReply.setMessageText(responseTextArea.getText());

Finally, you can send the response and close the reply window.

// Send the response
sampleEmailReply.send(outboundQueue);
replyWindow.dispose();

As mentioned above, you must supply a queue for the outgoing e-mail. There
are several ways to do this. In this example, the available queues are read in
and the first one is chosen, as shown in the next stretch of code. You may need
to use more sophisticated means to perform this task.

String queueId = "";
Collection availableQueues =

sampleEmailIn.getAvailableQueuesForChildInteraction();
Iterator iterator = availableQueues.iterator();
Queue queue;
while (iterator.hasNext()) {

queue = (Queue) iterator.next();
queueId = queue.getId();
break;

}
return queueId;

Java—Developer’s Guide 113

Chapter 7: E-Mail Interactions SimpleEmailInteraction

That is a lot more work that you had to do in the previous examples, but there
is not much left to do now.

Add Event-Handling Code
The handleInteractionEvent() method in this example is different from the
corresponding method in SimpleVoiceInteraction. The significant difference
is in how it processes two different types of e-mail interactions: sampleEmailIn
for an incoming e-mail and sampleEmailReply for the response.

Note: As explained in “Threading” on page 32, you should write short and
simple event handlers to avoid delaying the propagation of events.

In this purpose, the SimpleEmailInteraction uses
EmailInteractionEventThread class to process InteractionEvent events. All
the event processing is performed in the run() method of the thread.

public void handleInteractionEvent(InteractionEvent event) {
super.handleInteractionEvent(event);
EmailInteractionEventThread p =

new EmailInteractionEventThread(event);
p.start();

}

When an e-mail comes in, it will have a status of RINGING. At this point, if the
sampleEmailIn interaction associated with the example is null, the example
gets the event’s e-mail interaction and displays a few details in the GUI, as
shown here:

if (sampleEmailIn == null
&& event.getSource() instanceof InteractionMailIn
&& event.getStatus() == Interaction.Status.RINGING) {

sampleEmailIn = (InteractionMailIn) event.getSource();

//Displaying From and Subject fields
String emailText = "From: "

+ sampleEmailIn.getFromAddress().toString()
+ "\nSubject: " + sampleEmailIn.getSubject();

inboundEmailTextArea.setText(emailText);
}

114 Agent Interaction SDK 7.6

Chapter 7: E-Mail Interactions SimpleEmailInteraction

At this point, if the received event provides notification of a change of status
for the sampleEmailIn interaction, the handleInteractionEvent() method
checks for two cases:
• If the e-mail is in TALKING status, the agent agreed to process it;

sampleEmailInteraction reads information from the incoming e-mail and
places it in the GUI by calling the displaySampleEmailIn() method.

• If the e-mail is in IDLE status, it marks it done (if necessary) and removes it
from the example.

//The event involves the inbound email being processed
if(sampleEmailIn!= null

&& event.getSource().getId() == sampleEmailIn.getId())
{

// The inbound email is in talking status, and can be displayed
if (event.getStatus() == Interaction.Status.TALKING)
{

sampleEmailIn = (InteractionMailIn) event.getSource();
displaySampleEmailIn();

}
// The interaction is processed,
// the sample no longer needs to handle it
else if (event.getStatus() == Interaction.Status.IDLE)
{

if(!sampleEmailIn.isDone())
sampleEmailIn.markDone();

sampleEmailIn = null;
}
setInteractionWidgetState();

}

Then, the event can also provide notification of a change of status for the
sampleEmailReply interaction. In this case, the method checks whether or not
this e-mail is released. If true, this interaction and its widgets are removed
from the example, as shown here.

else if(sampleEmailReply!= null
&& event.getSource().getId() == sampleEmailReply.getId())

{
if (event.getStatus() == Interaction.Status.IDLE)
{

if(!sampleEmailReply.isDone())
sampleEmailReply.markDone();

sampleEmailReply = null;
sendButton = null;
replyWindow = null;

}
setInteractionWidgetState();

}

Java—Developer’s Guide 115

Chapter 7: E-Mail Interactions Handling an E-Mail Interaction

Synchronize the Widgets
As said previously, the standalone code examples use two similar methods to
synchronize their user interface widgets with the application state:
setPlaceWidgetState() and setInteractionWidgetState().
SimpleEmailInteraction overwrites both methods:
• setPlaceWidgetState() to update login buttons in the Simple Place panel,

according to the e-mail media’s possible actions.

loginButton.setEnabled(sampleEmail.isPossible(Media.Action.LOGIN));

• setInteractionWidgetState to update the interaction buttons in the
SimpleE-Mail Interaction panel, according to the actions available on the
e-mail inbound interaction.

acceptButton.setEnabled(sampleEmailIn
.isPossible(InteractionMailIn.Action.ANSWER_CALL));

As you can see, the work you do to reply to an e-mail is not that different from
what you do to handle a call. The following sections go into more detail about
e-mail interactions.

Handling an E-Mail Interaction
To access e-mail interactions, an agent must log into the e-mail media of his or
her place. Due to consolidation of the interactions, some method names and
events applied to the manipulation of e-mail are drawn from telephony
terminology.

E-Mail State
The e-mail state diagram below, Figure 35, shows the life cycle of an e-mail
interaction (inbound or outbound). The workflow is similar to that of a voice
phone call, but without pure voice operations. States are Interaction.Status
values and transitions are InteractionEvent.EventReason values.

116 Agent Interaction SDK 7.6

Chapter 7: E-Mail Interactions Handling an E-Mail Interaction

Figure 35: E-Mail State

Sending an E-Mail
To send an e-mail, create an outgoing e-mail interaction, that is, an
InteractionMailOut instance of type Interaction.Type.EMAILOUT.
Creating an e-mail is similar to creating a phone call. You first create an
interaction with the Agent.createInteraction() (or
Place.createInteraction()) method with type EMAIL, as shown in the
following code snippet:

AilFactory factory = AilLoader.getAilFactory();
Agent agent = (Agent) factory.getPerson(AgentId);
Place place = (Place) sAF.getPlace(PlaceId);

HashSet myMedia = new HashSet();
myMedia.add(MediaType.EMAIL.toString());
agent.loginMultimedia(place,

myMedia,
ActionCode.Type.LOGIN.toString(),
"Login e-mail");

//...

InteractionMailOut mailOut =

NEWRINGING

TALKING HELD

IDLE

EventReason
STATUS_CHANGED

EventReason
RINGING

EventReason
ESTABLISHED

EventReason
RELEASED

EventReason
RELEASED

or
ABANDONED

EventReason
RELEASED

or
ABANDONED

Java—Developer’s Guide 117

Chapter 7: E-Mail Interactions Handling an E-Mail Interaction

(InteractionMailOut) agent.createInteraction(MediaType.EMAIL,
null, Queue);

Then, you immediately receive an InteractionEvent event, setting your
interaction to the Interaction.Status.TALKING. You are now ready to fill in the
e-mail with the methods of InteractionMailOut.
To set addresses, you must create and fill an EmailAddress object for each
e-mail address, as shown here:

EmailAddress[] myAddresses = new EmailAddress[1];
myAddresses[0] =

sAF.createEmailAddress("My Contact","myContact@company.com");

mailOut.setToAddresses(myAddresses);
mailOut.setSubject(“Subject”);
mailOut.setMessageText(“BodyText”);

Once finished, you call the InteractionMailOut.send() method to send your
e-mail to the Genesys servers.

mailOut.send(Queue); //you have to specify the queue

Invoking send() automatically releases your interaction. You receive an
InteractionEvent event propagating the interaction status change to
Interaction.Status.IDLE.
Figure 36 presents event flow for sending an e-mail.

Figure 36: Sending an E-Mail

AIL Client

agent:Agent mailOut:
InteractionMailOut

Genesys
Solutions

Contact
createInteraction

EMAIL
create

RequestSubmit

setText

send
RequestPlaceInQueue

send

InteractionEvent
IDLEInteractionEvent

IDLEInteractionEvent
IDLE

InteractionEvent
TALKINGInteractionEvent

TALKINGInteractionEvent
TALKING

118 Agent Interaction SDK 7.6

Chapter 7: E-Mail Interactions Handling an E-Mail Interaction

Receiving an E-Mail
When your agent receives an incoming e-mail, your application receives an
InteractionEvent event, giving an interaction of type
Interaction.Type.EMAILIN with the status RINGING. This interaction
corresponds to the incoming e-mail and is available through the
InteractionMailIn interface.

void handleInterationEvent(InteractionEvent event) {
InteractionMailIn mailIn =

(InteractionMailIn) event.getSource();
// ...

}

After invoking the answerCall() method to acknowledge the handling of the
interaction, you receive another InteractionEvent event propagating the status
of the interaction changed to TALKING.

mailIn.answerCall(null);

You can now access the incoming e-mail content.

System.out.println("\nFrom: "+ mailIn.getFromAddress().toString()
+"\nSubject: "+ mailIn.getSubject()
+"\nText: "+ mailIn.getMessageText());

Figure 37 presents event flow for sending an e-mail.

Figure 37: Answering an E-Mail

AIL Client

agent:Agent mailIn:
InteractionMailIn

Genesys
Solutions

Contact

isEventInvite

InteractionEvent
RINGING

RequestAccept

InteractionEvent
TALKING

InteractionEvent
TALKING

send
e-mail

answerCall

InteractionEvent
RINGING

InteractionEvent
TALKING

Java—Developer’s Guide 119

Chapter 7: E-Mail Interactions Handling an E-Mail Interaction

Responding to an E-Mail
Responding to an e-mail is as straightforward as sending one. You can call the
InteractionMailIn.reply() method to initiate a reply if the
InteractionMailIn.Action.REPLY is available; you test this by invoking
isPossible(). In the following code snippet, the Agent Interaction Java API
creates a new interaction of type Interaction.Type.EMAILOUT_REPLY in TALKING
status, and sends it to you through an event InteractionEvent, or as a result of
the method.

//Create a reply, with auto mark done of the inbound e-mail
InteractionMailOut mailOutReply =

mailIn.reply(Queue, false, true);

Above, the InteractionMailIn instance is automatically marked done, so it is
no longer available.
If you wish to keep alive the InteractionMailIn instance for making further
replies, you set the auto-mark-done parameter to false. Later, to terminate this
interaction, your application marks it done, as shown here:

//Create a reply, with no auto mark done of the e-mail in

InteractionMailOut mailOutReply =
mailIn.reply(Queue, false, false);

//...

mailIn.markdone();

The InteractionMailOut reply is handled exactly in the same way as sending
an e-mail. As soon as your application calls the InteractionMailOut.send()
method, AIL places the request in the specified queue and terminates the
InteractionMailOut reply. Your application does not need to mark done this
interaction.
The event flow is presented in Figure 38.

120 Agent Interaction SDK 7.6

Chapter 7: E-Mail Interactions Handling Collaborative E-Mail Interactions

Figure 38: Responding to an E-Mail

Handling Collaborative E-Mail Interactions
When an agent is working on an outgoing e-mail, he or she can request the
collaboration of other agents to elaborate the e-mail content.
A collaboration session involves several types of collaborative interactions. A
collaborative interaction is an e-mail interaction that manages additional
collaboration data.
During a collaboration session, your application can:
• Initiate a collaboration session on an outgoing e-mail.
• Participate in a collaboration session.
When an agent initiates the collaboration, he or she sends invitations to the
participants. By periodically refreshing the status of the invitations, your
application can monitor the participants’ collaboration activity.

AIL Client

mailIn:
InteractionMailIn

Genesys
Solutions

Contact

InteractionEvent NEW

reply

mailOut :
InteractionMailOut

InteractionEvent
NEW

create

InteractionEvent
TALKING

RequestSubmit

InteractionEvent TALKING

markDone
RequestStopProcessing

InteractionEvent
IDLE

InteractionEvent
IDLE

setText

send
RequestPlaceInQueue

Send reply

InteractionEvent
IDLE

InteractionEvent
IDLE

agent:
Agent

InteractionEvent
IDLE

InteractionEvent
NEW

InteractionEvent
TALKING

InteractionEvent
IDLE

Java—Developer’s Guide 121

Chapter 7: E-Mail Interactions Handling Collaborative E-Mail Interactions

If the agent is a participant, your application manages InteractionEvent events
for Interaction.Status changes and performs collaboration actions both on
the invitation and on the reply that is sent as a result of the collaboration.
Classes and interfaces dedicated to the collaboration are part of the
com.genesyslab.com.ail.collaboration package.

Types of Collaborative E-Mail Interactions
Types for collaborative e-mail interactions are accessed with the inherited
Interaction.getType() method. The following table presents the types of
collaborative e-mail interactions that your application can deal with.

Outgoing Invitations

As mentioned in the Agent Interaction SDK (Java) API Reference, the
collaborative InteractionInvitationOut interaction is used to set a list of
participants in the collaboration session. This interaction creates and sends
incoming invitation interactions to each participant on this list. You need a
single InteractionInvitationOut interaction to send invitations to several
participants.

Warning! As soon as invitations are sent, the outgoing invitation is no longer
available. Nor is it stored in the database. Do not keep any
reference on this object.

Table 2: Types of Collaborative E-Mail Interactions

Interactions Interaction.Type Interface Description

Parent invitation COLLABORATION_INVIT_OUT InteractionInvitationOut Interactions for sending
invitations to
participants.

Invitation seen by
the parent

COLLABORATION_INVIT_IN InteractionInvitation
ParentIn

Interactions for
invitations sent by the
agent (or parent) who
requested collaboration.

Incoming
invitation

COLLABORATION_INVIT_IN InteractionInvitationIn Interactions for incoming
invitations received by
the participant (or child).

Reply to
invitation

COLLABORATION_REPLY_OUT InteractionReplyOut Interactions for
collaborative replies sent
by participants (or
children).

122 Agent Interaction SDK 7.6

Chapter 7: E-Mail Interactions Handling Collaborative E-Mail Interactions

Invitation

Invitation interactions are inbound e-mails of type COLLABORATION_INVIT_IN.
Depending on your application’s role in the collaboration (child or parent), the
application provides you with two interfaces to handle invitations:
• InteractionInvitationIn—child invitation:

Each participant in the collaboration session receives an incoming
child invitation.
This interaction informs the participant of the collaboration request.
For information about child invitation management, see “Participating
in a Collaboration Session” on page 126.

• InteractionInvitationParentIn—parent invitation:
For each invitation sent to a participant, the agent who initiates the
collaboration can access the corresponding invitation interaction.
The agent uses parent invitations to monitor the collaboration and the
participants’ replies.
Each invitation is a child interaction of the initial outgoing e-mail
interaction.
Use InteractionMailOut.getSentInvitations() to retrieve parent
invitations.
For information about parent invitation management, see “Handling a
Collaboration Session” on page 123.

Collaborative Reply

The collaborative reply is an outgoing e-mail replying to a child incoming
invitation. It is created by calling the InteractionInvitationIn.reply()
method. As for an outgoing replying e-mail, some e-mail fields are already
filled in and you just have to set new text with the
InteractionReplyOut.setMessageText() method.
Use a collaborative reply in the same way that you would use a reply outgoing
e-mail interaction. For further details, see “Participating in a Collaboration
Session” on page 126.

Collaboration Status
Collaborative interactions all have a collaboration status—described in the
InteractionInvitationIn.Status inner class—available through the
getCollaborationStatus() method.
Applications that initiate the collaboration have specific interests in the
collaboration status of their parent invitations.When a parent invitation gets a
FULFILLED collaboration status, the application can get the reply corresponding
to the invitation by calling the getCollaborativeReply() method.

Java—Developer’s Guide 123

Chapter 7: E-Mail Interactions Handling Collaborative E-Mail Interactions

Note: Collaboration status changes do not launch additional
InteractionEvent events. There is no notification of modifications
through the API. Periodically read the collaboration status to check any
status change.

Figure 39 shows non-exhaustive transitions that exist between collaboration
statuses of an incoming invitation.

Figure 39: Transitions Between Statuses of an Incoming Invitation

Warning! This figure is provided as an informative example. It does not
include all possible statuses and transitions.

You must take into account an invitation’s collaboration status to perform
collaboration actions.

Handling a Collaboration Session
From the parent’s point of view, the collaboration feature has been designed as
a set of invitations that are children of the outgoing e-mail interaction that
requests a collaboration session.
This section discusses first the sending of invitations to participants, then the
management of the parent invitations.

Sending Invitations

First, create a draft of the relevant outgoing e-mail interaction. You need a
single InteractionInvitationOut interaction to send invitations to several
participants.

parent sent invitations

accept

reply + send

ACCEPTANCE
_PENDING

ACCEPTED

DECLINEDCANCELLED FULFILLED

parent recall decline

parent
recall

124 Agent Interaction SDK 7.6

Chapter 7: E-Mail Interactions Handling Collaborative E-Mail Interactions

Use the InteractionMailOut.createCollaborationInvitation() method as
shown in the following code snippet:

InteractionInvitationOut myInvitationsToSend =
myInteractionMailOut.createCollaborationInvitation();

You have to specify the reason for this collaboration session. Use setSubject()
and setMessageText() to add information.
You must add participants to the collaboration session. First, create each
participant with the InteractionInvitationOut.createParticipant() method,
then add those participants to the outgoing invitation with the
InteractionInvitationOut.addParticipant() method, as shown in the
following code snippet:

Participant myParticipant0 =
myInvitationsToSend.createParticipant();

// Setting type and name of the participant that is agent 0.
myParticipant0.setType(QUEUE);
myParticipant0.setName(“agent0”);

// Adding agent0 to the list of participants
myInvitationsToSend.addParticipant(myParticipant0);

To determine if those participants have been correctly added to the outgoing
invitation, you can implement a ParticipantsListener listener and add it with
the InteractionInvitationOut.addParticipantsListener() method.
Once all participants have been added to the outgoing invitation, you can send
them invitations. Depending on the method called to send invitations, your
application activates a specific mode:
• send()—Sends the invitations to the participants in pull mode. The child

invitations are available in workbins. See “Putting Interactions in
Workbins” on page 130.

• transfer()—Transfers the invitations to the participants in push mode.
Each participant receives the invitation as an incoming interaction.

The following code snippet uses the transfer() method:

// Use transfer in the push mode
myInvitationsToSend.transfer();

In push mode, on the child side, each participant receives a RINGING
InteractionEvent for the corresponding InteractionInvitationIn. See
“Participating in a Collaboration Session” on page 126.

Java—Developer’s Guide 125

Chapter 7: E-Mail Interactions Handling Collaborative E-Mail Interactions

Managing Parent Invitations

For each participant to the collaboration session, you manage a corresponding
InteractionInvitationParentIn interaction. You can get the set of parent
invitations by calling the InteractionMailOut.getSentInvitations() method
of the outgoing e-mail interaction involved in the collaboration session.

Parent Actions

You can perform parent-specific actions on the invitations, that is, reminding
participants about invitations or recalling invitations.
Those parent actions are available in the
InteractionInvitationParentIn.Action inner class. To determine if the RECALL
and REMIND actions are available, test the collaboration status of the invitation
as shown in the following code snippet:

if((myInteractionInvitationParentIn.getCollaborationStatus() ==
InteractionInvitationIn.Status.ACCEPTED) ||

(myInteractionInvitationParentIn.getCollaborationStatus() ==
InteractionInvitationIn.Status.ACCEPTANCE_PENDING)

{
// The parent can take the REMIND or RECALL action on the
// interaction.
myInteractionInvitationParentIn.remind(myPlace);

} else {
// Collaboration status is DECLINED, FAILED, or FULFILLED
// REMIND or RECALL are not available

}

Monitoring Participant Activity

InteractionInvitationParentIn interactions are not used as incoming e-mails;
they should be used to monitor the participant activity on the invitation.
Test the collaboration status periodically to take changes into account. To get
the collaboration status of an invitation, call the
InteractionInvitationParentIn.getCollaborationStatus() method.
When the collaboration status is InteractionInvitationIn.Status.FULFILLED,
you can get the response of the corresponding participant by calling the
getCollaborativeReply() method.

if(myInteractionInvitationParentIn.getStatus() ==
InteractionInvitationIn.Status.FULFILLED)

{
InteractionReplyOut myCollabReply =

myInteractionInvitationParentIn.getCollaborativeReply();

126 Agent Interaction SDK 7.6

Chapter 7: E-Mail Interactions Handling Collaborative E-Mail Interactions

System.out.println(“The reply is:
”+myCollabReply.getMessageText());

}

Note: You cannot start a collaboration session on a collaborative reply. You
cannot reply to a collaborative reply.

Participating in a Collaboration Session
In push mode, from the participant (or child) point of view, the agent receives
an InteractionEvent for a RINGING incoming e-mail interaction of type
COLLABORATION_INVIT_IN. (See “Putting Interactions in Workbins” on page 130
for details about pull mode.)
The following code snippet implements the handleInterationEvent()
method for an AgentListener:

void handleInterationEvent(InteractionEvent event) {
Interaction myInteraction = (Interaction) event.getSource();

//...
if(myInteraction.getType() ==

Interaction.Type.COLLABORATION_INVIT_IN)
{

//Management of the collaborative invitation
}
//...

}

Cast the interaction associated with the event to InteractionInvitationIn, as
shown in the following code snippet:

InteractionInvitationIn myInvitation =
(InteractionInvitationIn) event.getSource();

You can manage this incoming interaction as a common e-mail by answering
to it (see “Responding to an E-Mail” on page 119).
Once the interaction is in TALKING status, the agent can either accept the
collaboration by calling the acceptInvitation() method or decline the
invitation by calling the declineInvitation() method.
If the agent accepts, he or she can reply to the invitation, as shown in the
following code snippet:

//Getting the interaction for the reply
InteractionReplyOut myReply =

(InteractionReplyOut) myInvitation.reply(“Place0”) ;

Java—Developer’s Guide 127

Chapter 7: E-Mail Interactions Handling Workflow

//Setting the collaboration message
myReply.setMessageText(“My reply is...”);

//Sending the message
myReply.send();

Once the reply is sent, the collaboration status of the corresponding invitation
interaction becomes FULFILLED and the agent who initiates the collaboration
can access the reply. Both the invitation and reply interactions are released.

Handling Workflow
Workflow management is provided with the WorkbinManager interface and
classes of the com.genesyslab.ail.workflow package.
The WorkbinManager interface accesses the workbins of a place. From an
agent’s point of view, a workbin is a sort of interaction directory from which
your application can pull, or into which it can put, interactions.
To define workbins more precisely: a queue contains interactions, and a view
filters a queue’s interactions according to a set of criteria. A workbin filters a
view’s interactions according to a further set of criteria. Figure 40 shows an
example of a view and some workbins defined for a queue.

128 Agent Interaction SDK 7.6

Chapter 7: E-Mail Interactions Handling Workflow

Figure 40: Example for Workbins, Views, and Queues

Figure 40 shows a queue containing e-mail interactions. For this queue, View0
lets your application see only e-mail interactions that are no older than a week.
In this view, two workbins coexist: one for draft e-mail interactions, and one
for pending e-mail interactions. The WorkbinManager interface can use those
filters to retrieve a set of interactions organized in workbins for a particular
place.
Here, the WorkbinManager interface retrieves interactions no older than a week
and available for place0. E-Mail1 and E-Mail2 are not retrieved, as they should
not be processed in place0.
Use the Configuration Layer to define views and workbins. For further details,
refer to your Configuration Layer documentation.

Note: Workbins can contain multimedia (non-voice) interactions only.

Workbins enable pull mode for multimedia interactions. Interaction status is
IDLE in a workbin. You have to pull an interaction to change the interaction
status and execute actions on the interaction.
Use the Workbin and WorkbinManager interfaces to:
• Display workbins and their filtered interactions.

E-Mail0 E-Mail1 E-Mail2 E-Mail3

View0

E-Mail4

Workbin Draft Workbin Pending

age<1week

- type EMAIL_OUT*
- subject not empty
- body not empty

- type EMAIL_OUT*
- body empty

Retrieving Workbins for place0

Workbins for place0

Workbin Draft

Workbin Pending

E-Mail0

E-Mail3

E-Mail4

Workflow Service

Java—Developer’s Guide 129

Chapter 7: E-Mail Interactions Handling Workflow

• Enable an agent to put an interaction in a workbin.

Getting the Workbin Manager
The workbin manager is available on the Place interface. Invoke
Place.getWorkbinManager() on your agent’s place to get the workbin manager.

WorkbinManager myWorkbinManager = place0.getWorkbinManager();

Use the WorkbinManager interface to get Queue and Workbin instances available
for the agent. For example, the following code snippet gets the Workbin
instance corresponding to Draft (see Figure 40 on page 128).

Workbin myDraftWorkbin = myWorkbinManager.getWorkbin(“Draft”);

Workbin Content
The Workbin interface is designed to manage the contents of a workbin as a set
of InteractionMultimediaSummary. It provides the following methods:
• getContent()—retrieves interaction summaries for this particular workbin.
• getContentForAll()—retrieves interaction summaries for all agents or

places defined for this workbin.
• getSortedContentForAll()—retrieves interaction summaries for all agents

or places defined for this workbin, sorted by agent or place.
The InteractionMultimediaSummary interface is a summary description of an
interaction available in a workbin. The corresponding interaction’s status is
IDLE. To execute actions on workbin interactions, you first have to pull those
interactions. You cannot work with summaries or interactions retrieved from
summaries.
The following code snippet displays the contents of the draft workbin for this
place.

Collection myDrafts = myDraftWorkbin.getContent();
Iterator itDrafts = myDrafts.iterator();
while(itDrafts.hasNext())
{

InteractionMultimediaSummary myDraft =
(InteractionMultimediaSummary) itDrafts.next();

System.out.println("Type: "+myDraft.getType().toString()
+ " Subject:"+myDraft.getSubject()
+ " Date:"+myDraft.getDateReceived().toString()+"\n");

}

130 Agent Interaction SDK 7.6

Chapter 7: E-Mail Interactions Handling Workflow

The Workbin interface has methods to display information about the workbin
itself—for instance, its name with getName(), the name of the associated queue
with getQueue(), and its type with getType().

Putting Interactions in Workbins
You can put an InteractionMultimedia into a workbin by calling the
Workbin.put() method, as shown here:

/// Creating an outgoing e-mail interaction
InteractionMailOut mailOut =

(InteractionMailOut) agent.createInteraction(MediaType.EMAIL,
null, Queue);

// Putting the interaction in the draft workbin
myDraftWorkbin.put(mailOut);

Two types of workbins coexist:
• Agent workbin—The AgentWorkbin interface allows your application to put

interactions into the same workbin defined for other agents, or to get the
contents of this workbin for another agent.

• Place workbin—The PlaceWorkbin interface allows your application to put
interactions into same workbin defined for other places, or to get the
contents of this workbin for another place.

You can cast the workbin according to its type, as shown here:

if(myDraftWorkbin.getType() == Workbin.Type.AGENT)
{

AgentWorkbin myDraftAgentWorkbin =
(AgentWorkbin) myWorkbinManager.getWorkbin(“Draft”);

///....
// Creating an e-mail
InteractionMailOut mailOut =

(InteractionMailOut) agent.createInteraction(MediaType.EMAIL,
null, Queue);

// Getting Agent2 interface
Agent agent2 = (Agent) myAilFactory.getPerson(“Agent2”);

// Putting the interaction in the draft workbin of agent2
myDraftAgentWorkbin.put(mailOut, agent2);

}

During a collaboration session, the inviting agent can choose to use pull mode
when sending his or her invitations. When setting the participant list of an
InteractionInvitationOut, he or she can activate the pull mode. When the
parent sends the outgoing invitation by calling
InteractionInvitationOut.send(), participants of type

Java—Developer’s Guide 131

Chapter 7: E-Mail Interactions Handling Workflow

Participant.Type.AGENT get their invitation in their workbin. They have to pull
the invitation interaction to process it.

InteractionInvitationOut myInvitationsToSend =
myInteractionMailOut.createCollaborationInvitation();

// Setting type and name of the participant that is agent 0.
myParticipant0.setType(AGENT);
myParticipant0.setName(“agent0”);

// Adding agent0 to the list of participants
myInvitationsToSend.addParticipant(myParticipant0);

// Sending invitations: participant0 receives his or her invitation
// in his or her workbin
myInvitationsToSend.send();

Pulling Interactions
You can pull an interaction from its InteractionMultimediaSummary to a place
by calling pullInteractionMultimedia().
You can pull an interaction with the corresponding identifier by calling
Agent.openInteraction() or Place.openInteraction().
The InteractionMultimedia interaction is pulled on the agent or the place.
Your application receives an InteractionEvent to update the
Interaction.Status status which changes from IDLE in the workbin to TALKING
once pulled.
Further processing of pulled interactions does not differ from the use cases
described in the earlier sections.

132 Agent Interaction SDK 7.6

Chapter 7: E-Mail Interactions Handling Workflow

Java—Developer’s Guide 133

Chapter

8 Chat Interactions
Chat interactions are a type of multimedia interactions, that make use of the
InteractionChat interface, and inherit functionality from
InteractionMultimedia interface. Other multimedia interactions are discussed
in Chapter 7 on page 109 and Chapter 9 on page 145.
This chapter discusses chat interactions. It also presents
SimpleChatInteraction, a new example that allows user to join chat sessions,
send messages, and use the CoBrowse feature.
The chapter is divided into the following topics:

Chat Interaction Design, page 133
SimpleChatInteraction, page 135
Handling a Chat Interaction, page 139

Chat Interaction Design

Chat State
Because InteractionChat inherits the InteractionMultimedia interface, each
InteractionChat object has a status, described in the Interaction.Status inner
class. Figure 41 shows the possible states of a chat interaction. The only chat
interactions are incoming.

134 Agent Interaction SDK 7.6

Chapter 8: Chat Interactions Chat Interaction Design

Figure 41: Chat State Diagram

For a chat interaction, the interaction status can change due to a common
Interaction.Action, that is, a call to the corresponding method. For example,
a successful Interaction.Action.ANSWER_CALL action changes the interaction
status from Interaction.Status.RINGING to Interaction.Status.TALKING. The
corresponding method is InteractionChat.answerCall().
Not all Interaction.Action actions are available on chat interactions.
InteractionChat inherits Possible. Test if an action is possible on a chat
interaction by calling InteractionChat.isPossible(Interaction.Action).
If the chat interaction has a TALKING status, the chat interaction is active in the
chat session and you can take chat-specific actions on the interaction, by using
methods such as:
• sendMessage()

• conferencePlace(), conferenceAgent()

• clearCall()

Details about these and other methods are provided in the “Handling a Chat
Interaction” on page 139.

CoBrowse Interactions
The Agent Interaction (Java API) provides a CoBrowse feature through the
InteractionCoBrowse interface used as a container to store URLs that your
application can share with a customer at runtime. The stored URLs are then

RINGING

TALKING HELD

IDLE

EventReason
RINGING

EventReason
RELEASED

or
ABANDONED

EventReason
RELEASED

EventReason
ESTABLISHED

EventReason
STATUS_CHANGED

Java—Developer’s Guide 135

Chapter 8: Chat Interactions SimpleChatInteraction

intended to be used in contact histories. For further details about the History
feature, see “Contact History” on page 166.
The CoBrowse feature does not include any web management and is fairly
simple to use. You create an InteractionCoBrowse instance by calling a
standard createInteraction() method; most of the time, you will need a
CoBrowse interaction when you are handling another interaction (of any type,
that is e-mail, chat, voice, or open media.) To link your InteractionCoBrowse
instance to an existing interaction you specific a parent interaction in
parameters at its creation.
As this interaction is a used as a container, this InteractionCoBrowse instance
has no status to monitor by handling events. Then, all your application is
responsible is saving the InteractionCoBrowse instance.
The SimpleChatInteraction example includes a CoBrowse feature. For further
details, refer to “Add CoBrowse-Handling Code” on page 138.

SimpleChatInteraction
This example is similar to SimpleVoiceInteraction, which was introduced
earlier. It uses the same graphical user interface and the same internal structure,
inheriting from SimplePlace. When you launch this example, which is in the
StandAloneExamples directory, you will see the user interface presented in
Figure 42.

Note: For the sake of simplicity, this example is designed to handle one chat
session at a time. Set up a capacity rule limiting the agent to a single
chat interaction at a time in your routing strategy. For further details,
see Universal Routing 7.6 Documentation.

136 Agent Interaction SDK 7.6

Chapter 8: Chat Interactions SimpleChatInteraction

Figure 42: Join a Chat Session

If the user checks the CoBrowse checkbox, SimpleChatInteraction opens a
dialog box which displays the content of the child CoBrowse interaction
created for the example. Then, SampleChatInteraction parses all the received
chat messages, adds any URL found in the chat text to the CoBrowse interaction,
and finally saves this interaction when the chat interaction terminates.

Set up Button Actions
By inheritance, SimplePlace takes care of all agent buttons located in the
Simple Place panel. SimpleChatInteraction is in charge of chat buttons
designed to manage the chat session, that is, Join a ringing chat session, Quit
an established session, Done to mark the corresponding chat interaction as Done.
The Send button enables the agent to send a chat message entered in the
message panel.
The GUI program AgentInteractionGui has created buttons for each of these
actions, but at this point they do nothing. SimpleChatInteraction rings these
buttons to life by overloading the linkWidgetsToGui() method.
The following code snippet shows how to implement the Send button. The
corresponding button action uses the contents of the chat message text area to
send a message, then, it clears this text area.

// Add a send button for the chat session
sendButton = agentInteractionGui.sendChatMsgButton;
sendButton.setAction(new AbstractAction("Send") {

public void actionPerformed(ActionEvent actionEvent) {

Java—Developer’s Guide 137

Chapter 8: Chat Interactions SimpleChatInteraction

try {
String msg = chatMsgTextArea.getText();
sampleChatIxn.sendMessage(msg);
chatMsgTextArea.setText("");

} catch (Exception exception) {
agentInteractionGui.writeLogMessage(exception.getMessage(),

"ErrorEvent");
}

}});

Add Event-Handling Code
SimpleChatInteraction is designed to handle chat interactions. This means
there needs to be interaction-related, event-handling code.
As explained in the “Threading” section in Chapter 1, the standalone examples
use threads to avoid delaying the propagation of events.
In this purpose, the SimpleChatInteraction uses two threads:
• ChatSessionInteractionEventThread to handle InteractionEvent events

sent for the InteractionChat used to process the chat session.
• InteractionChatEventThread to handle ChatEvent events sent for

processing messages during the chat session.
The event-handling code in ChatSessionInteractionEventThread is similar to
the event-handling code in VoiceInteractionEventThread. It checks several
statements to handle status changes in the processed InteractionChat instance
(that corresponds to the chat session.) For further details, see “Add Event-
Handling Code” on page 69.
The event-handling code in InteractionChatEventThread is in charge of
displaying chat messages and information about users in the chat panel.

if(chatEvent.getEventType() == InteractionChatEvent.Type.MESSAGE_RECEIVED)
{

displayInteractionChatMessage(chatEvent.getParty(), chatEvent.getText());
if(sampleCoBrowseIxn != null)
{

checkURLs(chatEvent.getText());
}

}
else if(chatEvent.getEventType() == InteractionChatEvent.Type.DISCONNECTED)
{

agentInteractionGui.writeChatMessage(" ", "You are disconnected !",
AgentInteractionGui.ELSE_STYLE);

}
else if(chatEvent.getEventType() == InteractionChatEvent.Type.USER_JOINED)
{

138 Agent Interaction SDK 7.6

Chapter 8: Chat Interactions SimpleChatInteraction

agentInteractionGui.writeChatMessage(chatEvent.getDate().toGMTString(),
chatEvent.getParty().getNickName() + " joined",
AgentInteractionGui.ELSE_STYLE);

}
else if(chatEvent.getEventType() == InteractionChatEvent.Type.USER_LEFT)
{

agentInteractionGui.writeChatMessage(chatEvent.getDate().toGMTString(),
chatEvent.getParty().getNickName() + " left",
AgentInteractionGui.ELSE_STYLE);

}
else if(chatEvent.getEventType() == InteractionChatEvent.Type.USER_REENTER)
{

agentInteractionGui.writeChatMessage(chatEvent.getDate().toGMTString(),
chatEvent.getParty().getNickName() + "
reentered", AgentInteractionGui.ELSE_STYLE);

}

Chat events do not affect the status of the chat interaction. That’s why
interaction widgets don’t update on chat events.

Add CoBrowse-Handling Code
In this code example, CoBrowse is started when the user checks the CoBrowse
checkbox. At that moment, SimpleChatInteraction calls its startCoBrowse()
method which creates an InteractionCoBrowse instance for the current chat
session, as shown here:

try {
//1. Create a new InteractionCoBrowse
sampleCoBrowseIxn = (InteractionCoBrowse)

sampleAgent.createInteraction(MediaType.COBROWSE,
sampleChatIxn, sampleChatIxn.getQueue());

} catch (RequestFailedException e) {
agentInteractionGui.writeLogMessage(e.getMessage(),

"ErrorEvent on CoBrowse creation");
}

Then, when the application gets a chat message, it parses the message content
by calling the checkURLs() method. If this method finds a URL in the text, it
adds the URL to the InteractionCoBrowse instance.

test[i] = "http:"+test[i];
agentInteractionGui.coBmodel.addElement(test[i]);

try {
sampleCoBrowseIxn.addURLs(new String[]{test[i]});

} catch (RequestFailedException e) {
agentInteractionGui.writeLogMessage(e.getMessage(),"ErrorEvent");

Java—Developer’s Guide 139

Chapter 8: Chat Interactions Handling a Chat Interaction

}

When the chat interaction is terminated, that is, in IDLE status, the associated
CoBrowse interaction is saved and marked as done.

sampleCoBrowseIxn.save();
sampleCoBrowseIxn.markDone();

Handling a Chat Interaction
Chat interactions are multimedia interactions that allows an agent to manage,
or participate in, a chat session. You need a single chat interaction to let your
agent take part in the chat session. The chat interaction receives events for
message exchanges.
Chat interactions are available in the InteractionChat interface of the
com.genesyslab.ail package. The following sections detail how to use this
interface.

Entering a Chat Session
You can participate in a chat session if your Agent object has successfully
logged into a CHAT media in its place. Through a registered AgentListener of
your Agent object, you are notified of a chat session request by receiving an
InteractionEvent event about an InteractionChat object, in
Interaction.Status.RINGING.

void handleInteractionEvent(InteractionEvent event) {
// ... Check if it is the awaited interaction
InteractionChat myChatInteraction =

(InteractionChat) event.getSource();
// ...

}

To take part in the chat session, invoke the answerCall() method. If the action
is successful, your application receives an InteractionEvent event, showing
that the interaction is now in state TALKING. See Figure 43 on page 143.
The agent is now one party to the chat session and the chat interaction is active
in the chat session.

Note: Assign a nickname to the agent with the
InteractionChat.setNickName() method before answering the
interaction. If you do not assign a nickname, the nickname is the
agent’s user name.

140 Agent Interaction SDK 7.6

Chapter 8: Chat Interactions Handling a Chat Interaction

Chat Parties
The parties of the chat session are available through the
InteractionChat.getParties() method. A ChatParty object describes the
nickname and visibility of each party.

Handling Chat Events
To handle discussion, chat interactions send text messages and receive
InteractionChatEvent event with a registered InteractionChatListener. These
events also propagate chat errors and party changes during the chat session.
The InteractionChatEvent.Type inner class lists the possible
InteractionChatEvent types.
The following code snippet implements an InteractionChatListener class:

class ExampleChatListener implements InteractionChatListener {
public void handleInteractionChatEvent

(InteractionChatEvent chatEvent)
{

/// Management of the chat event
}

}

To receive InteractionChatEvent events, register your
InteractionChatListener on your InteractionChat. When registering, you can
get all the events exchanged during the chat session before you are connected,
as shown in the following code snippet:

InteractionChatEvent[] allPreviousEvents =
myChatInteraction.addChatListener(new ExampleChatListener(),

true); // previous events are returned.

Note: You can also get all these events after registration, by calling the
InteractionChat.getEvents() method.

Handling Chat Messages
To send a message, call the sendMessage() method of the InteractionChat
interface. The message is sent to all parties of the chat session.

myChatInteraction.sendMessage(“This is a chat message”);

Incoming InteractionChatEvent events of type
InteractionChatEvent.Type.MESSAGE_RECEIVED correspond to chat messages.

Java—Developer’s Guide 141

Chapter 8: Chat Interactions Handling a Chat Interaction

To read the message, use the getText() method of the InteractionChatEvent
that is sent to your InteractionChatListener.

void handleInteractionChatEvent(
InteractionChatEvent chatEvent) {

// Testing if the event is a chat message
if(chatEvent.getEventType() ==

InteractionChatEvent.Type.MESSAGE_RECEIVED)
{

// Displaying the message
String message = chatEvent.getText();
String sender = chatEvent.getParty().getNickName();
System.out.println("From: "+sender+"\n>"+message+"\n");

}
}

Note: You can also access all received messages of the session by calling the
InteractionChat.getMessages() method.

Handling Typing
To notify the parties that the user is typing a message, call the
InteractionChat.typingStarted() method of the InteractionChat interface.
The InteractionChatEvent.START_TYPING event is sent to all parties of the chat
session.

myChatInteraction.typingStarted();

Incoming InteractionChatEvent events of type
InteractionChatEvent.Type.TYPING_STARTED correspond to that typing
notification. To get the name of the party who is typing, use the getParty()
method of the InteractionChatEvent.

void handleInteractionChatEvent(
InteractionChatEvent chatEvent) {

// Testing if the event is a chat message
if(chatEvent.getEventType() ==

InteractionChatEvent.Type.TYPING_STARTED)
{

// Displaying the message
String sender = chatEvent.getParty().getNickName();
System.out.println(sender+" is typing...");

}
}

142 Agent Interaction SDK 7.6

Chapter 8: Chat Interactions Handling a Chat Interaction

If the user stops (without submitting the message), invoke the
InteractionChat.typingStopped() method to notify other parties. Parties will
receive the InteractionChatEvent.Type.TYPING_STOPPED event.

Push URL
Your application can now push a URL to the chat applications of other parties
by calling the InteractionChat.pushURL() method.

myChatInteraction.pushURL(“http://genesyslab.com“);

The chat application for each participant then receives the
InteractionChatEvent.Type.PUSH_URL event, which contains the pushed URL,
which can be retrieved from the InteractionChatEvent.getText() method.

void handleInteractionChatEvent(
InteractionChatEvent chatEvent) {

// Testing if the event is a chat message
if(chatEvent.getEventType() ==

InteractionChatEvent.Type.PUSH_URL)
{

// Getting the URL
String message = chatEvent.getText();
// ... Display the URL ...

}
}

Conferencing
The conference feature allows an agent to invite another agent to join the chat
session by using the InteractionChat.conferenceAgent() or
InteractionChat.conferencePlace() method.
The following code snippet creates a chat conference with the agent agent1.

myChatInteraction.conferenceAgent("agent1", //agent who should join.
ChatParty.Visibility.INT,// only agents can see him or her.
"reason for joining");//a string reason.

The agent agent1 receives an InteractionEvent for a InteractionChat in
Interaction.Status.RINGING. If this agent answers the chat interaction, he
joins the chat session.

Java—Developer’s Guide 143

Chapter 8: Chat Interactions Handling a Chat Interaction

Terminating the Chat Session
To disconnect the chat session, invoke the InteractionChat.releaseCall()
method. After receiving the InteractionEvent for Interaction.Status.IDLE,
use the markDone() method to properly save and clean the interaction.
The e-mail server can have a strategy to send the transcript of the chat
interaction to the contact. In this case, to disconnect, use clearCall() or
transferToQueue() instead of releaseCall(). The transcript is automatically
sent to the contact.
Chat event flow is shown in Figure 43.

Figure 43: Processing a Chat Interaction

AIL Client

agent:Agent chat:
InteractionChat

Genesys
Solutions

Contact

isEventInvite

InteractionEvent
RINGING

RequestAccept

InteractionEvent
TALKING

InteractionEvent
TALKING

Request
chat session

answerCall

InteractionEvent
RINGING

InteractionEvent
TALKING

Open chat
session

Actions dedicated to chat session : send messages

releaseCall

RequestDisconnect Stop
chat session

InteractionEvent
IDLEInteractionEvent

IDLEInteractionEvent
IDLE

markDone

RequestStopProcessing

InteractionEvent
IDLEInteractionEvent

IDLEInteractionEvent
IDLE

144 Agent Interaction SDK 7.6

Chapter 8: Chat Interactions Handling a Chat Interaction

Java—Developer’s Guide 145

Chapter

9 Open Media Interactions
Open media interactions are multimedia interactions, that is, the
InteractionOpenMedia interface inherits InteractionMultimedia interface.
Other multimedia interactions are discussed in Chapter 7 on page 109 and
Chapter 8 on page 133.
This chapter presents SimpleOpenMediaInteraction, a new example that
receives open media interaction. The chapter is divided into the following
topics:

Open Media Design, page 145
SimpleOpenMediaInteraction, page 151

Open Media Design
Contact center agents routinely work with applications that are separate from
traditional CRM (Customer Relationship Management) or agent desktop
applications. Genesys Open Media allows you to create custom media types
that integrate this agent activity into the contact center workflow.
To use open media, you will need to define new interaction types in the
Configuration Layer. After you do this, you can use the Media Interaction SDK
to build client and server applications that manage them within the Genesys
platform. Finally, you will use the Agent Interaction SDK to allow agents to
process these interactions.
This section will provide an overview of the kinds of situations that lead
application developers to use open media interactions. It will then outline some
of the things you can do with open media using the Agent Interaction (Java
API). Finally, it will give more in-depth descriptions of a couple of real-world
open media use cases.

146 Agent Interaction SDK 7.6

Chapter 9: Open Media Interactions Open Media Design

Note: For more information on the Media Interaction SDK, see Media
Interaction SDK 7.6 Java Developer’s Guide. For more information on
multimedia interactions, see Multimedia 7.6 User’s Guide and
Multimedia 7.6 Open Media Interaction Models Reference Manual.

Bridging the Contact Center and the Enterprise
There are many occasions when contact center agents could carry out work
they do not normally do. Open media makes this a lot more productive than it
would otherwise be.
For example, in the wake of a natural disaster, insurance companies tend to get
high call volumes as people file their claims. At this point, you might want to
have claims adjusters and others available to expand the contact center
workforce.
But after most of the calls come in, the claims adjusters will have a lot of work
to do on these new claims. With open media, you can route calls to adjusters
when call volumes are high, and then you can route routine work from the
adjusters to the contact center when call volumes are low.
Another common scenario is for contact center agents to handle faxed requests
when they are idle. In this case, you could set up an interaction type that
includes the fax data for the agent to process. When the interaction is routed to
the agent’s desktop, the agent can process the data as appropriate and mark the
item as done.
There are several ways you could use open media in these situations. In the
simplest cases, you might want to use open media interactions merely to route
work to an agent. But in some cases, it might be even better to process
information directly in the agent desktop, using the open media functionality of
the Agent Interaction SDK. There will be an example of each of these
scenarios later in this section, but first, here is a look at some of the things you
can do with open media.

Basic Capabilities
Agent Interaction SDK makes it possible for you to perform actions like the
following on open media interactions:
• Open an interaction (using an existing interaction as the parent interaction).
• Create a new interaction.
• Respond to a received interaction.
• Thread interactions.
• Forward an interaction.
• Transfer an interaction to another queue or place.
• Add an interaction to an existing history.

Java—Developer’s Guide 147

Chapter 9: Open Media Interactions Open Media Design

• Retrieve any open, pending, or terminated interaction—of any open media
type—from a contact history database.

• Manage an interaction’s workflow.

Note: For more information on the open media–related functionality
provided by the Agent Interaction SDK, see the Agent Interaction SDK
API Reference’s entry on the InteractionOpenMedia class.

Routing Rejected Orders to an Agent
This example will show how you might use open media interactions simply as
a routing mechanism, while having an agent continue to work in an application
that is separate from his or her desktop.
Agents for a telephone company might use many applications, including an
order management application. When a customer calls in to order DSL (a form
of high-speed Internet service), an agent must enter the customer information
and submit the order. If the agent makes a mistake on the order form, the
system will reject the order and send it back to the agent for correction.
Because the order management system is not linked to the contact routing
platform, the incorrect order will sit at the agent's desktop—perhaps for
hours—until there is a lull in inbound activity that will allow the agent to
address the problem.
With the addition of Genesys Open Media, the scenario is different.
If the agent makes a mistake on an order, the rejected order can be submitted to
the Genesys platform as a new activity to be queued and sent back to the agent.
Depending on the priority that you set, the agent may be taken off the phone
queue immediately and routed back to the order to make corrections.
Here is how you could use Genesys Open Media to create this kind of solution:
1. Define a new interaction type, DSLOrder, in the Configuration layer.
2. Set up the appropriate routing for the new interaction type.
3. Use the Media Interaction SDK to write an application that can receive

information about rejected orders from the order management system.
4. Use the Agent Interaction SDK to write agent desktop functionality that

allows the agent to mark the DSLOrder interaction as done. (Note that in this
scenario, the agent is doing the order management work in the order
management application. All that is required from the Agent Interaction
SDK is the ability to mark the interaction as done.)

When an order is rejected, the order entry system will send information about
the order to the new Media Interaction SDK application, which will create a
new interaction of type DSLOrder. The interaction will be sent to the Genesys
servers for processing and they will route the interaction to the appropriate

148 Agent Interaction SDK 7.6

Chapter 9: Open Media Interactions Open Media Design

agent, as shown in Figure 44. When the agent has corrected the order, he or she
will mark the interaction as done.

Figure 44: Alerting an Agent to Process a Rejected DSL Order

See “SimpleOpenMediaInteraction” on page 151 for a code example that
shows how to write an agent desktop application that can mark an open media
interaction as done.

Working on a CRM Case
Sometimes it is not enough to use open media as a routing and notification
mechanism. There are many cases where it makes more sense to write detailed
interaction-handling functionality directly into the agent desktop.
For example, you can use open media interactions to allow contact center
agents to handle incoming fax data for use by a Customer Relationship
Management system. This could be done in a way that is very similar to the
preceding example, but in this case, you might prefer that the interactions you
create would also carry data for the agent to process right in his or her agent
desktop application.
As in the example above, you would need to define a new interaction type,
perhaps called CRMCase. You would also need to set up the appropriate routing
and write an application that uses the Media Interaction SDK. This application
would attach CRM data to the CRMCase interaction.
But the Agent Interaction SDK functionality you write would be a bit different,
as it would do more than just mark the interaction Done. Here is the process the
interaction would follow, as shown in Figure 45 on page 150:
• The CRM server submits a CRMCase interaction of type Inbound to the

Genesys servers.
• The interaction rings at the agent’s desktop.
• The agent accepts the interaction.

Order Entry
System

Media
Interaction SDK

Application

Rejected Order Info

DSLOrder Interaction

Genesys
Servers Agent Desktop

Done

DSLOrder Interaction

Java—Developer’s Guide 149

Chapter 9: Open Media Interactions Open Media Design

• The agent accesses contact information from the Universal Contact server,
using the Agent Interaction SDK.

• The agent desktop updates the CRM database.
• The agent desktop saves the interaction in the UCS database, using the

Agent Interaction SDK.
• The agent desktop stops the inbound interaction in UCS.
• It also stops the interaction in Interaction Server.
• The agent desktop creates a reply to the inbound interaction. This reply is a

CRMCase interaction of subtype Outbound.
• The agent desktop attaches data to the outbound CRMCase interaction, using

data from the inbound transaction, as appropriate.
• The agent desktop submits the outbound interaction (to make it active in

the Interaction Server workflow).
• The interaction is transferred to a queue.

150 Agent Interaction SDK 7.6

Chapter 9: Open Media Interactions Open Media Design

Figure 45: Handling a CRM Case Using Open Media

CRM Server
integrating Open

Media

Agent
Desktop

Genesys
Servers

External service request on outbound IncomingCRMCase

Save in UCS

Stop in IS (inactive in workflow)

1. Access contact information with AIL

2. Make updates to CRM database

Submit interaction of type CRMCase, subtype Inbound

CRMCase
Inbound ringing

Accept

Stop in UCS

Attach data and save in UCS

Create CRMCase
of type Outbound
Attach data

Submit to IS

transferToQueue

Java—Developer’s Guide 151

Chapter 9: Open Media Interactions SimpleOpenMediaInteraction

SimpleOpenMediaInteraction
This example extends SimplePlace and is very similar to
SimpleEmailInteraction, which was explained earlier in this chapter.

Note: This example processes open media interactions. In order to run it, you
will need to create your own open media interactions using the Media
Interaction SDK.
You must also set up a business process and routing strategy to get
these interactions to your agent. The example is packaged with the
business process and routing strategies that were used to develop it. If
you use this business process and strategies, you will have to modify
server names and Configuration Layer objects. For more information,
refer to the Universal Routing documentation.

When you launch the application, there is a panel with two buttons: Accept and
Done, as shown in Figure 46. These buttons will let the agent accept an open
media interaction and mark it done, respectively. When the agent accepts the
interaction, information about it will be displayed in the GUI.

Figure 46: SimpleOpenMediaInteraction at Launch Time

Here are the steps you must take to create this application. As before, the steps
that have already been done by SimplePlace will not be discussed here.

152 Agent Interaction SDK 7.6

Chapter 9: Open Media Interactions SimpleOpenMediaInteraction

Set up Action Buttons
The linkWidgetsToGui() method is very similar to corresponding methods
discussed earlier in this chapter. The two buttons are also very simple. Here is
the action code for the Accept button, which is just like the Accept button for
SimpleEmailInteraction:

sampleInteraction.answerCall(null);

Likewise, the Done button simply marks it done:

sampleInteraction.markDone();

Note that the markDone() method tells both Interaction Server and Universal
Contact Server to stop processing the interaction.
These two sections of code are almost all that is new in this section of the
example. Since the setInteractionWidgetState() code—used to synchronize
the user interface—is very similar to what you have seen in previous examples,
the only other thing to do is set up the event-handling code, which is also fairly
simple.

Add Event-Handling Code
This example uses event-handling code that is largely similar to what you saw
in SimpleVoiceInteraction.

Note: As explained in “Threading” on page 32, you should write short and
simple event handlers to avoid delaying the propagation of events.

As in SimpleVoiceInteraction, you check for a status of TALKING and for the
correct media type. Then you read in the information and display it in the GUI:

//Checking that the event reports a change
//on an open media interaction
if(event.getSource() instanceof InteractionOpenMedia)
{

//...
// if the event involves the interaction to process,
// it tests the interaction status
if (sampleInteraction != null

&& event.getInteraction().getId()==sampleInteraction.getId())
{

// When the open media interaction is in talking status,
// it means that the agent or place is owner of the interaction
// this is when you can process this interaction.
if (event.getStatus() == Interaction.Status.TALKING) {

Java—Developer’s Guide 153

Chapter 9: Open Media Interactions SimpleOpenMediaInteraction

/// You can process the interaction.
/// In this example, processing the interaction corresponds
/// to displaying the text of the open media interaction
sampleInteraction=(InteractionOpenMedia) event.getSource();

// You can now access the Open Media interaction's content.
String someText = "Media type: "

+ sampleInteraction.getOpenMediaType()
+ "\nInteraction type: "
+ sampleInteraction.getOpenInteractionType()
+ "\nSubject: " + sampleInteraction.getSubject()
+ "\nText: " + sampleInteraction.getText()
+ "\nDate: "
+sampleInteraction.getDateCreated().toGMTString();

 openMediaTextArea.setText(someText);
}

}
}

154 Agent Interaction SDK 7.6

Chapter 9: Open Media Interactions SimpleOpenMediaInteraction

Java—Developer’s Guide 155

Chapter

10 Contact
This chapter discusses contact information and is divided into the following
topics:

Contact Information, page 155
Contact History, page 166

Contact Information
A contact is a customer with whom the agent may interact through a media
type.
Each contact has an ID, which is a unique system reference used in the
Genesys Framework. The Universal Contact Server (UCS) stores the contact
data, which includes names, e-mail addresses, phone numbers, and other
information. This server also stores the history of a contact, that is, processed
interactions.
ContactManager is an interface that lets you:
• Get and set contact information.
• Search for contacts.
• Add new contacts and new contact information.
To get the ContactManager, call the AilFactory.getContactManager() method
as shown in the following code snippet:

ContactManager myContactManager= myAilFactory.getContactManager();

Getting Contact Information
With the ContactManager, you can retrieve Contact objects. The Contact
interface describes the data of a contact. To get a Contact instance describing a
particular contact, you need the corresponding contact identifier. This identifier

156 Agent Interaction SDK 7.6

Chapter 10: Contact Contact Information

is available, for example, in interactions. Then, you can use the
ContactManager.getContact() method to retrieve the contact. The following
code snippet shows how to retrieve the Contact interface of an interaction:

public void handle(InteractionEvent event){
//....
Interaction myInteraction = event.getSource();
String myContactID = myInteraction.getContactId();
Contact myContact = myContactManager.getContact(myContactId();
//....

}

The Contact interface offers access to contact attributes. A contact attribute is
contact data that can have several values. For example, if a contact has one or
several e-mail addresses, the e-mail address is an attribute and each e-mail
address is contained in a ContactAttributeValue object as illustrated in
Figure 47.

Figure 47: Example of Contact Information

Default Attributes

First name, last name, phone number, e-mail address, and title are default
attributes available for each contact. Those default attributes have get and set
methods in the Contact interface for accessing directly their values. The
following code snippet displays the last and first names of a contact:

System.out.println(myContact.getFirstName()
+" "+myContact.getLastName());

Contact

ContactAttribute = EmailAddress

ContactAttribute = FirstName

ContactAttribute = LastName

ContactAttributeValue =
Connor

ContactAttributeValue = John

ContactAttributeValue =
jconnor@home.com

ContactAttributeValue =
john .connor@office.com

Java—Developer’s Guide 157

Chapter 10: Contact Contact Information

Attributes and Metadata

The Universal Contact Server defines metadata for each type of attribute.
(Attributes are defined in the Configuration Layer under Business
Attributes.) For example, the last name is a type of contact attribute specified
by metadata. For the last name attribute, the metadata specifies that the
attribute name is LastName, the type of the attribute value is a string, the display
name is Last name, and so on.
A single metadata is available for each type of attribute; it has a unique system
identifier and a unique name. For example, a single metadata is available for
all the existing last names’ attribute values. The metadata is independent from
the contact attributes’ values.
The metadata interface is ContactAttributeMetaData. Call the
ContactManager.getContactAttributeMetaDataById() or
ContactManager.getContactAttributeMetaDataByName() to retrieve a
ContactAttributeMetadata interface. The following code snippet retrieves the
metadata for e-mail addresses:

ContactAttributeMetaData myHomeAddressMetadata =
myContactManager.getContactAttributeMetaDataByName("HomeAddress");

For default attribute metadata, you can use a ContactManager.get*Attribute()
that returns the attribute corresponding to *, as in the following example:

ContactAttributeMetaData myEmailAddressMetadata =
myContactManager.getEmailAddressAttribute();

System.out.println(myEmailAddressMetadata.getDisplayName());

For a particular contact, each ContactAttributeMetaData object is associated
with a set of ContactAttributeValue objects that are available through the
Contact interface. Each ContactAttributeValue object has a unique system
identifier and contains a value of the contact attribute, as shown in Figure 48.

Figure 48: Attributes’ Metadata and Values

ContactAtributeMetadata

id

name="EmailAddress"

displayName=
"E-Mail Address"

type=STRING

active=true

Contact

ContactAttribute = EmailAddress

ContactAttributeValue =
jconnor@home.com

ContactAttributeValue =
john.connor@office .com

158 Agent Interaction SDK 7.6

Chapter 10: Contact Contact Information

Use the Contact.getAttributeValues() method to retrieve the contact attribute
values of a contact.

// Getting all the contact e-mails
Collection myEmailAddresses =

myContact.getAttributeValues(myEmailAddressMetadata, false);

// Displaying the string value for each ContactAttributeValue
Iterator itEMails = myEmailAddresses.iterator();
while(itEMails.hasNext())
{

ContactAttributeValue _email =
(ContactAttributeValue) itEMails.next();

System.out.println(_email.getStrValue());
}

Primary Attributes

A contact’s primary attribute value is one of the attribute values marked as
primary. For example, if a contact has several e-mail addresses, the e-mail
address at work can be the primary e-mail attribute. In Figure 48 on page 157,
the primary attribute value is underlined for each type of attribute.
For default attributes, the Contact interface provides you with
get/setPrimary*() methods. For instance, the following code snippet displays
the contact’s primary e-mail address.

System.out.println(myContact.getPrimaryEmailAddress());

The ContactAttributeValue interface includes an isPrimary() method that
returns true if the value is a primary one.

Note: You cannot have two primary values for a given attribute. Your
application must manage itself primary values.

Fast Contact Management
By calling the ContactManager.findOrCreateContact() method, you can
specify key-value pairs for searching contacts, where the key is the string name
of a ContactAttribute and the value is a string value. The method returns the
IDs of matching contacts, or, if no such contact exists in the database, it
creates a contact for these new parameters.
Through this method, your application can also take advantage of the Contact
Server Custom Lookup algorithm (which accelerates the contact search) by
adding a MediaType key with the voice or email value.

Java—Developer’s Guide 159

Chapter 10: Contact Contact Information

The following code snippet activates this algorithm and makes a fast search
that creates a contact if the e-mail address is unknown.

// Creating the map of attribute values of the contact:
// tsmith@myCompany.com
Collection myFastContactSearch = new HashMap();

// Adding the last name attribute
myFastContactSearch.put(“EmailAddress”, “tsmith@myCompany.com”);
// Adding the key-value pair that activates the CSCL algorithm
myFastContactSearch.put(“MediaType”, “email”);
// Fast search
Collection result =

ContactManager.findOrCreateContact(myFastContactSearch);

Advanced Search Feature
The AIL library includes an advanced-search feature for contacts. With the
ContactManager interface, your application can search contacts according to
several attribute values and their associated metadata ID. The matching results
can be sorted or truncated by sizing the returned array of results.
This subsection details the steps to build an advanced search.

Creating a Contact Search Template

To search contacts, you first create a SearchContactTemplate object. Call the
ContactManager.createSearchContactTemplate() method to get an empty
instance:

SearchContactTemplate mySearchTemplate =
myContactManager.createSearchContactTemplate();

Building a Filter Tree

Contact filter trees correspond to search requests that approximate SQL
requests to the Universal Contact Server (UCS). Those filter trees are
equivalent to assignment and logical expressions. For example,
(LastName=”B*” and FirstName=”A*”) searches for any contact whose first
name begins with A and whose last name begins with B, and
(EMailAddress=”ab*@company.com”) searches for any contact whose e-mail
address begins with ab and finishes with @company.com.
Your application must build a FilterTreeElement object to fill the contact
template. Without a filter tree, searching for a contact is not possible. A
FilterTreeElement can be either a FilterNode or a FilterLeaf instance.

160 Agent Interaction SDK 7.6

Chapter 10: Contact Contact Information

The following subsections detail the creation of filter leaves and nodes, then
list the best practices for filling these elements.

Filter Leaves

A filter leaf contains a terminal expression that defines a search value for a
contact attribute, such as LastName=”B*” or primary Lastname=”B*”. This means
that your application can use the wildcards defined in the
FilterLeaf.LeafWildcard enumerated type.
As the Agent Interaction Java API is able to find any occurrence, even if it
includes the * character, your application creates a normalized string, as shown
in the following code snippet:

//Creating the string B*
String leaf1Value = mySearchTemplate.normalizeSearchValue("B") ;
leaf1Value.concat(FilterLeaf.LeafWildcard.ANY.toString());

For additional details about wildcards, see the Agent Interaction SDK 7.6 Java
API Reference. Your application can create a filter leaf with an instance of the
FilterLeaf class, which associates a metadata ID with a contact attribute
value.
The following code snippet implements a FilterLeaf object for the
primary LastName=”B*” expression:

// Getting the metadata
ContactAttributeMetaData myLastNameMetadata =
myContactManager.getLastNameAttribute();

// Creating the leaf
FilterLeaf myLeaf = mySearchTemplate.createFilterLeaf();

// Setting the expression: "primary LastName=B*"
myLeaf.setPrimaryOnly(true)
myLeaf.setContactAttribute(myLastNameMetadata);
myLeaf.setOperator(FilterLeaf.LeafOperator.EQUAL);
myLeaf.setValue(leaf1Value);

To restrict the search to the primary value of the attribute, set the primaryOnly
flag to true by calling the FilterLeaf.setPrimaryOnly() method. If your
application calls the
SearchContactTemplate.setSearchPrimaryValueOnly(true) method (see
page 163), the search does not take into account the primaryOnly flag of the
FilterLeaf object.

Note: Before you set attributes for filter leaves, see details in “Filling the
Search Template” on page 163.

Java—Developer’s Guide 161

Chapter 10: Contact Contact Information

Filter Nodes

A filter node contains a non-terminal expression that defines an operation for
several non-terminal (nodes) or terminal (leaves) expressions. For example:

a or b or c

a and b and c

a or b

a and b
—where a, b, and c can be other filter nodes or leaves, and operators are or and
and.
Your application can create a filter node with an instance of the FilterNode
class, which associates an operator with a set of contact filter nodes or
leaves.
Figure 49 presents a filter node containing the following expression:

(LastName=”B*” and FirstName=”A*”) or (EMailAddress=”ab*@company.com”)

Figure 49: A Contact Filter Node

The following code snippet creates a FilterNode for the object for the
LastName=”B*” AND FirstName=”A*” expression:

// Creating the leaf for FirstName="A*"
// Getting the metadata
ContactAttributeMetaData myFirstNameMetadata =

myContactManager.getFirstNameAttribute();

// Creating the leaf
FilterLeaf myLeaf2 = mySearchTemplate.createFilterLeaf();

// Setting the expression: "FirstName=A*"
myLeaf2.setContactAttribute(myFirstNameMetadata);
myLeaf2.setOperator(FilterLeaf.LeafOperator.EQUAL);

Leaf
LastName=B*

Node
OR

Leaf
FistName=A*

Node
AND

Leaf
EMailAddress=

ab*@company.com

162 Agent Interaction SDK 7.6

Chapter 10: Contact Contact Information

//Creating the string A*
String leaf2Value = mySearchTemplate.normalizeSearchValue("A") ;
leaf2Value.concat(FilterLeaf.LeafWildcard.ANY.toString());

myLeaf2.setValue(leaf2Value);
myLeaf2.setPrimaryOnly(true);

// Creating the Node
FilterNode myNode = mySearchTemplate.createFilterNode();

// Setting the operator AND
myNode.setOperator(FilterNode.NodeOperator.AND);

// Adding the leaf for "LastName=B*" (see above)
myNode.addFilterLeaf(myLeaf);

// Adding the second leaf
myNode.addFilterLeaf(myLeaf2);

Best Practices for Filling Your Filter Tree

The filter tree’s definition determines the processing times of your search
requests. There are several aspects to take into account to fit your application
needs and fine-tune the building of your filter tree.

is-searchable Genesys recommends that your application uses attributes marked as is-
searchable. This ensures that you make calls to the appropriate UCS search
algorithms and receive the most timely responses.
To set up is-searchable attributes, open the targeted Attribute Value object in
the Contact Attributes list of your Configuration Manager. In the Annex tab of
the attribute object, open settings and set to true the is-searchable option.
In the Agent Interaction Java API, call the isSearchable() method of the
ContactAttributeMetadata instance to determine whether the associated
attribute values are searchable.
If your application searches for any attributes, regardless of whether they are
marked as searchable, the process will be time consuming, and will slow down
your application. In particular, if your application is a server, this method is
inappropriate to ensure the most timely performance performances for your
application and the system.

primary If you set the primaryOnly flag to true by calling the
FilterLeaf.setPrimaryOnly() method, you restrict the search to the attributes’
primary values. The more you search for primary values, the less the SQL
request is complex, and thus, UCS requires less time to return a result.
Also, for an even quicker search, you can set up the SearchPrimaryValueOnly
flag to true by calling the
SearchContactTemplate.setSearchPrimaryValueOnly(true) method. The

Java—Developer’s Guide 163

Chapter 10: Contact Contact Information

search is restricted to attributes’ primary values only, regardless of the
definition of FilterLeaf objects in the filter tree.

Number of
Attributes

The number of attributes used in the filter tree to refine your search impacts the
request’s processing time. The more attributes you set up, the finer your search
is, but the longer the request takes.
Additionally, if you set up a wide search with few attributes or vague values,
that returns a large collection of instances, and this increases the processing
time as well, because it impacts the network activity. The problem is similar if
you set up a great number of attributes to be returned with each matching
instance: the more instances that match, the more data is returned, and this
slows your response.

Filling the Search Template

A SearchContactTemplate object defines a contact search and the array of
returned matching contacts. Once you have created the filter tree, fill the
template by setting:
• The list of attributes to retrieve for each matching contact by passing their

metadata.
• The list of attributes to use for sorting the matching contacts.
• The SearchPrimaryValueOnly flag.
• The filter tree.
• The number of returned results.
• The index of the first item in the matching results.
As explained in the “Best Practices for Filling Your Filter Tree” section, the
filter tree definition impacts the time processing for receiving results, but the
impact does not stop there. The list of attributes to use for sorting the matching
contacts is important too. According to the number of matching results, if you
set up a great number of attributes to be returned with each matching instance,
you can face some network issues: the more instances that match, the more
data is returned, and this slows your response.
The following code snippet fills the search template with the filter tree created
in the previous section. It searches only for primary values.

// Results are sorted by names
mySearchTemplate.addSortAttribute(myLastNameMetadata, false);

// Contacts are returned with their last names,
// their first names, and all their e-mails
mySearchTemplate.addRetrieveAttribute(myLastNameMetadata, false);
mySearchTemplate.addRetrieveAttribute(myFirstNameMetadata, false);
mySearchTemplate.addRetrieveAttribute(myEmailAddressMetadata,

false);

164 Agent Interaction SDK 7.6

Chapter 10: Contact Contact Information

// The results have to match the filter tree
mySearchTemplate.setFilter(myNode);

// Activating quick search
mySearchTemplate.setSearchPrimaryValueOnly(true);

// The first 10 contacts are returned
mySearchTemplate.setIndex(0);
mySearchTemplate.setLength(10);

Then, call the ContactManager.searchContact() method to request the contact
search. It returns the matching contacts in a Collection. The following code
snippet uses the above search template and displays the primary attributes of
the matching contacts.

// Requesting a search for this template
Collection myMatchingContacts =

myContactManager.searchContact(mySearchTemplate);
Iterator itContacts = myMatchingContacts.iterator();
while(itContacts.hasNext())
{

 Contact _Contact = (Contact) itContacts.next();
 System.out.println(_Contact.getFirstName()
+" "+ _Contact.getLastName()
+" "+ _Contact.getPrimaryEmailAddress());

}

Advanced Contact Management
With the ContactManager interface you can create contacts, and for each
contact, the Contact interface allows you to add (or set) new values to
attributes, remove some attribute values, merge information from another
contact, or even remove the contact from the database.

Creating Contacts

You can create a contact with the ContactManager.createContact() method. If
you only have default attributes to specify, you can create the contact in a
simple call, as shown in the following code snippet:

Contact theCreatedContact =
myContactManager.createContact("M.", "Terry", "Smith",

"tsmith@myCompany.com", "4153087723");

To create the contact with more attributes, you have to create
ContactAttributeValue objects with the
ContactAttributeMetaData.createValue() method for each attribute value of

Java—Developer’s Guide 165

Chapter 10: Contact Contact Information

the created contact. The following code snippet shows how to proceed for the
new contact Terry Smith.

// Creating the map of attribute values of the contact:
// Terry Smith, tsmith@myCompany.com
HashMap myNewContactAttributes = new HashMap();

// Creating the last name attribute
ContactAttributeValue myLastNameValue=

myLastNameMetadata.createValue("Smith");
myLastNameValue.setPrimary(true);
myNewContactAttributes.put(myLastNameMetadata, myLastNameValue);

// Creating the first name attribute
ContactAttributeValue myFirstNameValue=

myFirstNameMetadata.createValue("Terry");
myFirstNameValue.setPrimary(true);
myNewContactAttributes.put(myFirstNameMetadata, myFirstNameValue);

//...
//... Creating
// Creating the contact:
Contact theCreatedContact =

myContactManager.createContact(myNewContactAttributes);

Adding Attribute Values

For any contact, you can add new values to an attribute (defined in the
Configuration Layer) of the contact with the Contact.setAttributeValues()
method. Create ContactAttributeValue objects with the
ContactAttributeMetaData.createValue() method for each new attribute
value. After a call to Contact.setAttributeValues(), propagate the contact
changes in the database by calling the Contact.save() method, as shown
below.

//Creating a collection of e-mail values
ArrayList myOtherEMails = new ArrayList();
ContactAttributeValue email1 =

myEmailAddressMetadata.createValue("terry.smith33@webmail.com");
myOtherEMails.add(email1);
ContactAttributeValue email2 =

myEmailAddressMetadata.createValue("tsmith33@webmail.com");
myOtherEMails.add(email2);
// Setting the new values
theCreatedContact.setAttributeValues(myEmailAddressMetadata,

myOtherEMails);
// Updating the database with changes
theCreatedContact.save();

166 Agent Interaction SDK 7.6

Chapter 10: Contact Contact History

If a ContactAttributeValue instance has a non-null identifier, the
setAttributeValues() method updates the value corresponding to the
identifier.

Contact History
The Universal Contact Server (UCS) stores contacts’ data, including the
contact history. The history manager gives access to a set of contact histories
managed by the UCS. For each contact, its history contains a set of interactions
involving the contact. Within the history manager, your application can
retrieve summaries for a set of interactions.
To get an interface for the history manager, call the
AilFactory.getHistoryManager() method as shown in the following code
snippet:

HistoryManager myHistoryManager= myAilFactory.getHistoryManager();

For each contact, the HistoryManager can retrieve an History object. This
History object contains a list of HistoryItems that are interaction summaries.
First, you create and fill a SearchInteractionTemplate object. The history
manager uses this template to:
• Set the size of the HistoryItem list.
• Set the index of the first item retrieved with this list.
• Set the interaction attributes to retrieve.
• Set the interaction attributes to sort interactions.
The HistoryManager interface includes three default interaction attributes that
are only used for HistoryItem sorting: the interaction subject, the owner
identifier corresponding to an agent ID (or username), and the start date of the
interaction. Those attribute values are always available in the get methods of a
HistoryItem.
For each default interaction attribute, you can get the corresponding
InteractionAttributeMetaData interface with three dedicated methods of the
history manager:

HistoryManager.getInteractionAttributeMetaDataForSubject()
HistoryManager.getInteractionAttributeMetaDataForOwnerId()
HistoryManager.getInteractionAttributeMetaDataForStartDate()

You can also get other InteractionAttributeMetaData with the
InteractionManager.getInteractionAttributeMetaDataById() or
InteractionManager.getInteractionAttributeMetaDataByName() methods.
Those metadata correspond to the interaction attributes defined in the
Configuration Layer.

Java—Developer’s Guide 167

Chapter 10: Contact Contact History

Note: If you add those metadata in the list of retrieved attributes, they are
available in the attached data of the item.

The following code snippet retrieves the first ten history items of a contact
history, sorted by subject:

// Creating the search template
SearchInteractionTemplate myTemplate =

myHistoryManager.createSearchInteractionTemplate();
// Setting list characteristics
// The ten first history items are retrieved
myTemplate.setLength(10);
myTemplate.setIndex(0);
// Getting the subject metadata for sorting interactions
InteractionAttributeMetaData mySubjectMetaData =

myHistoryManager.getInteractionAttributeMetaDataForSubject();

// The history items are sorted by subject
myTemplate.addSortAttribute(mySubjectMetaData,false);

// Getting the history containing the archived interactions
// and fulfilling the template
History myHistory =

myHistoryManager.getHistory(myContact, myTemplate, true);

// Getting the history containing the archived interactions
// and fulfilling the template
History myHistory =

myHistoryManager.getHistory(myContact, myTemplate, true);

//Displaying the History Content
List myHistoryItems = myHistory.getHistoryItems();
Iterator itItems = myHistoryItems.iterator();
while(itItems.hasNext())
{

HistoryItem myItem = (HistoryItem) itItems.next();
System.out.println(myItem.getSubject());
System.out.println(myItem.getDateCreated());

}

168 Agent Interaction SDK 7.6

Chapter 10: Contact Contact History

Java—Developer’s Guide 169

Chapter

11 Standard Responses
This chapter covers the standard responses, handled through the Standard
Response Manager. It is divided into the following topics:

SRL Design, page 169
Using the SRL Manager, page 170
Handling Suggested Categories, page 173

SRL Design
Agent Interacting (Java API) includes access to a self-learning categorization
system to help agents by providing responses when they process a multimedia
interaction.
The Standard Response Library system is self-learning: it “teaches” itself with
new incoming messages, according to agents’ feedback. For further
information about the SRL, refer to Universal Contact Server (UCS)
documentation.
The following subsections detail how the SRL service interacts with the
Standard Response Library database.

Standard and Suggested Responses
A standard response is a prewritten response stored in the Standard Response
Library database. An agent may choose to reply to a customer with a response
from the Standard Response Library. The provided standard response may
have tags in its body that your application can automatically replace with
contacts’ data.
When an agent processes an interaction, your application can display a tree of
standard responses or the ones contained in the interaction’s suggested
categories (if any).

170 Agent Interaction SDK 7.6

Chapter 11: Standard Responses Using the SRL Manager

The system selects this suggested categories according to categorization
criteria. For details, see “Category” below.
Your application can insert standard responses as replies into any e-mail or
chat message, or it can display them so that an agent can read them to the
contact during a voice interaction.

Category
A category is a group of related standard responses and categories that are
available for similar interactions. For example, a company might define a
Defect category, that contains standard responses to provide when customers
report a product defect. In this Defect category, this company might define a
category for each product. Each category defines a set of more-specific
responses for the product’s identified defects.
Your application can display categories as trees, allowing the agent to select a
category and a standard response with that category. Your application can also
propose an interaction’s suggested category. For instance, if an e-mail
interaction has suggested categories, they are available by calling the
InteractionMail.getSuggestedCategories() method.
An agent can accept or reject the system’s choice of a selected category, in
order to provide feedback to the Standard Response Library’s self-learning
system.

SRL Manager
The SRL manager provides your application with access to categories and
standard responses stored in the Standard Response Library database. This
chapter’s remaining sections cover the SRL Manager’s main features:
• Accessing standard responses and categories.
• Managing agents’ favorites.

Using the SRL Manager
SRL Management is provided with the SRLManager interface and classes of the
com.genesyslab.ail.srl package.
The SRLManager interface accesses standard responses used when an agent
processes an interaction. Your application can use the information retrieved by
the SRL manager to display categories, and standard responses, in trees.
To get the SRL manager, call the AilFactory.getSRLManager() method as
shown in the following code snippet:

SRLManager mySRLManager= myAilFactory.getSRLManager();

Java—Developer’s Guide 171

Chapter 11: Standard Responses Using the SRL Manager

Getting Categories and Standard Responses
As Figure 50 shows, in the SRL database, a category is composed of:
• Its own data, such as the category name, system ID, language and type.
• A set of standard responses that belong to the category.
• An array of its child category IDs.

Figure 50: Category in the SRL Database

Use the SRLManager interface to get a Category interface for a given system
identifier. In the following code snippet, the SRLManager interface gets the
Category instance corresponding to the category identifier for a multimedia
interaction.

void handleInterationEvent(InteractionEvent event) {

//....
InteractionMultimedia mail =

(InteractionMultimedia) event.getSource();

// ...
// Getting the current category assigned
// to the Multimedia Interaction
String categoryID = mail.getCategoryId();

// Getting the category instance with the SRLManager
Category myCategory = mySRLManager.getCategory(categoryID);

//Displaying the category content

Category

name="Defect"

Category

name="Furniture
Defect"

Category

name="Electrical
Domestic Defect"

Standard Response 1

Standard Response 2

Standard Response 3

Child categories
type=EMAIL

categoryId
categoryId1

categoryId2

categoryId1

categoryId2

type=EMAIL

type=EMAIL

172 Agent Interaction SDK 7.6

Chapter 11: Standard Responses Using the SRL Manager

System.out.println(" Category Name: "+ myCategory.getName() +
" Description: "+myCategory.getDescription());

// ...
}

Each Category instance allows to access the standard responses and child
categories assigned to the category, as shown here.

// Displaying the responses in this category
Collection myStandardResponses = myCategory.getStandardResponses();
Iterator itResponses = myStandardResponses.iterator();
while(itResponses.hasNext())
{

StandardResponse myResponse =
(StandardResponse) itResponses.next();

System.out.println("Response Name: "+ myResponse.getName()
+ " Description: "+myResponse.getDescription()+”\n”);

System.out.println("Body: "+ myResponse.getBody()+”\n”);
}

// Displaying the child categories
Collection myChildCategories = myCategory.getChildrenCategories() ;
Iterator itChildren = myChildCategories.iterator();
while(itChildren.hasNext())
{

Category myChild = (Category) itChildren.next();
System.out.println("\tChild Category Name: "+ myChild.getName()

+ " Description: "+myChild.getDescription());
}

Each category is a category tree and can belong to another category. Each child
Category instance contains its own standard responses and child categories.
A category that does not belong to another category is a root category of a
category tree. Call SRLManager.getCategoriesRoot() to retrieve the root
categories as a collection of categories.
A standard response’s body text can include tags that you can replace with
interaction and contact’s data by calling the StandardResponse.getBody()
method as shown here:

System.out.println("Filled body text: "
+ myResponse.getBody(agent0, mail));

Java—Developer’s Guide 173

Chapter 11: Standard Responses Handling Suggested Categories

Managing Agent’s Favorites
The SRLManager interface manages agents’ favorite standard responses. The
SRLManager can:
• Add a new favorite standard response for an agent by calling

addStandardResponseFavorite().
• Get the favorite standard responses for an agent by calling

getStandardResponseFavoriteIds().
• Remove a favorite standard response for an agent by calling

removeStandardResponseFavorite().

Handling Suggested Categories
The InteractionMultimedia interface defines all the methods handling
suggested categories. The self-learning system can suggest categories for
multimedia interactions, for example, incoming e-mail interactions.
When receiving an e-mail interaction, your application can check if the self-
learning system suggested other categories, as shown here.

Map suggestedCategories = mail.getSuggestedCategories();

The returned Map contains category identifiers and associated relevancy.
Your application must give feedback to the self-learning system.
If the agent uses a standard response of the interaction’s suggested categories,
approve this category, as shown here.

// Assigning one of the suggested categories to the interaction
mail.setCategoryId("myCategoryId");
// Approving the category
mail.setIsCategoryApproved(Boolean.TRUE);

If the agent disapproves all suggested categories for the interaction, he or she
must select the suggested category with best relevancy and then disapprove it,
as shown in the following snippet:

// Assigning the most relevant category to the interaction
mail.setCategoryId("myCategoryId");
// disapproving the category
mail.setIsCategoryApproved(Boolean.FALSE);

Note: This disapproves all the suggested categories for this interaction.

174 Agent Interaction SDK 7.6

Chapter 11: Standard Responses Handling Suggested Categories

If the agent selects a standard response of a non-suggested category, he or she
must add this category with a null relevancy to the suggested categories and
then, approve it, as shown here.

HashMap mySelectedCategory = new HashMap();
mySelectedCategory.put("mySelectedCategory", null);

// Adding the satisfactory category
mail.addSuggestedCategories(mySelectedCategory);

// Assigning the satisfactory category to the interaction
mail.setCategoryId("myCategoryId");

// Approving the satisfactory category
mail.setIsCategoryApproved(Boolean.TRUE);

Java—Developer’s Guide 175

Chapter

12 Outbound Service
Handling outbound information no longer requires handling a particular
interaction type. Implementing outbound is now a matter of handling
additional outbound information that the Agent Interaction (Java API) provides
to interactions.
This chapter shows you how to deal with the outbound service and is divided
into the following topics:

Outbound Design, page 175
Steps for Writing an Outbound Application, page 177
Preview Outbound Interactions, page 179
Predictive Outbound Interactions, page 183
Handle Outbound Chains, page 185

Outbound Design
In the 7.6 release, you no longer deal with the InteractionVoiceOutbound
interface. Instead, you manage interactions as usual, and you get additional
outbound information for an interaction to be processed. These changes make
it possible to handle both voice and multimedia interactions in outbound
campaigns.

Outbound Information
To access outbound information, you deal with the OutboundService instance
of the current Place in use. With OutboundService methods, you can register
listeners for getting events about current campaigns, and access to
OutboundChain objects for this Place.
Each OutboundChain instance contains customer outbound data, provided as a
collection of OutboundRecord objects. For example, in the context of a voice
outbound call, each record of the chain contains a phone number associated

176 Agent Interaction SDK 7.6

Chapter 12: Outbound Service Outbound Design

with the customer to be called. If the call with a given record fails, the agent
can get a chained record to attempt a new call for this customer.
Regardless the campaign mode, the Place object receives
PlaceEventOutboundChainInfo events for new or modified outbound chains that
the agent should process.
To determine which outbound chain is associated with an interaction, call the
OutboundService.getOutboundChain(Interaction) method.

Outbound Actions
OutboundRecord and OutboundChain interfaces provide you with outbound
methods, that the agent calls to perform outbound actions, such as cancel, do
not call, and reschedule.
These actions are independent from the outbound interaction used to process
the outbound record or the outbound chain. They manage record information
on the Outbound Server.

Campaign Dialing Modes
The campaign dialing modes determine how an agent, or a group of agents,
participates in an outbound campaign. This affects the outbound event flow,
and also agent actions to be performed when participating in the campaign.
The following table introduces these dialing modes.

Table 3: Campaign Dialing Modes

Campaign Mode AIL Events Description

PREVIEW PlaceEventOutboundChainInfo In preview dialing mode, an agent requests one
or several records from the OCS, previews the
record(s), and decides to process one of them by
creating a new outbound interaction.

PUSH_PREVIEW PlaceEventOutboundChainInfo

InteractionEvent (for NEW
InteractionOpenMedia)

(Also called proactive) In push preview mode,
the agent does not need to request the record to
preview the record. He or she gets this and
subsequent records through a new open media
interaction. To process the record, the agent
creates a new outbound interaction.

PROGRESSIVE PlaceEventOutboundChainInfo

InteractionEvent (for
DIALING InteractionVoice)

The OCS dials a record in the list as soon as an
agent is available.

Java—Developer’s Guide 177

Chapter 12: Outbound Service Steps for Writing an Outbound Application

Note: According to the campaign mode, you may notice the following:
• In a non-engaged mode, the contact may be online before the

agent.
• In an engaged mode, your application can receive a record after the

agent accepted a ringing call. Test the
InteractionVoice.isASMCall() to check whether a ringing call is
part of an outbound campaign.

For further information, refer to the Outbound Contact 7.6 Documentation.

Steps for Writing an Outbound Application
Now that you have been introduced to the outbound feature’s design, it is time
to outline the steps you will need to work with its events and objects.
As specified in the previous section, outbound data do not interfere with
interaction management. To handle campaign information and outbound
records, modifications in your agent application consist in a few adds-in.
There are five basic things you will need to do in your AIL application:
• Implement a CampaignListener listener to get notified of changes in

active outbound campaigns. Here is how a SimpleExample class would do
this:

ENGAGED_
PROGRESSIVE

PlaceEventOutboundChainInfo

InteractionEvent (for
DIALING InteractionVoice)

The OCS creates a voice interaction to dial a
record in the list when an agent is available and
engaged.
Your agent application gets a dialing outbound
voice interaction and an outbound chain.

PREDICTIVE PlaceEventOutboundChainInfo

InteractionEvent (for
DIALING InteractionVoice)

The OCS predicts agent availability and dials a
record. Your agent application gets a dialing
outbound voice interaction and an outbound
chain.

ENGAGED_
PREDICTIVE

PlaceEventOutboundChainInfo

InteractionEvent (for
DIALING InteractionVoice)

The OCS predicts when the agent is available
and engaged, and creates a dialing outbound
voice interaction to dial a record in the list.
Your agent application gets a dialing outbound
voice interaction and an outbound chain.

UNKNOWN Unknown Unknown campaign mode.

Table 3: Campaign Dialing Modes (Continued)

Campaign Mode AIL Events Description

178 Agent Interaction SDK 7.6

Chapter 12: Outbound Service Steps for Writing an Outbound Application

public class SimpleExample implements CampaignListener {
//...

 public void handleCampaignEvent(CampaignEvent event)
 {

 // Testing whether it is a new active campaign
 if(event.getEventType()==CampaignEvent.Type.CAMPAIGN_ADDED)
 {
 //The agent takes part in a new outbound campaign
 //...
 }

}
}

• Get an outbound service to register your campaign listener. For instance,
you could modify one standalone code example by declaring a private
outboundService variable, then by adding the following code snippet in the
constructor method:

Class SimpleExample implements CampaignListener
{

OutboundService outboundService;
public SimpleExample()
{

outboundService = samplePlace.getOutboundService();
//Add your campaign listener
outboundService.addListener(this) ;
//...

}
}

• Set up button actions (or actions on other GUI components) tied to
outbound features, according to the OutboundService, OutboundChain, and
OutboundRecord objects’ methods. For instance, to cancel a record, your
agent needs an Cancel button to cancel the processing of the record.

// Add a cancel button for joining the chat session
JButton cancelOutboundRecordButton = new JButton(“Cancel”);
cancelOutboundRecordButton.setAction(new AbstractAction("Cancel")
{

public void actionPerformed(ActionEvent actionEvent) {
try {

outboundRecord.cancel(null);
} catch (Exception exception) {

System.out.println(exception.getMessage(),"ErrorEvent");
}

}
});

Java—Developer’s Guide 179

Chapter 12: Outbound Service Preview Outbound Interactions

• Modify the PlaceListener.handlePlaceEvent() method to handle
PlaceEventOutboundChainInfo events. Create a thread that manages
PlaceEventOutboundChainInfo events to update your application with
outbound information.

// For instance, display the event reason

System.out.println(“Outbound chain event- reason is:

“+PlaceEventOutboundChainInfo.getReason().toString());

• Check if interactions own outbound information in the implemented
handleInteractionEvent() methods. If a campaign is started, according to
the campaign mode, your application may have to check if interactions in
NEW, DIALING, and RINGING status are associated with outbound
information.

See further sections for details.

Preview Outbound Interactions
In a Preview Outbound Campaign, the agent is active and requests new
outbound records, then chooses either to process or not process the call.

Active Campaigns
As soon as the agent is logged in, his or her place receives events for active
campaigns. To determine whether your agent participates in a Preview
Outbound Campaign, you can implement the CampaignListener as described in
the previous section. On CampaignEvent events of type CAMPAIGN_ADDED,
retrieve the corresponding CampaignInfo object and test its type, as follows:

if(event.getEventType()==CampaignEvent.Type.CAMPAIGN_ADDED)
{

OutboundCampaignInfo campInfo = event.getCampaignInfo();
if(campInfo.getCampaignMode() ==

OutboundCampaignInfo.Mode.PREVIEW)
{

//...
}

}

Another way to determine whether a preview outbound campaign is active is to
retrieve outbound campaigns available for your place, by calling the
OutboundService.getCampaignInfos() method, or, if you know the campaign
ID, by calling the OutboundService.getCampaignInfo() method.

180 Agent Interaction SDK 7.6

Chapter 12: Outbound Service Preview Outbound Interactions

Start and Stop Preview
Your application should start and stop preview mode according to the optional
setting agent_preview_mode_start defined in the OCS application object in
Configuration Manager. If this option is set to true, your agent application
must start preview mode method after an agent logs in, prior to any preview
record request, in order to receive scheduled call records from OCS.
This setting is most often used to ensure that no prescheduled call records are
sent to the place directly after the agent logs in.

Note: The Agent Interaction (Java API) does not include a method to test this
option. This is your responsibility to determine whether you develop an
agent application working with an OCS whose
agent_preview_mode_start option is true.

To start preview mode, retrieve the OutboundCampaignInfo instance that
corresponds to your campaign. Then, call the startPreviewMode() method.

OutboundCampaignInfo campaign =
OutboundService.getCampaignInfo(campaignID);

campaign.startPreviewMode();

To stop preview mode (when the agent stops working in outbound campaigns),
call the stopPreviewMode() method.

campaign.stopPreviewMode();

If the agent wants to participate in a preview campaign, preview mode must be
started before requesting any preview record, else OCS ignores calls to get
preview records.
When the option agent_preview_mode_start is set to false, OCS assumes that
the agent is ready to receive any prescheduled call records. If a preview
campaign is running when the agent logs in, he or she can request preview
records at anytime.

Handle Regular Preview Calls
Your agent is now ready to participate in an active campaign. If preview mode
mode is active (see above for details), the first step is to request a preview
record.

Note: If your campaign mode is push preview, your application does not need
to request the preview record.

Java—Developer’s Guide 181

Chapter 12: Outbound Service Preview Outbound Interactions

To get a preview record, you can choose between calling the
getPreviewRecord() method (which returns the record) or calling the
requestPreviewRecord() method of your OutboundCampaignInfo interface.
If your application calls the requestPreviewRecord() method, and if a record is
available, you get a PlaceEventOutboundChainInfo event through the
PlaceListener.handlePlaceEvent() method.
Use the PlaceEventOutboundChainInfo event to inform the user that a new
outbound record should be processed, as shown here:

public void SimplePreviewExample implements PlaceListener {
OutboundService outboundService ;

public void SimplePreviewExample()
{

//...
boolean request = campInfo.requestPreviewRecord();
if(request == true)

System.out.println(“Request for preview record succeeded.”);
}

public void handlePlaceEvent(PlaceEvent event)
{

if(event instanceof PlaceEventOutboundChainInfo)
{

PlaceEventOutboundChainInfo eventInfo = (PlaceEventOutboundChainInfo) event ;
OutboundChain outboundChain = eventInfo.getOutboundChain();
OutboundRecord outboundRecord = outboundChain.getActiveRecord();
System.out.println(“Outbound chain event, reason ”+

eventInfo.getReason().toString());
}

}

To process the OutboundChain, create an interaction which uses the active
record to fill in the Interaction data and methods’ parameters. In the following
code snippet, the interaction processes a voice call and uses record data to dial
the call.

// Method called when the agent wish to use the record
public void processActiveRecord(OutboundChain outboundChainToProcess)
{

InteractionVoice outboundIxn =
(InteractionVoice) outboundChain.createInteraction

(MediaType.VOICE,null,agentInteractionData.getQueue());
outboundIxn.makeCall(outboundRecord.getPhone(), null,

InteractionVoice.MakeCallType.REGULAR, null, null, null) ;
}

}
}

182 Agent Interaction SDK 7.6

Chapter 12: Outbound Service Preview Outbound Interactions

Note: When your outbound interaction is released, close the outbound chain,
as specified in section “Close the Chain” on page 186

Handle Push Preview Interactions
In push preview mode, your application deals with open media interactions: it
does not make preview requests, it receives the open media interaction and the
chain which contains the record.
Attached data provided in the open media interaction contains additional
preview information that your application uses to create the outbound
interaction (for instance, voice or e-mail).
Push preview mode requires that the agent logs into a third party media (refer
to the Configuration Layer for further details). Then, the setup is the same: you
get an OutboundService from your Agent, and you register your listeners.

Push Preview Events

When the agent is logged into and ready on the third party media, you get the
following events:
• a PlaceEventOutboundChainInfo event through the

PlaceListener.handlePlaceEvent() method.
• an InteractionEvent event through the

PlaceListener.handleInteractionEvent() method for an
InteractionOpenMedia in NEW status, as shown in the following code
snippet.

public void handleInteractionEvent(InteractionEvent event)
{

if(event.getSource() instanceof InteractionOpenMedia
&& event.getStatus() == Interaction.Status.NEW))

{
InteractionOpenMedia outboundPreviewIxn =

(InteractionOpenMedia) event.getSource();
OutboundChain outboundChain = outboundService.getOutboundChain(ixn);
OutboundRecord outboundRecord = outboundChain.getActiveRecord();
// Use the outbound chain to create the outbound interaction
// and use the InteractionOpenMedia to get additional data
//...

}
}

Java—Developer’s Guide 183

Chapter 12: Outbound Service Predictive Outbound Interactions

Process the Outbound Interaction

To process the OutboundChain, create an interaction by calling the
OutboundChain.createInteraction() method (for instance, voice or e-mail)
which uses the active record and the open media interaction to fill in the
Interaction data and methods’ parameters. In the following code snippet, the
interaction processes a voice call and uses record data to dial the call.

// Method called when the agent wish to use the record
public void processActiveRecord(OutboundChain outboundChain, InteractionOpenMedia
outboundPreviewIxn)
{

InteractionVoice outboundIxn =
(InteractionVoice) outboundChain.createInteraction

(MediaType.VOICE,null,(String) outboundPreviewIxn.getAttachedData(“queue“);
ixnVoice.makeCall(recordToProcess.getPhone(), null,

InteractionVoice.MakeCallType.REGULAR, null, null, null) ;
}

}
}

To end the outbound interaction, the agent releases it then marks it done.
Finally, before your application closes the outbound chain (as explained in
section “Close the Chain” on page 186), your application should also mark
done the preview open media interaction.

outboundIxn.releaseCall();
outboundIxn.markDone();

outboundChain.markProcessed();
outboundPreviewIxn.markDone();
outboundChain.close();

Note: The agent can be in charge of performing the mark done of the open
media interaction.

Predictive Outbound Interactions
Handling a predictive outbound is simpler than handling preview outbound
interactions. The setup is the same: you get an OutboundService from your
Agent, and you register yours listeners, but you do not have to request records.
Outbound Server is in charge of distributing records and dialing interactions.
Refer to the Outbound Documentation for further details.
For a predictive outbound campaign, your application just waits for RINGING
interactions and outbound chains.

184 Agent Interaction SDK 7.6

Chapter 12: Outbound Service Predictive Outbound Interactions

Active Campaigns
To determine whether your agent participates in a Predictive Outbound
Campaign, test whether the campaign mode is
OutboundCampaignInfo.Mode.PREDICTIVE. To do so, you can implement the
CampaignListener as described in section “Active Campaigns” on page 179.

Handling a Predictive Outbound Interaction
If your agent participates in a predictive campaign, your application gets
interactions in DIALING or TALKING status, to be processed as usual. For further
details, see previous interaction chapters.
When your application gets those interactions through interaction events,
display outbound data. Each received outbound interaction is associated with
an outbound chain, that contains the record used to fill in interaction data. You
get this record by calling the OutboundChain.getActiveRecord() method, as
shown in the following code snippet:

public void handleInteractionEvent(InteractionEvent event)
{

if(event.getStatus() == Interaction.Status.DIALING)
{

Interaction outboundIxn = event.getInteraction();
OutboundChain outboundChain = outboundService.getOutboundChain(ixn);
OutboundRecord outboundRecord = outboundChain.getActiveRecord();
//...

}
}

When the agent has processed the outbound record and released the outbound
interaction, he or she must specify the processing result by calling the
OutboundRecord.setCallResult() method. The OutboundRecord.CallResult
enumeration lists the possible result your application can provide the agent
with.

// Successfully processed the interaction
outboundRecord.setCallResult(OutboundRecord.CallResult.ANSWER);

If the interaction is processed, you mark the corresponding outbound chain as
processed, else for instance, you can reschedule the record.
In any case, after you mark done the interaction, call the
OutboundChain.close() method to terminate properly the outbound processing
of the chain.

outboundChain.markProcessed();
outboundIxn.markDone();

Java—Developer’s Guide 185

Chapter 12: Outbound Service Handle Outbound Chains

outboundChain.close();

Handle Outbound Chains
This section covers additional information about outbound chains, regardless
campaign modes.

Mark Processed
After the agent releases the outbound interaction, your application can set a
call result to the active record and mark the chain processed, as shown in the
following code snippet:

outboundRecord.setCallResult(
OutboundRecord.CallResult.FromString(result));

outboundChain.markProcessed();

Reschedule the Record
After releasing the call, the agent can request a callback. In this case, your
application needs to create a Calendar object to set up the callback at the
required date, then reschedule the record.

java.util.Calendar myCalendar = java.util.Calendar.getInstance();

myCalendar.setTimeZone(java.util.TimeZone.getTimeZone("GMT-8:00"));

// Reschedule the call: 12/01/2008 at 9:00

myCalendar.set(2008, 01, 12, 9, 0);

// Anybody logged in the campaign is authorized to make the call

selectedRecord.reschedule(myCalendar,
OutboundRecord.CallbackType.CAMPAIGN);

Note: The time zone of the Calendar instance must be set to GMT.

Next step is to close the outbound chain. See “Close the Chain”.
As a result of the reschedule command, a new chain is sent at the required date
and time. To determine whether the active record of the outbound chain is a
callback, call the OutboundChain.isScheduled() method (which returns true if
the active record is a callback).

186 Agent Interaction SDK 7.6

Chapter 12: Outbound Service Handle Outbound Chains

Close the Chain
In any case, after your application released and marked done the outbound
interaction, call the OutboundChain.close() method to terminate properly the
outbound processing of the chain, as shown in the following code snippet.

ixn.releaseCall(null);
outboundChain.markProcessed();
ixn.markDone();
outboundChain.close();

Java—Developer’s Guide 187

Chapter

13 Routing Points
This chapter explains how to monitor routing points. It is divided into the
following topics:

Routing Point Design, page 187
Steps for Monitoring Routing Points, page 188

Routing Point Design
With the 7.x releases, the Agent Interaction (Java API) introduces visibility
into route point and queue activity (based on the Genesys routing model).
The Universal Routing Server (URS) interprets strategies and routes
interactions through routing points or routing queues before they are delivered
to agents. Routing points can process interactions and provide results used by
URS for further routing. For instance, a T-Server can host an Interactive Voice
Response, which corresponds to a routing point and provides additional
interaction data.
According to the type of routing point or queues through which the interaction
goes, the treatment period varies. Agent Interaction (Java API) provides
features to monitor the interaction activity on routing points:
• Monitoring a Routing Point/Queue that may be of the following types:

External Routing Point
Routing Point
Routing Queue
Virtual Routing Point

• Receiving events raised on these objects.
• Retrieving data of the Interaction that has been routed to the routing

point.

188 Agent Interaction SDK 7.6

Chapter 13: Routing Points Steps for Monitoring Routing Points

Routing Point Information
To monitor routing points, Agent Interaction (Java API) provides access to DN
routing point information and to the routing status of interactions processed on
routing points.
The DnRoutingPoint interface registers to the T-Server and DN provides
routing point information. With DnRoutingPoint methods, you can register
DnRoutingPointListener listeners for getting DnRoutingPointEvent events,
which describe status events like in_service or out_of_service.
The RoutingInteraction class describes an Interaction that arrived on a
DnRoutingPoint instance. The RoutingInteraction.Status enumeration lists
the possible interaction status on the routing point. For instance, if the routing
interaction status is IDLE, it means the interaction is no longer on the Routing
point, but it does not mean that the interaction is terminated (an agent may
process it or another routing point may handle it.)
With RoutingInteraction methods, you can register
RoutingInteractionListener listeners for getting RoutingInteractionEvents
events, which notify changes on a routing interaction, that is, status or attached
data changes.

Steps for Monitoring Routing Points
Now that you have been introduced to the routing point feature’s design, it is
time to outline the steps you will need to work with its events and objects.
In this section, monitoring routing points means monitoring status changes on
the routing points and monitoring interactions on these routing points. the
following code snippets shows how you can create
There are three basic things you will need to do:
• Implement a DnRoutingPointListener listener for getting status changes

on routing points. This listener gets status changes for both DN routing
points and routing point interactions. Here is how a SimpleRoutingExample
class would do this:

public class SimpleRoutingExample implements
DnRoutingPointListener {

//...
void handleDnRoutingPointEvent(DnRoutingPointEvent event)
{

DnRoutingPointEventThread p = new
DnRoutingPointEventThread(event);

p.start();
}
void handleInteractionEvent(RoutingInteractionEvent event)
{

Java—Developer’s Guide 189

Chapter 13: Routing Points Steps for Monitoring Routing Points

RoutingInteractionEventThread p = new
RoutingInteractionEventThread(event);

p.start();
}

}

• Implement the handleDnRoutingPointEvent() method of your
DnRoutingPointListener with a thread which updates your application’s
routing information. as shown here:

class DnRoutingPointEventThread extends Thread
{

DnRoutingPointEvent event;

public DnRoutingPointEventThread(DnRoutingPointEvent _event)
{

event=_event;
}

public void run()
{

DnRoutingPoint dnRoutingPoint = event.getDnRoutingPoint();
System.out.println(

“Event on DN RP: “+dnRoutingPoint.getId()
+ “ reason: “+ event.getReason().toString()
+ “ new status: “+ event.getStatus().toString());

}
}

• Implement the handleInteractionEvent() method (inherited from the
RoutingInteractionListener interface) with a thread which updates your
application with new interactions and interaction status changes for the
monitored routing points.

class RoutingInteractionEventThread extends Thread
{

RoutingInteractionEvent event;

public RoutingInteractionEventThread(
RoutingInteractionEvent _event)

{
event=_event;

}

public void run()
{

RoutingInteraction routingInteraction =
event.getRoutingInteraction();

190 Agent Interaction SDK 7.6

Chapter 13: Routing Points Steps for Monitoring Routing Points

//display new status is status change reported
if(event.isStatusChanged())

System.out.println(
“Ixn Event on ixn: “+routingInteraction.getId()
+ “ reason: “+ event.getReason().toString()
+ “ new status: “+ event.getStatus().toString());

//else the event reports extension changes
else
{

System.out.println(
“Ixn Event on ixn: “+routingInteraction.getId()
+ “ reason: “+ event.getReason().toString()
+ “ extension changed: “);

// handle interaction extensions
//...

}
}

}

• Register the listener for each Routing Point to be monitored. For
instance, the SimpleRoutingExample listener is added to a DN routing point
in its constructor, as shown here:

public class SimpleRoutingExample implements
DnRoutingPointListener

{
//...
public SimpleRoutingExample(AilFactory ailFactory,

String routingPointID)
{

try
{

DnRoutingPoint dnroutingPoint =
ailFactory.getRoutingPoint(routingPointID);

dnRoutingPoint.addDnListener(this);

}catch(RequestFailedException __e)
{

System.out.println(__e.toString());
}

}
}

In your agent application, you can now create a SimpleRoutingExample instance
for each routing point that you wish to monitor.

Java—Developer’s Guide 191

Chapter

14 Service Status and
Connection
This chapter explains how to deal with connection maintenance. It is divided
into the following topics:

Service Status Design, page 191
Steps for Listening to Service Status, page 193

Service Status Design
Basically, a service represents the status of a connection to a server in the
Genesys Framework or in Multi-Channel Routing. To handle connection
changes, you implement a ServiceListener class, that monitors events on
ServiceStatus objects. Then your application registers this listener for each
service to be listened.
To determine which service your application will be able to listen, refer to the
ServiceStatus.Type enumeration:
• CONFIG—Connection to the Configuration Layer.
• TELEPHONY—Connection to a T-Server.
• IS—Connection to an Interaction Server.
• CHAT—Connection to a Chat Server.
• AIL—for AIL itself.
• DATABASE—Connection to the Contact Server database.
The possible ServiceStatus.Status values are:
• ON—Server is running and connection is established.
• OFF—Server is down or connection is broken.
• ABSENT—Connection has never been established with this server.
• LICENSE—Connection could not be established for license reasons.

192 Agent Interaction SDK 7.6

Chapter 14: Service Status and Connection Service Status Design

Connection Loss
If AIL loses its connection to a server, your application gets an event related to
the associate service, turning its status to OFF. See “Steps for Listening to
Service Status” on page 193 for further details about receiving these events.
However, the connection loss has additional repercussions for the objects that
depend on the disconnected server.

T-Server Use Case If AIL loses its connection to T-Server (for instance, the network link breaks),
the associated TELEPHONY service turns its status to OFF. As a consequence, from
your application’s point of view, the DN and its voice interactions are no
longer available:
• if your application implements the handleDnEvent() method of your

PlaceListener, it catches a DnEvent which notifies the OUT_OF_SERVICE
status (DnEvent.EventReason.STATUS_CHANGED).

• if your application implements the handleInteractionEvent() method of
your PlaceListener, it catches an InteractionEvent which notifies the IDLE
status (InteractionEvent.EventReason.ABANDONED).

Actually, if only the network link breaks, voice interactions still exist (the
agent and the customer are still talking); the strategy determines whether
interactions are re-routed or not.

Note: Do not assume that if your interaction status turns to IDLE (reason
ABANDONED), or if your DN status is OUT_OF_SERVICE, AIL has lost its
connection to T-Server. Rely on the service status to diagnose the lost
connection.

Multimedia Use
Case

In case your application loses its connection to the Interaction Server (for
instance, the network link breaks), the associated IS service turns its status to
OFF. As a consequence, from your application’s point of view, the media are no
longer available.
• if your application implements the handlePlaceEvent() method of your

Place, or Agent instance, it catches a PlaceEventMediaStatusChanged which
notifies the Media.Status.OUT_OF_SERVICE status
(Media.Reason.STATUS_REASON_CHANGED).

• if your application implements the handleInteractionEvent() method of
your PlaceListener, it catches an InteractionEvent which notifies the IDLE
status (InteractionEvent.EventReason.ABANDONED) for each multimedia
interaction.

As with voice interactions, media interactions are IDLE only from the API point
of view. On the Interaction Server side, the place’s media are logged out. The
interactions are no longer associated with the disconnected place and are
pushed back in queues (according the deployed strategy).

Java—Developer’s Guide 193

Chapter 14: Service Status and Connection Steps for Listening to Service Status

Reconnection
When AIL loses its connection to a server, it tries to reconnect till the
connection attempt succeeds. Then, your application gets an event for the
associated service, turning its status to ON. See “Steps for Listening to Service
Status” for further details about receiving these events. As for the
disconnection, the reconnection generates several events to update object
statuses.

T-Server Use Case For example, in the case that the link to a T-Server is restored, the switch is
able to provide AIL with information. So, the Agent, Place, and Dn instances
update, and your application gets status notifications according to the
implemented event handlers. Additionally, if the agent is still talking to the
contact, your application will get a new InteractionVoice instance in TALKING
status, InteractionEvent.EventReason.ESTABLISHED.

Multimedia Use
Case

At the reconnection, AIL logs into the media of the place. If your application
implements the handlePlaceEvent() method of your PlaceListener, it catches a
PlaceEventMediaStatusChanged which notifies the new Media.Status.READY
status (Media.Reason.BACK_IN_SERVICE). Then, getting back interactions is a
job for the strategy or the agent application.

Restart all the
Connections

At runtime, your application deals with a unique instance of the AilFactory. If
you need to restart the AIL library and all its connections to Genesys servers,
first kill your instance of AilFactory by calling the AilLoader.killFactory()
method, as shown in the release() method of the Connector application block.

mAilLoader.killFactory();

If this method call succeeds, you can get a new reference on the AilFactory
singleton (see page 51).

Note: Genesys recommends the use of ailLoader.getFactory() in your AIL
client application (instead of having a reference to the singleton
throughout the code). This decreases the risk of reference issues
associated with killFactory() usage.

Steps for Listening to Service Status
Now that you have been introduced to connection maintenance, it is time to
outline the steps you will need to work with its events and objects.
As specified in the previous section, you need to register a listener per
ServiceStatus object that your application should listen to. In the following
code snippets, a single listener class is implemented to listen to the whole set
of ServiceStatus objects.

194 Agent Interaction SDK 7.6

Chapter 14: Service Status and Connection Steps for Listening to Service Status

There are five basic things you will need to do in your AIL applications to
monitor service connections:
• Implement a ServiceListener class. Here is how a SimpleService class

would do this:

public class SimpleService implements ServiceListener {

• Implement the serviceStatusChanged() method, that notifies service
status changes. In the following code snippet, the code implemented
displays those statuses in real time.

// This method must be implemented because this class
// implements ServiceListener

public void serviceStatusChanged(
ServiceStatus.Type service_type,
String service_name,
ServiceStatus.Status service_status) {

System.out.println(“Connection maintenance - “
+ service_type.toString()+ ”: ”
+ service_name+ “ in status “
+ service_status.toString());

}

• Register the listener for each service to be monitored using this listener.
In the following code snippet, the constructor of SimpleService registers
for all services.

//This constructor registers for all service available in AIL
public SimpleService(AilFactory ailFactory)
{

// For each service...
Iterator it = services.entrySet().iterator();
while (it.hasNext()
{

Map.Entry entry = (Map.Entry) it.next();
// Get the service name
String name = (String) entry.getKey();
ServiceStatus service = (ServiceStatus)

entry.getValue();
ailFactory.addServiceListener(service.m_type, this) ;

}
}

}

Java—Developer’s Guide 195

Chapter

15 Voice Callback
Implementing voice callback is a matter of handling additional callback record
information that the Agent Interaction (Java API) provides to interactions.
This chapter contains the following sections:

Callback Design, page 195
Steps for Writing a Callback Application, page 197

Callback Design

Scenario
If a customer requests a callback, the Voice Callback server records the
request. Interaction SDK (Java) supports Web Callback, that is, the customer
can request a callback from a web application.
At the time that the customer requested (As Soon As Possible, or some specific
calendar day/time), the Voice Callback server inserts a record of the request
into an appropriate queue. From the queue, the Voice Callback request is sent
to the place of an available, appropriate agent. When the AIL library receives
the request, it creates a CallbackRecord for the request, creates a new
accompanying Interaction (which may be cast as InteractionVoice) on the
place, and sends appropriate event objects to registered listeners.
As the phone call progresses, the library updates the Interaction’s status.
The completion of the phone-call attempt may have various outcomes,
including successful interaction with the customer, or busy, or connection to an
answering machine or fax machine, and so on.
Upon completion of the attempted call, the application lets the agent signal the
AIL library that the CallbackRecord is processed, and the CallbackRecord
status is updated. (When the Interaction is closed and marked done, the
library also closes the associated CallbackRecord.)

196 Agent Interaction SDK 7.6

Chapter 15: Voice Callback Callback Design

The CallbackRecord’s outcome status determines future actions for this
Voice Callback request. For example, if the CallbackRecord is not successful,
the Voice Callback server may re-insert the request in the queue.
If the agent rejects the task, the Voice Callback request remains at the top of
the queue to be sent to some other agent’s place.

Callback Information
To access callback information, you deal with the CallbackService instance of
the current Place in use. With CallbackService methods, you can access to
CallbackRecord objects for this Place.
Each CallbackRecord instance enables you to register listeners for getting
callback events and contains record data that you use to callback the customer.
To determine which callback record is associated with an interaction, you call
the CallbackService.getCallbackRecord(Interaction) method.
Figure 51 shows the relationships between callback interfaces.

Figure 51: Interfaces for Callback Features

+ isAvailable()
+ getCallbackRecord
(Interaction ixn)
+getCallbackRecord
(String recordId)

CallbackService

+ accept()
+ cancel()
+ reject()
+ processed()
+ getInteraction()
+ getStatus()
+ getReason()
+get/setCallResult()
+ addCallbackRecord
Listener()
+removeCallback
RecordListener()

CallbackRecord

+ getRecord()
+ getStatus()
+ getReason()

CallbackRecordEvent

IdObject

+ isPossible()

Possible

0..n

+ handleCallback
RecordEvent()

CallbackRecordListener

InteractionVoice

0..n1..1

0..1

1..1

0..n

0..1

0..1
0..n

0..n

Java—Developer’s Guide 197

Chapter 15: Voice Callback Steps for Writing a Callback Application

Callback Campaign Modes
To access callback features, your application gets the CallbackService
interface associated with the place. Your application receives InteractionEvent
events for voice interactions in different statuses, depending on the mode of the
callback server.
For each voice interaction, use the CallbackService interface to get the
associated callback record (if any). Then, use the CallbackRecord interface to
manage the callback activity and to display information.
In preview mode, your application gets the callback record in PREVIEW status:
the application can accept or reject the callback record by calling the
corresponding CallbackRecord methods. Then, if the agent accepts the
callback, your application makes the call using the InteractionVoice object
associated with the CallbackRecord object.
In predictive mode, the application gets the CallbackRecord in OPEN status and
the InteractionVoice object is already in a DIALING status. For further details
about callback servers’ modes, refer to the Voice Callback 7 documentation.
Your application can process the InteractionVoice interaction as usual. When
the call is released, assign a call result to the CallbackRecord object, mark it as
processed by calling the CallbackRecord.processed() method, then mark the
interaction as done.

Steps for Writing a Callback Application
Now that you have been introduced to the callback feature’s design, it is time
to outline the steps you will need to work with its events and objects.
As specified in the previous section, callback record data does not interfere
with interaction management. You should implement a PlaceListener class
that manages voice interactions, as explained in previous chapters. Then,
modifications in your agent application to handle callback record data consist
of a few add-ins.
There are five basic things you will need to do in your AIL applications:
• Implement a CallbackRecordListener listener to get notified of changes

in active outbound campaigns. Here is how a SimpleExample class would do
this:

public class SimpleCbRecordListener implements
CallbackRecordListener {

//...
 public void handleCallbackRecordEvent(CallbackRecordEvent event)
 {
 CallbackRecord record = event.getCallbackRecord();

// update your application with callback information
// for instance, buttons for callback actions

198 Agent Interaction SDK 7.6

Chapter 15: Voice Callback Steps for Writing a Callback Application

//...
}

}

• Get a callback service to test whether your PlaceListener should handle
callback record on InteractionEvent events, and keep a reference to be
able to retrieve callback records. For instance, you could modify one stand-
alone code example by declaring a private callbackService variable, then
by adding the following code snippet in the constructor method:

Class SimpleCallbackExample implements PlaceListener
{

CallbackService callbackService;

//...
public SimpleCallbackExample(Place samplePlace)
{

callbackService = samplePlace.getCallbackService();
if(callbackService.isAvailable())
{
 //...
}

}
//...

}

• Set up button actions (or actions on other GUI components) tied to
callback features, according to the CallbackRecord objects’ methods, such
as accept(), reject(), reschedule(), processed(), and so on.

• Check if interactions own callback information in the implemented
handleInteractionEvent() methods. To determine whether

public handleInteractionEvent(InteractionEvent event)
{

Interaction sampleInteraction = event.getInteraction();

if(sampleInteraction.getType()
== Interaction.Type CALLBACKREQUEST)

{
CallbackRecord callbackRecord =

callbackService.getCallbackRecord(sampleInteraction);
if(callbackRecord != null)
{

//update your application with callbackRecord info
//...
//add your listener to get callback record changes
callbackRecord.addCallbackRecordListener(

new SimpleCbRecordListener()) ;

Java—Developer’s Guide 199

Chapter 15: Voice Callback Steps for Writing a Callback Application

}
}

Note that Interaction status changes are not automatically coordinated with
CallbackRecord status. Coordination depends on correct agent behavior.

200 Agent Interaction SDK 7.6

Chapter 15: Voice Callback Steps for Writing a Callback Application

Java—Developer’s Guide 201

Chapter

16 Expert Contact
Handling expert contact information does not require handling a particular
interaction type. Your application manages voice interactions. Implementing
expert contact is a matter of handling additional expert contact information that
the Agent Interaction (Java API) provides to interactions.
This chapter shows you how to deal with the expert contact service and is
divided into the following topics:

Expert Contact Design, page 201
Steps for Writing an Expert Contact Application, page 205

Expert Contact Design
The Agent Interaction Java API supports features for an application that
enables expert users, who are not part of an enterprise’s Contact Center, to
provide their expertise to Contact Center agents or customers.

Usage Scenario
Contact center agents, in the course of responding to customers, sometimes
need information beyond their training. In such cases, they can benefit from
contacting people with special expertise.
But typically, such experts (knowledge workers) are not part of the Contact
center CTI infrastructure: their telephones connect to a switch that does not
have a T-Server or Framework support. In such cases, their interactions with
Contact center agents (or their customers) are not tracked, and neither the
agents nor the experts can benefit from the information provided by Genesys
Solutions.
In a site without a CTI link, the expert receives phone calls directly from a
public network without the involvement of any Genesys platform components.
Therefore such calls are not automatically monitored or controlled. For

202 Agent Interaction SDK 7.6

Chapter 16: Expert Contact Expert Contact Design

example, there is no way to detect the state of the expert’s telephone (Ready,
OnCall, and so on).
Genesys Expert Contact addresses this problem.

Expert Contact Components
There are two major components involved in making expert contact work:
• A Genesys CTI-less T-Server, which works without monitoring a switch.

This component provides a connection to the expert’s desktop application
and to a T-Server in the contact center.

• An Expert Contact desktop application that can use AIL library features to
connect to a CTI-less T-Server and monitor its events for expert contact
interactions.

CTI-Less T-Server

A CTI-less T-Server provides a virtual CTI environment to track the expert’s
telephone states, to send messages to other Genesys server components, to
handle data for current interactions, and to coordinate voice and data delivery
to the expert’s desktop application.
The CTI-less T-Server must communicate with a T-Server within the contact
center infrastructure. It receives events from this T-Server and sends its own
events to applications.

Expert Contact Application

An expert contact application provides a means for an expert to reflect his or
her call state. It can also present the expert with information from the Genesys
Framework.
When an expert receives a call transferred from a Genesys supported contact
center, the Genesys platform components communicate with the CTI-less
T-Server, which notifies the expert’s desktop application of an incoming phone
call. The application presents an indication to the expert, who can choose to
accept or reject the phone call.
If the expert accepts the phone call, the desktop application can present
available information, including the contact history if there is a connection to a
Genesys Contact Server.
As the phone call progresses, the expert must use the application to view this
progress. The application passes the expert’s activity to the CTI-less T-Server,
which in turn passes the data to the Contact Center Framework components.
The application uses AIL library features to process events from the CTI-less
T-Server.

Java—Developer’s Guide 203

Chapter 16: Expert Contact Expert Contact Design

Configuration

An expert contact desktop application built on the AIL library must connect to
the CTI-less T-Server. It must also connect to a Configuration Layer that has
information about the CTI-less T-Server, person information for the expert,
and so on.
In addition to these configuration objects, the contact center site switch and
T-Server must be configured for external routing.

Note: See the Genesys Expert Contact Solution 7.x Deployment Guide for
instructions on how to configure a Genesys expert contact application
in the Configuration Layer.

Expert Contact Information
To get expert contact information, you deal with the KwService instance that
you get by calling the AilFactory.getKwService() method. With KwService
methods, you can get KwInteractionContext objects. Each
KwInteractionContext object has an associated InteractionVoice on the
CTI-less DN, and passes the expert’s activity to the CTI-less T-Server, as
shown in Figure 52.

Figure 52: Using Expert Features

Your application uses KwInteractionContext methods to access the CTI-less
T-Server, and uses InteractionVoice methods to emulate the expert’s actions
on the voice interaction.
For further information, refer to the Genesys Expert Contact 7.x
documentation.

KwService KwInteraction
ContextInteractionVoice

Expert Application

getId()

getContext(interactionId)

onCall()

acceptStatus()

holdCall()

204 Agent Interaction SDK 7.6

Chapter 16: Expert Contact Expert Contact Design

On Call

The expert (or knowledge worker) can receive direct calls. The expert must
notify the CTI-less T-Server of such calls. To perform that notification, your
application must use the KwService.onCall() method.
The onCall() method sends a message to the CTI-less T-Server to send a new
interaction to the specified DN. It also creates a KwInteractionContext instance
for the voice interaction. Your application receives and manages this voice
interaction as usual.
Then, the expert uses the voice interaction to report his or her actions on the
call. For instance, when the expert manually answers the call, he or she uses
your application to perform an ANSWER action on the voice interaction.

Preview

The CTI-less T-Server can send a call to the expert. In this case, your
application receives an InteractionVoice object associated with a
KwInteractionContext object that has a KwInteractionContext.Status.PREVIEW
status.
The expert can either accept or reject the call. Use the accept() or reject()
method of the KwInteractionContext interface for this purpose.
A call to the accept() method sends the call to the expert’s phone. Then, the
expert uses the voice interaction to report his or her actions on the call.

Status Request

If your application has set listeners, your application can receive a
KwInteractionContextEvent event propagating the
KwInteractionContext.Status.STATUS_REQUEST of a KwInteractionContext
object. This periodically happens when the CTI-less T-Server requests that the
expert set up his or her voice interaction’s status.
The expert can choose between the
KwInteractionContext.Action.CONFIRM_STATUS or
KwInteractionContext.Action.REJECT_STATUS actions.
A call to the KwInteractionContext.confirmStatus() method indicates that the
expert is still on call. A call to the KwInteractionContext.rejectStatus()
method indicates that the expert has terminated the call and the voice
interaction is automatically released.

Easy New Call and Auto Mark Done

When the expert makes a phone call, he or she must also create, and then dial,
a voice interaction on his or her CTI-less DN using your application. This
creates a KwInteractionContext instance for the voice interaction.

Java—Developer’s Guide 205

Chapter 16: Expert Contact Steps for Writing an Expert Contact Application

Your application processes the creation of this voice interaction as it would
process the creation of a standard voice interaction. For further information,
see Chapter 4, “Six Steps to an AIL Client Application,” on page 64.
Depending on your AIL configuration settings, your application can benefit
from the Easy New Call feature. This feature changes the voice interaction’s
status to TALKING as of the interaction’s creation on CTI-less DNs. The
interaction’s creation is therefore less time-consuming for the expert.
To activate the Easy New Call feature, set the easy-newcall option to true. See
the Interaction SDK 7.2 Java Deployment Guide for further details.
When the expert hangs up a call, he or she should release the voice interaction
and mark it as done. Depending on your AIL configuration settings, your
application can benefit from the Auto Mark Done feature. This feature
automatically marks released interactions as done for CTI-less DNs.
To activate the Auto Mark Done feature, set the auto-markdone option to true.
See the Interaction SDK 7.2 Java Deployment Guide for further details.

Re-Route

Depending on your AIL configuration settings, the expert is able to re-route
calls. See the Interaction SDK 7.2 Java Deployment Guide for further details.
If you properly set kworker routing options, your application can use the
KwInteractionContext.reroute() method to notify the CTI-less T-Server of
the voice interaction’s routing.

Steps for Writing an Expert Contact
Application

Now that you have been introduced to the expert contact feature’s design, it is
time to outline the steps you will need to work with its events and objects.
As specified in the previous section, expert contact data do not interfere with
voice interaction management. Modifications in your voice application consist
in a few adds-in to handle expert contact data and provide the user with expert
contact features (for instance, by implementing a GUI panel dedicated to
expert contact.)
There are five basic things you will need to do in your AIL applications:
• Implement a KwInteractionContextListener listener to get notified of

changes in KwInteractionContext objects. Here is how a
SimpleContextListener class would do this:

public class SimpleContextListener implements
KwInteractionContextListener {

//...

206 Agent Interaction SDK 7.6

Chapter 16: Expert Contact Steps for Writing an Expert Contact Application

 public void handleKwInteractionContextEvent(
KwInteractionContextEvent event)

 {
KwInteractionContextEvent context = event.getInteraction();
// update your application with expert context information
// for instance, buttons for actions on the expert context
//...

}

• Get a KwService interface to access expert contact data. For instance,
you could modify one standalone code example by declaring a private
kwService variable, then by adding the following code snippet in the
constructor method:

Class SimpleExpertContactExample implements PlaceListener
{

KwService kwService;
//...
public SimpleExpertContactExample(AilFactory ailFactory)
{

kwService = ailFactory.getKwService();
if(callbackService.isAvailable())
{
 //...
}

}
//...

}

• Set up button actions (or actions on other GUI components) tied to expert
contact features, according to the KwInteractionContext interface’s
methods.

• Check if interactions own expert contact information in the
implemented handleInteractionEvent() methods. Create a thread that
manages the interaction event and update your application with expert
contact information.

Interaction interaction = event.getInteraction();

//Getting the associated expert context (if any)
KwInteractionContext kwInteractionContext =

myKwService.getContext(interaction);

//Add a listener for changes in the expert context
kwInteractionContext.

addKwInteractionContextListener(new SimpleContextListener()) ;

// update your application with the kwInteractionContext
//...

Java—Developer’s Guide 207

Chapter

17 Additional Details
This chapter describes how to manage several categories of data that the AIL
library provides. It includes the following sections:

Attached Data, page 207
Event-AIL Data, page 210
Log Management, page 210

Attached Data
User data, or attached data, can be any data attached to an interaction. For
example, an IVR transaction may generate attached data associated with a
phone call.
Attached data has the following characteristics:
• It is one or more key-value pairs.
• It is available for the whole life of an interaction—it exists in the

interaction from its creation till its end.
• The API has features for managing attached data.
• Attached data can be saved in the history as part of the call, once the call is

released and marked as done.
Because an attached data is a writable key-value map, it can be any data useful
to your application’s design. However, it can also include the following
specific attached data:
• Interaction attribute values.
• Custom attached data’s values.
The Configuration Layer defines keys and information for this attached data,
available through the InteractionManager interface, as detailed in the
following subsections.

208 Agent Interaction SDK 7.6

Chapter 17: Additional Details Attached Data

InteractionManager
The InteractionManager interface gives access to metadata information
describing interactions’ attached data. The Configuration Layer defines this
information in the Business Attributes section.

Custom Properties

The Interaction Custom Properties in the Configuration Layer correspond to
the CustomAttachedData objects that your application can retrieve using the
InteractionManager.getAllCustomAttachedData() method.
The CustomAttachedData class describes a single custom property. This class
includes methods to get the corresponding name, display name, and
description of a custom property. It also provides the predefined values for the
custom attached data (if any).
Call the CustomAttachedData.getName() method to get the name of a custom
property and use it as a key to access or modify the corresponding value in an
interaction’s attached data map.

Interaction Attributes

The Interaction Values in the Configuration Layer correspond to the
InteractionAttributeMetaData objects that your application can retrieve using
the InteractionManager.getAllInteractionAttributeMetaData() method.
The InteractionAttributeMetaData class describes an interaction attribute.
This class includes methods to get, for example, the corresponding name,
display name, and description of a custom property. It also provides the
predefined values for the attribute (if any).
Call the InteractionAttributeMetaData.getName() method to get the name of
an interaction attribute and use it as a key to access or modify the
corresponding value in an interaction’s attached data map.

Note: These attributes can be used to retrieve interactions from a contact
history. See “Contact History” on page 166.

Handling
The API provides you with a set of methods dedicated to attached data in the
AbstractInteraction superinterface. All Interaction interfaces extend the
AbstractInteraction superinterface. The following code snippet shows an
example of how to create or set new values for the user data attached to the
InteractionVoice object:

Java—Developer’s Guide 209

Chapter 17: Additional Details Attached Data

// creation of an Interaction
InteractionVoice voice = (InteractionVoice)

mAgent1.createInteraction(MediaType.VOICE, null,Queue);
voice.makeCall(DN2,

null,
InteractionVoice.MakeCallType.REGULAR,
null,
null,
null);

//...
// Setting or adding new values
voice.setAttachedData("1", "one");
voice.setAttachedData("two", new Integer(2));
//Saving changes
voice.saveAttachedData();

If your application calls a setAttachedData(String or Object) method to
modify some attached data, save the attached data by immediately calling the
AbstractInteraction.saveAttachedData() method to commit all modifications
on key-value pairs in the database and the T-Server.

Note: If your application uses the setAttachedData(Map) method passing in
all the key-value pairs in the Map argument, there is no need to save
attached data. The changes are committed when calling the method.

You can also create and fill a Map, then pass its reference in as a parameter of a
call method. This is illustrated in the following code snippet in a makeCall():

//...
HashMap userData = new HashMap();
userData.put("3", "Three");
voice.makeCall(DN2,

null,
InteractionVoice.MakeCallType.REGULAR,
userData,
null,
null);

//...

Note: Your program can be notified of an attached data change when an
Event occurs. Use the Extension Map and the ATTACHED_DATA_CHANGED
key to retrieve the data of interest. For details, see the “Event-AIL
Data” section immediately below.

210 Agent Interaction SDK 7.6

Chapter 17: Additional Details Event-AIL Data

Event-AIL Data
Within InteractionEvent events, the library propagates additional AIL
information called Extensions. They are different from TEvent Extensions.
AIL Extensions can be retrieved through dedicated methods.
The InteractionEvent.getExtensions() method returns extended information
about the event in a Map. Any keys present in this Map are defined in an
InteractionEvent.Extension enumeration.
The following code snippet shows how to access an Extension in a transfer
context. It implements an Agent handler, which takes into account the
possibility of a transferred call ringing and manages the corresponding
extension.

//Implementation of the Agent.HandleInteractionEvent() method
public void handleInteractionEvent(InteractionEvent _ie) {

//Retrieval of the map containing the AIL Extensions
Map extensions = ie.getExtensions());
//Current status
Interaction.Status eventStatus=interaction.getStatus();
switch(eventStatus.toInt()) {
//...
// The interaction is ringing
case Interaction.Status.RINGING_: {

// Retrieval of the possible transfer
String transferReason = (String) extensions.get(

InteractionEvent.Extension.RINGING_TRANSFER_REASON);
// Test if there is a transfer reason
if(transferReason!= null){

// Display of the corresponding reason
System.out.println("Transfer reason"
+transferReason);

}
break;
//...

}
}

See the Javadoc API Reference for details on InteractionEvent.Extension
keys.

Log Management
The Interaction SDK’s log management is based on the org.apache.log4j
package. The following sections first describe the default log level provided,
and then describe the log system in the library.

Java—Developer’s Guide 211

Chapter 17: Additional Details Log Management

Default AIL logs
This section discusses the default log level provided. It introduces the log4j
package and the default log features in the AIL library.

log4j

Log4j is an open-source tool designed to help write log statements to a
variety of output targets. The AIL library uses the org.apache.log4j package
to write traces to log files and to the console.
Log4J instantiation and bootstrapping are done internally by the library. You
do not have to write code to perform these tasks.
The AIL library uses the main components of this package and follows Apache
recommendations. The log4j version number is available in the log4j.jar file
delivered with the Interaction SDK.

Warning! Genesys does not provide any technical support for the
org.apache.log4j package.

AilLoader

By default, the Interaction SDK provides you with console and file traces. You
can access these default logs with the AilLoader interface.
The AilLoader class enables you to:
• Disable the logs with the:

AilLoader.noTrace() method for the console.
AilLoader.noLogFile() for the log file.

• Set a debug level for the traces.
• Set your log file location.
Please refer to the AIL Javadoc API Reference for more details.

Warning! If the debug level for the traces is defined in the Configuration
Layer, the library core will take this level into account upon
connection to the Configuration Layer.

Adding Logs
You can add logging to your application with or without using the log4j
package. AIL does not require you to use log4j for your own system trace. If
you choose to use log4j, you can follow the recommendations in this section.
For further information, refer to Jakarta documentation at:
http://jakarta.apache.org/log4j/docs/documentation.html.

212 Agent Interaction SDK 7.6

Chapter 17: Additional Details Log Management

The following subsections discuss how you can use the log4j package to:
• Mix your own traces with the library traces.
• Generate your own traces separated from AIL logs.

Mixed Traces

You can choose to use log4j to add your own traces to the log, in order to mix
them with AIL-generated traces. For example, you can use the Root Logger
object of the org.apache.log4j package. The following code snippet uses the
Root Logger that has already been internally instantiated by the library:

// Retrieving the root Logger
LoggerRepository mLoggerRepository =

LogManager.getLoggerRepository();
Logger mRoot = mLoggerRepository.getRootLogger();
// Defining a layout
PatternLayout layout = new PatternLayout("%d{dd MM HH

:mm:ss:SSS} [%20.20t] %-5.5p %20.20c %m%n");
// Creating a FileAppender object to append the logs
// events occurring.
FileAppender mFile = new FileAppender(layout, "./myFile.log");
mFile.setThreshold(Level.DEBUG);
// Adding your FileAppender to the Root
mRoot.addAppender(mFile);
// Adding a message of level debug:
mRoot.debug(“**** My debug message! ****”);

Separated Traces

You can also use log4j to create separated logs. You just have to create your
own Logger object, as shown in the following code snippet:

// Creating the Logger
Logger mLogger = Logger.getLogger("myFile.Log");
PatternLayout layout = new PatternLayout("%d{dd MM HH

:mm:ss:SSS} [%20.20t] %-5.5p %20.20c %m%n");
// Creating a FileAppender object to append the logs
// events occurring.
FileAppender mFile = new FileAppender(layout, "./myFile.log");
mFile.setThreshold(Level.DEBUG);
// Adding the FileAppender to the Logger
mLogger.addAppender(mFile);
// Adding a message of level debug:
mLogger.debug(“**** My debug message! ****”);

Warning! All the previous code snippets are for illustration purposes only.
Code examples are not tested and not supported by Genesys.

Java—Developer’s Guide 213

Appendix

Voice Sequence Diagrams
This appendix presents sequence diagrams for voice interactions.
The chapter is divided into the following topics:

Make a Phone Call, page 213
Answer a Phone Call, page 214
Conferencing, page 215
Transferring a Phone Call, page 218
Handling a Callback Phone Call, page 220

Make a Phone Call
The first step in making a phone call is to create an interaction of type VOICE.
You do this by calling the createInteraction() method on your Agent or Place
interface with the type of interaction. As a result, your application gets an
InteractionEvent for a voice interaction in NEW status.
Make the phone call by invoking the makeCall() method on the
InteractionVoice interface. At this point, the interaction status becomes
DIALING, as specified in the corresponding InteractionEvent. When the
connection is established, during the call, the interaction is in TALKING status.
Either you initiate the hang up by calling the releaseCall() method, or the
peer has hung up. Either way, you receive an InteractionEvent event of type
IDLE.
You finish and clean up the interaction by calling the markDone() method,
which releases any reference to the interaction in the library. It also saves the
interaction in the history, if you have established a connection between the
library and the Contact Server database.
Event flow for making a voice call is shown in Figure 53.

214 Agent Interaction SDK 7.6

Appendix: Voice Sequence Diagrams Answer a Phone Call

Figure 53: Making a Call

Answer a Phone Call
You have to answer a phone call when you get an InteractionEvent for a voice
interaction in RINGING status. To answer the phone call, use the
InteractionVoice. answerCall() method. As a result of the ANSWER action, you
receive the event indicating that the interaction is in status TALKING.
The end of the interaction is the same as making a phone call: you hang up
with InteractionVoice.releaseCall() method and you finish with the
InteractionVoice.markDone() method.

AIL Client

agent:Agent phoneCall:
InteractionVoice

Genesys
Solutions

Contact

InteractionEvent NEW
InteractionEvent NEW

createInteraction
VOICE

create

makeCall()

RequestMakeCall
dial

InteractionEvent DIALING

InteractionEvent DIALING

InteractionEvent DIALING
InteractionEvent

TALKINGInteractionEvent
TALKINGInteractionEvent

TALKING

answer

Agent and contact are talking

releaseCall()

RequestReleaseCall
hang up

markDone()

InteractionEvent
IDLEInteractionEvent

IDLEInteractionEvent
IDLE

InteractionEvent
IDLEInteractionEvent

IDLE

InteractionEvent NEW

InteractionEvent NEW

InteractionEvent NEW

Java—Developer’s Guide 215

Appendix: Voice Sequence Diagrams Conferencing

The event flow for answering a call is shown in Figure 54.

Figure 54: Answering a Call

Conferencing
A conferencing scenario can be divided into three steps:
1. A Contact calls a first agent, named agent1.
2. agent1 initiates a conference with a second agent, named agent2.
3. agent1 creates the conference.
In the first step, agent1 receives a phone call. It is exactly the same scenario as
“Answer a Phone Call” on page 214:
agent1 receives an InteractionEvent event carrying an InteractionVoice
interface, named phoneCall1, with the status RINGING.
agent1 takes the call by invoking the answerCall() method.

AIL Client

agent:Agent phoneCall:
InteractionVoice

Genesys
Solutions

Contact

InteractionEvent RINGING

InteractionEvent RINGING

InteractionEvent
RINGING

answerCall()
RequestAnswerCall

InteractionEvent TALKING

InteractionEvent TALKING

InteractionEvent TALKING

Call to
contact center

Agent and contact are talking

releaseCall()

RequestReleaseCall hang up

markDone()

InteractionEvent
IDLEInteractionEvent

IDLE, releasedInteractionEvent
IDLE, released

InteractionEvent
IDLE, doneInteractionEvent

IDLE, done

216 Agent Interaction SDK 7.6

Appendix: Voice Sequence Diagrams Conferencing

In the second step, agent1, already in communication with the contact, invokes
the initiateConference() method on the InteractionVoice interface
phoneCall1 to prepare the conference with agent2.
After this call, agent1 receives an InteractionEvent event setting the
InteractionVoice phoneCall1 to the status HELD. The communication with the
contact is paused.
The Agent Interaction Layer creates then two InteractionVoice core objects:
• One for agent1, setting an interaction with agent2. This interaction follows

the scenario in “Make a Phone Call” on page 213, and is named
phoneCall2.

• The other for agent2, representing his communication first with agent1 and
then with the conference. This interaction follows the scenario in “Answer
a Phone Call” on page 214 and is named phoneCall3.

Next, agent1 receives an InteractionEvent event carrying the newly created
InteractionVoice phoneCall2 with the status DIALING. Simultaneously, agent2
receives an InteractionEvent event carrying its InteractionVoice phoneCall3
with the status RINGING. When agent2 answers the call by invoking the
answerCall() method, both agents receive an InteractionEvent event showing
that their InteractionVoice core objects have the status TALKING. They are now
in communication with each other.
In the third step, when the two agents are ready to proceed, agent1 invokes the
completeConference() method.
Next, agent1 receives an InteractionEvent event setting the status of the
interaction referred by phoneCall2 to IDLE, then this interaction is destroyed.
Finally, agent1 receives two successive InteractionEvent events:
• One resuming the interaction phoneCall1 with the contact, setting it to the

status TALKING.
• Another to notify the arrival of a third peer, agent2, on phoneCall1.
Agent2 also receives an InteractionEvent event notifying it of the arrival of a
third peer, the contact, on its InteractionVoice phoneCall3.
The conference can now take place, and for each of the agents, each interaction
is viewed as a standard phone call and must be ended accordingly.
The event flow is presented in the following two figures, Figure 55 and
Figure 56.

Java—Developer’s Guide 217

Appendix: Voice Sequence Diagrams Conferencing

Figure 55: Call Conferencing, Initiating

agent1:
Agent

phoneCall1:
InteractionVoice

Genesys
Solutions

Contact

initiateConference

InteractionEvent HELD

InteractionEvent HELD

InteractionEvent DIALING
InteractionEvent RINGING

RequestAnswerCall

InteractionEvent TALKING

Contact is placed
on hold

agent2:
Agent

phoneCall2:
InteractionVoice

phoneCall3:
InteractionVoice

AILClient

InteractionEvent DIALING
InteractionEvent DIALING

InteractionEvent RINGING
answerCall()

InteractionEvent TALKING

InteractionEvent TALKING

InteractionEvent TALKING
InteractionEvent TALKING

create

InteractionEvent HELD

RequestInitiateConference

Agent1 and contact are talking; agent1 initiates a conference with agent2

Agent1 holds the call with the contact ; Agent1 is talking with Agent 2

phoneCall3 is
agent2’s voice
interaction for the
consultation call .

phoneCall2 is the
agent1's consultation
call for contacting
agent2.

218 Agent Interaction SDK 7.6

Appendix: Voice Sequence Diagrams Transferring a Phone Call

Figure 56: Call Conferencing, Completing

Transferring a Phone Call
Transferring a phone call follows the same steps as conferencing. Of course,
all conference method calls must be replaced here by their transfer
counterparts.
The difference lies in the fact that agent1 does not resume its InteractionVoice
phoneCall1 at the end of the transfer. That is, instead of setting its first
InteractionVoice to the status TALKING after the complete call, it sets it to IDLE
and destroys it.
The event flow is presented in following two figures, Figure 57 and Figure 58.

agent1:
Agent

phoneCall1:
InteractionVoice

Genesys
Solutions

Contact

completeConference()

InteractionEvent IDLE (released)

Completes the
conference : the
consultation call is
released and marked
done.

agent2:
Agent

phoneCall2:
InteractionVoice

phoneCall3:
InteractionVoice

AILClient

InteractionEvent IDLE (released)

RequestCompleteConference

Agent1 holds the call with the contact ; Agent1 is talking with Agent2

Agent1 holds the call with the contact ; Agent1 (phoneCall2) is talking to Agent2 (phoneCall3).

InteractionEvent IDLE (done)

InteractionEvent IDLE (done)

InteractionEvent IDLE (done)

InteractionEvent IDLE (released)

InteractionEvent TALKING (retrieved)

InteractionEvent TALKING (retrieved)

InteractionEvent TALKING (retrieved)

InteractionEvent TALKING (info_changed)

InteractionEvent TALKING (info_changed)

InteractionEvent TALKING (info_changed)

Information changed
(partyAdded) for the
call with the contact :
agent2 is now a party
of phoneCall1

InteractionEvent TALKING (info_changed)

InteractionEvent TALKING (info_changed)

Information changed
(partyAdded) for the
call with agent1: the
contact is now a
party of phoneCall3

Java—Developer’s Guide 219

Appendix: Voice Sequence Diagrams Transferring a Phone Call

Figure 57: Transferring a Call, Initiating

AIL Client

agent1:
Agent

phoneCall1:
InteractionVoice

Genesys
Solutions

Contact

initiateTransfer

InteractionEvent
HELDInteractionEvent

HELD

phoneCall2:
InteractionVoice

InteractionEvent
DIALINGInteractionEvent

DIALING

agent2:Agent

InteractionEvent
DIALING

phoneCall3:
InteractionVoice

InteractionEvent RINGING

InteractionEvent RINGING

create

answerCall()

RequestAnswerCall

InteractionEvent TALKING

InteractionEvent TALKING
InteractionEvent TALKING

InteractionEvent TALKING

Agent1 holds the call with the contact ; Agent1 is talking with Agent2

phoneCall2 is the
agent1's consultation
call with agent2.

phoneCall3 is the
agent2’s consultation
call.

Contact is placed on
hold

InteractionEvent TALKING

InteractionEvent
HELD

RequestInitiateTransfer

Agent1 and contact are talking; agent1 initiates a transfer to agent2

220 Agent Interaction SDK 7.6

Appendix: Voice Sequence Diagrams Handling a Callback Phone Call

Figure 58: Transferring a Call, Completing

Handling a Callback Phone Call
Figure 59 shows the event flow for a callback record from a Callback Server in
predictive mode.

AIL Client
agent1:
Agent

phoneCall1:
InteractionVoice

Contact

completeTransfer()

InteractionEvent
IDLE, released

phoneCall2:
InteractionVoice

InteractionEvent IDLE (done)

InteractionEvent IDLE (done)

agent2:Agent

phoneCall3:
InteractionVoice

InteractionEvent INFO_CHANGED

InteractionEvent INFO_CHANGED

InteractionEvent IDLE (done)

Agent1 holds the call with the contact ; Agent1 (phoneCall2) is talking to Agent2 (phoneCall3)

InteractionEvent IDLE, released

RequestCompleteTransfer

Contact is now
one party of
phoneCall3.

Completing the
transfer releases
agent1’s calls
related to the
transfer.

Agent2 is talking to the contact .

Completing the
transfer marks
done agent1’s calls
related to the
transfer.

InteractionEvent IDLE, done

InteractionEvent
IDLE, done

InteractionEvent IDLE, done
InteractionEvent IDLE, released

InteractionEvent IDLE (released)
InteractionEvent IDLE (released)

InteractionEvent IDLE (released)

Genesys
Solutions

Java—Developer’s Guide 221

Appendix: Voice Sequence Diagrams Handling a Callback Phone Call

Figure 59: Managing a Callback Record in a Predictive Callback Campaign

mPlace:
Place

mCallbackService :
CallbackService

AIL Client Genesys
Solutions

mRecord:
CallbackRecord

Interaction:
InteractionVoice

InteractionEvent
DIALINGInteractionEvent

DIALINGInteractionEvent
DIALING

getCallbackRecord()

addCallbackRecordListener()

Processing and releasing the call

The library creates both
InteractionVoice and
CallbackRecord objects
at event reception.
CallbackRecord’s status
is OPEN

processed()
RequestCallbackRecordProcessed

CallbackRecordEvent
CLOSEDCallbackRecordEvent

CLOSED

markDone()

save

InteractionEvent
IDLEInteractionEvent

IDLEInteractionEvent
IDLE

setCallResult()

getCallbackService()

222 Agent Interaction SDK 7.6

Appendix: Voice Sequence Diagrams Handling a Callback Phone Call

Java—Developer’s Guide 223

Index

A
A4400 regular mode 92
A4400 substitute mode. 92, 98
ACD position 92
ACDPosition 92
action . 33
add listener method 31
agent login 46
Agent object 47
agent summary. 55
ailfactory

kill . 193
AilFactory interface. 45
AilFactory object 20
AilLoader object 43
algorithm

Contact Server Custom Lookup 158
Application Blocks 17
ApplicationInfo object 45
ASM . 177
auto mark done

expert 204

B
Business Attributes. 208

C
cache mechanisms. 22
callable number 93
callback

predictive 197
preview 197

Capability 94
category 170
chapter summaries

defining 12
chat

enter session 139
interaction event flow 143
interaction state 133
markDone 143
releaseCall 143

Chat Server connectivity24
client architecture 38
close outbound chain 186
CoBrowse 133, 136
collaboration

interaction type 121
invitation. 122
outgoing invitation. 121
reply. 122
state . 122

collaborative e-mail 109
commenting on this document16
conferencing 215

event flow 216
Configuration cache22
Configuration Server connection. 23
ConfServerProtocol 104
connection maintenance. 187, 191
contact

add attribute. 165
Contact 155
contact manager 155
create 164
fast management 158
information 155

contact attribute 156
create 165
default 156
metadata 157
primary value 158
value 157

contact search
filter leaf 160
filter node 161
filter tree. 159
template. 159, 163

Index

224 Agent Interaction SDK 7.6

Contact Server Custom Lookup algorithm . . 158
ContactAttributeMetadata 162
core

features 21
library . 18
object access 20

CRM . 148
CTI-Less T-Server 202
CustomAttachedData. 208

D
disconnection of a T-Server 192
disconnection of the Interaction Server . . . 192
DN

monitoring session 93
Dn . 46
DN ACD position 92
DN callable number 93
DN consolidation 91
DN extension 92
DN ID. 93
DN type. 92
DN Types. 92
DnListener 32
DNs. 26
document

conventions 13
errors, commenting on 16
version number 13

documentation 36

E
easy new call

expert 204
e-mail. . 109
email

answering event flow 118
create interaction 116
interaction workflow 115
receive. 118
replying event flow. 119
respond to 119
send . 117
sending event flow. 117

event listeners 31
event notification 31
event reason 90
events . 30
expert. . 201

auto mark done 204
easy new call 204
on call 204
preview 204

re-route 205
status request 204

Expert Contact application 202
Expert Contact configuration. 203
Expert Contact usage scenario 201
extending an application block. 54
extending application blocks41
extension 92

F
factory

kill . 193
filter leaf 160
filter node 161
filter tree 159

G
garbage collector 93
garbage-collector 52

H
handle-event method 31
History 135, 166
history manager 166
HistoryManager 166

I
inbound invitation 122
initiateConference() method 216
Instant Messaging81

send a message 82
Interaction 28
interaction attribute 166
Interaction Custom Properties 208
Interaction SDK installation directory 35
Interaction Server 27
Interaction Server disconnection. 192
Interaction Server reconnection 193
Interaction Values 208
InteractionAttributeMetaData 166, 208
InteractionChat object 139
InteractionEvent 32

event 213, 216
InteractionMailOut 117
InteractionManager 208
InteractionVoice

interface. 61
markDone() method. 213

InteractionVoiceOutbound 175
invitation 122

Index

Java—Developer’s Guide 225

isPossible 96
isSearchable 162
is-searchable 162

K
kill the factory. 52, 193
knowledge worker 201
KwService 203

L
login . 27
login an agent 46
logout. 27
logoutMultimedia() 27

M
mapping to Platform SDK 96
Media. 26, 46
method call’s result 97
modes of deployment 19
monitor53, 57
monitoring 49
multi-threading21, 52

N
network topology requirements 39
non-terminal expression 161

O
object status 33
Observer pattern 31
on call

expert 204
outbound

ASM . 177
close chain 186
Interactions 175
predictive call 183
preview 179
preview mode 180

outbound service 175
outgoing invitation 121

P
persistence 22
Person . 26
Place . 26

place . .46
Place interface31
PlaceEvent. 31
PlaceListener 31, 32, 97
Platform SDK 88, 96
possibility 95
possible actions 33
predictive

callback 197
outbound call 183

preview
callback 197
expert 204
outbound campaign 179

preview mode 180
proactive 176
PSDK Bridges

deployment 104
Publisher Thread. 32
pull mode 128
pull model 30
push model 30

Q
queue . 127

R
real-time information49
reconnection to a T-Server. 193
reconnection to Interaction Server 193
reference. 52
regular mode. 92
remove listener method 31
reply . 122
re-route

expert 205
restart all the connections 193
root category 172

S
search for primary value 160
search template 163
SearchInteractionTemplate 166
send an instant message 82
SimplePlace.java sample 43, 65
SimpleVoiceInteraction.java sample73
singleton51
SIP DN. .81
source code for examples36
SRL . 169
SRL manager 170

Index

226 Agent Interaction SDK 7.6

standard response 169
start preview mode 180
state . 33
States. 89
status . 33

collaboration 122
status request

expert 204
stop preview mode 180
substitute mode 92, 98
summary 55
switch mode 92, 98
synchronousity 21

T
terminal expression 161
TEvent 90, 97
TEvents 88
TExtensions 99, 100
transferring 218

event flow 218
Transitions 89
T-Server call flow 90
T-Server connection 23
T-Server disconnection. 192
T-Server reconnection 193
TServerProtocol 104
typographical styles 13

U
UCS 155, 166
usage scenarios 19

V
version numbering

document 13
view . 127
Voice

conferencing. 215
state event flow 63
State Model 101
transferring a phone call. 218

voice
capability 95
summary. 61

Voice Callback
usage scenario 195
using API features 197

W
Web Callback 195
wildcards. 160
workbin 109, 127
workbin type 130
workmodes. 100

	Table of Contents
	Preface
	Intended Audience
	Usage Guidelines
	Chapter Summaries
	Document Conventions
	Related Resources
	Making Comments on This Document

	About Agent Interaction (Java API)
	Library Overview
	Components
	AIL Library
	Scope of Use

	Architecture
	Interfaces to Core Objects
	Core Features
	Connectivity and Internal Features

	API Overview
	Packages
	Agents
	Interactions
	Events
	State and Possible Actions

	About the Code Examples
	Setup for Development
	Agent Interaction (Java API) Installation Directory
	Source-Code Examples
	Required Third-Party Tools
	Environment Setup
	Configuration Data

	Application Development Design
	Client Architecture
	Server Architecture
	Topology
	Introducing the Standalone Code Examples
	Introducing the Agent Server Code Example

	Application Essentials
	Use AilLoader
	Use AilFactory
	Use Agent
	Receive Events
	Get Real Time Information

	Server Applications
	Five Rules to Build an AIL Server Application
	Agent Server
	Connect to AIL
	Implement Multi-Threading
	Submit Login Requests
	Wrapping up

	Voice Interactions
	Voice Interaction Design
	Voice Interaction Data
	Voice State Event Flow

	Six Steps to an AIL Client Application
	SimplePlace
	Implement a Listener
	Connect to AIL
	Set up Button Actions
	Register Your Application
	Synchronize the Widgets
	Add Event-Handling Code
	The Importance of Timing
	Wrapping Up
	About the User Interface

	SimpleVoiceInteraction
	Implement a Listener
	Connect to AIL
	Set up Button Actions
	Register Your Application
	Synchronize the User Interface
	Add Event-Handling Code

	MultipartyVoiceInteraction
	Set up Button Actions
	Synchronize the User Interface
	Add Event-Handling Code

	Instant Messaging
	Starting an Instant Messaging Session
	Handling Instant Messages

	SIP Preview
	The SIP Preview Interaction
	Managing a SIP Preview interaction

	Switch Facilities
	Switch Design
	T-Server Connections
	Voice Model
	Voice State Model

	Switch and DN Management
	DN Consolidation
	DN Activation
	Determine Availability of CTI Features
	Calls Mapping
	Event Flow
	Single-Step Rollover to Mute Transfer

	Switch Tuning
	TExtensions
	Workmodes

	PSDK Bridges
	Guidelines
	Protocol Instances
	Message Flow
	PSDK Config Bridge
	PSDK Voice Bridge
	Managing PSDK Listeners

	Steps for Integrating PSDK Config Bridge

	E-Mail Interactions
	SimpleEmailInteraction
	Set Up Button Actions
	Add Event-Handling Code
	Synchronize the Widgets

	Handling an E-Mail Interaction
	E-Mail State
	Sending an E-Mail
	Receiving an E-Mail
	Responding to an E-Mail

	Handling Collaborative E-Mail Interactions
	Types of Collaborative E-Mail Interactions
	Collaboration Status
	Handling a Collaboration Session
	Participating in a Collaboration Session

	Handling Workflow
	Getting the Workbin Manager
	Workbin Content
	Putting Interactions in Workbins
	Pulling Interactions

	Chat Interactions
	Chat Interaction Design
	Chat State
	CoBrowse Interactions

	SimpleChatInteraction
	Set up Button Actions
	Add Event-Handling Code
	Add CoBrowse-Handling Code

	Handling a Chat Interaction
	Entering a Chat Session
	Chat Parties
	Handling Chat Events
	Handling Chat Messages
	Handling Typing
	Push URL
	Conferencing
	Terminating the Chat Session

	Open Media Interactions
	Open Media Design
	Bridging the Contact Center and the Enterprise
	Basic Capabilities
	Routing Rejected Orders to an Agent
	Working on a CRM Case

	SimpleOpenMediaInteraction
	Set up Action Buttons
	Add Event-Handling Code

	Contact
	Contact Information
	Getting Contact Information
	Fast Contact Management
	Advanced Search Feature
	Advanced Contact Management

	Contact History

	Standard Responses
	SRL Design
	Standard and Suggested Responses
	Category
	SRL Manager

	Using the SRL Manager
	Getting Categories and Standard Responses
	Managing Agent’s Favorites

	Handling Suggested Categories

	Outbound Service
	Outbound Design
	Outbound Information
	Outbound Actions
	Campaign Dialing Modes

	Steps for Writing an Outbound Application
	Preview Outbound Interactions
	Active Campaigns
	Start and Stop Preview
	Handle Regular Preview Calls
	Handle Push Preview Interactions

	Predictive Outbound Interactions
	Active Campaigns
	Handling a Predictive Outbound Interaction

	Handle Outbound Chains
	Mark Processed
	Reschedule the Record
	Close the Chain

	Routing Points
	Routing Point Design
	Routing Point Information

	Steps for Monitoring Routing Points

	Service Status and Connection
	Service Status Design
	Connection Loss
	Reconnection

	Steps for Listening to Service Status

	Voice Callback
	Callback Design
	Scenario
	Callback Information
	Callback Campaign Modes

	Steps for Writing a Callback Application

	Expert Contact
	Expert Contact Design
	Usage Scenario
	Expert Contact Components
	Expert Contact Information

	Steps for Writing an Expert Contact Application

	Additional Details
	Attached Data
	InteractionManager
	Handling

	Event-AIL Data
	Log Management
	Default AIL logs
	Adding Logs

	Voice Sequence Diagrams
	Make a Phone Call
	Answer a Phone Call
	Conferencing
	Transferring a Phone Call
	Handling a Callback Phone Call

	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

