
Media Interaction SDK 7.6

Java

Developer’s Guide

The information contained herein is proprietary and confidential and cannot be disclosed or duplicated
without the prior written consent of Genesys Telecommunications Laboratories, Inc.
Copyright © 2006–2008 Genesys Telecommunications Laboratories, Inc. All rights reserved.

About Genesys
Genesys Telecommunications Laboratories, Inc., a subsidiary of Alcatel-Lucent, is 100% focused on software for call
centers. Genesys recognizes that better interactions drive better business and build company reputations. Customer
service solutions from Genesys deliver on this promise for Global 2000 enterprises, government organizations, and
telecommunications service providers across 80 countries, directing more than 100 million customer interactions every
day. Sophisticated routing and reporting across voice, e-mail, and Web channels ensure that customers are quickly
connected to the best available resource—the first time. Genesys offers solutions for customer service, help desks,
order desks, collections, outbound telesales and service, and workforce management. Visit www.genesyslab.com for
more information.
Each product has its own documentation for online viewing at the Genesys Technical Support website or on the
Documentation Library DVD, which is available from Genesys upon request. For more information, contact your sales
representative.

Notice
Although reasonable effort is made to ensure that the information in this document is complete and accurate at the
time of release, Genesys Telecommunications Laboratories, Inc., cannot assume responsibility for any existing errors.
Changes and/or corrections to the information contained in this document may be incorporated in future versions.

Your Responsibility for Your System’s Security
You are responsible for the security of your system. Product administration to prevent unauthorized use is your
responsibility. Your system administrator should read all documents provided with this product to fully understand the
features available that reduce your risk of incurring charges for unlicensed use of Genesys products.

Trademarks
Genesys, the Genesys logo, and T-Server are registered trademarks of Genesys Telecommunications Laboratories,
Inc. All other trademarks and trade names referred to in this document are the property of other companies. The
Crystal monospace font is used by permission of Software Renovation Corporation, www.SoftwareRenovation.com.

Technical Support from VARs
If you have purchased support from a value-added reseller (VAR), please contact the VAR for technical support.

Technical Support from Genesys
If you have purchased support directly from Genesys, please contact Genesys Technical Support at the following
regional numbers:

Prior to contacting technical support, please refer to the Genesys Technical Support Guide for complete
contact information and procedures.

Ordering and Licensing Information
Complete information on ordering and licensing Genesys products can be found in the Genesys 7 Licensing Guide.

Released by
Genesys Telecommunications Laboratories, Inc. www.genesyslab.com
Document Version: 76sdk_dev_ixn_java-media_09-2008_v7.6.101.00

Region Telephone E-Mail

North and Latin America +888-369-5555 or +506-674-6767 support@genesyslab.com

Europe, Middle East, and Africa +44-(0)-1276-45-7002 support@genesyslab.co.uk

Asia Pacific +61-7-3368-6868 support@genesyslab.com.au

Japan +81-3-6361-8950 support@genesyslab.co.jp

http://www.genesyslab.com
http://www.genesyslab.com
mailto:support@genesyslab.com
mailto:support@genesyslab.co.uk
mailto:support@genesyslab.com.au
http://genesyslab.com/support/dl/retrieve/default.asp?item=B3BFC6DABE22B62AAE32A6D31E6396E3&view=item
mailto:support@genesyslab.co.jp
http://genesyslab.com/support/dl/retrieve/default.asp?item=B6C52FB62DB42BB229B02755A1D12650&view=item

Java—Developer’s Guide 3

Table of Contents
Preface ... 5

Intended Audience... 6
Usage Guidelines .. 6
Chapter Summaries... 8
Document Conventions ... 8
Related Resources.. 10
Making Comments on This Document .. 11

Chapter 1 About the Media Interaction SDK.. 13

Features Overview .. 13
Components .. 14
Scope of Use... 14

Bridging the Contact Center and the Enterprise 15
Basic Capabilities ... 15
Routing Rejected Orders to an Agent... 16
Working on a CRM Case .. 17

Architecture ... 19
Interfaces to Core Objects .. 20

Connectivity to Other Genesys Components .. 20
Configuration Layer .. 21
Interaction Server ... 21
Universal Contact Server.. 21
Local Control Agent .. 21

API Overview... 21
Packages .. 22
Events and Listeners .. 22
What’s Next .. 23

Chapter 2 About the Examples... 25

Overview of the Code Examples ... 25
Installing the Code Examples .. 26

Source-Code Examples.. 26
Using the Code Examples .. 26

Table of Contents

4 Media Interaction SDK 7.6

Introducing the Media Interaction Code Examples.................................. 27
Open Media Commons.. 28

Commons with Connection... 29
Commons with Services ... 30

Media Interaction (Java API) ... 31
MILFactory.. 31
Interaction Server ... 31
UCS .. 32
LCA... 32
ESP... 33
Bootstrapper ... 34
Stop Interactions ... 34
What’s Next... 35

Chapter 3 Simple Media Server Example... 37

Prerequisites.. 37
More Application Essentials .. 38
SimpleMediaServer ... 38

Connect to Servers ... 38
Create Independent Threads.. 39
Submit a New Open Media Interaction ... 39
Wrap Up.. 42
Runtime .. 42

Chapter 4 Simple Custom Extension Example ... 45

Prerequisites.. 45
More Application Essentials .. 46
SimpleCustomExtension ... 46

Define a Custom Extension .. 47
Preload the Custom Extension ... 48
Process an ESP Request ... 48
Send an ESP Response ... 50
Runtime .. 51

Index ... 53

Java—Developer’s Guide 5

Preface
Welcome to the Media Interaction SDK 7.6 Java Developer’s Guide. This
document introduces you to the concepts, terminology, and procedures relevant
to the Genesys Media Interaction SDK 7.6 product.
This document provides a high-level overview of Genesys Media Interaction
SDK 7.6 features and functions, together with software-architecture
information and development-planning materials.
This document is valid only for the 7.6 release(s) of this product.

Note: For versions of this document created for other releases of this product,
please visit the Genesys Technical Support website, or request the
Documentation Library DVD, which you can order by e-mail from
Genesys Order Management at orderman@genesyslab.com.

This preface provides an overview of this document, identifies the primary
audience, introduces document conventions, and lists related reference
information:

Intended Audience, page 6
Usage Guidelines, page 6
Chapter Summaries, page 8
Document Conventions, page 8
Related Resources, page 10
Making Comments on This Document, page 11

The Genesys Media Interaction SDK (Software Development Kit) is built
around the Media Interaction Layer library, which presents an API for
developing third-party media applications. The library provides connectivity
with Genesys Multimedia servers, so that your applications can create and
manage Open Media interactions.

mailto:orderman@genesyslab.com

6 Media Interaction SDK 7.6

Preface Intended Audience

Intended Audience
This guide, primarily intended for programmers developing Java-based
applications for contact center agents, assumes that you have a basic
understanding of:
• Network design and operation.
• Your own network configurations.
You should also be familiar with:
• Java programming.
• Genesys Multimedia 7.6 features.

Usage Guidelines
The Genesys developer materials outlined in this document are intended to be
used for the following purposes:
• Creation of contact-center agent desktop applications associated with

Genesys software implementations.
• Server-side integration between Genesys software and third-party

software.
• Creation of a specialized client application specific to customer needs.
The Genesys software functions available for development are clearly
documented. No undocumented functionality is to be utilized without
Genesys’s express written consent.
The following Use Conditions apply in all cases for developers employing the
Genesys developer materials outlined in this document:
1. Possession of interface documentation does not imply a right to use by a

third party. Genesys conditions for use, as outlined below or in the Genesys
Developer Program Guide, must be met.

2. This interface shall not be used unless the developer is a member in good
standing of the Genesys Interacts program or has a valid Master Software
License and Services Agreement with Genesys.

3. A developer shall not be entitled to use any licenses granted hereunder
unless the developer’s organization has met or obtained all prerequisite
licensing and software as set out by Genesys.

4. A developer shall not be entitled to use any licenses granted hereunder if
the developer’s organization is delinquent in any payments or amounts
owed to Genesys.

Java—Developer’s Guide 7

Preface Usage Guidelines

5. A developer shall not use the Genesys developer materials outlined in this
document for any general application development purposes that are not
associated with the above-mentioned intended purposes for the use of the
Genesys developer materials outlined in this document.

6. A developer shall disclose the developer materials outlined in this
document only to those employees who have a direct need to create, debug,
and/or test one or more participant-specific objects and/or software files
that access, communicate, or interoperate with the Genesys API.

7. The developed works and Genesys software running in conjunction with
one another (hereinafter referred to together as the “integrated solutions”)
should not compromise data integrity. For example, if both the Genesys
software and the integrated solutions can modify the same data, then
modifications by either product must not circumvent the other product’s
data integrity rules. In addition, the integration should not cause duplicate
copies of data to exist in both participant and Genesys databases, unless it
can be assured that data modifications propagate all copies within the time
required by typical users.

8. The integrated solutions shall not compromise data or application security,
access, or visibility restrictions that are enforced by either the Genesys
software or the developed works.

9. The integrated solutions shall conform to design and implementation
guidelines and restrictions described in the Genesys Developer Program
Guide and Genesys software documentation. For example:
a. The integration must use only published interfaces to access Genesys

data.
b. The integration shall not modify data in Genesys database tables

directly using SQL.
c. The integration shall not introduce database triggers or stored

procedures that operate on Genesys database tables.
Any schema extension to Genesys database tables must be carried out using
Genesys Developer software through documented methods and features.
The Genesys developer materials outlined in this document are not intended to
be used for the creation of any product with functionality comparable to any
Genesys products, including products similar or substantially similar to
Genesys’s current general-availability, beta, and announced products.
Any attempt to use the Genesys developer materials outlined in this document
or any Genesys Developer software contrary to this clause shall be deemed a
material breach with immediate termination of this addendum, and Genesys
shall be entitled to seek to protect its interests, including but not limited to,
preliminary and permanent injunctive relief, as well as money damages.

8 Media Interaction SDK 7.6

Preface Chapter Summaries

Chapter Summaries
In addition to this opening chapter, this document contains the following
chapters:
• Chapter 1, “About the Media Interaction SDK,” on page 13. Introduces the

Media Interaction SDK, its components, features, and scope of use.
• Chapter 2, “About the Examples,” on page 25. Introduces the code

examples that accompany this developer’s guide.
• Chapter 3, “Simple Media Server Example,” on page 37. Explains the

SimpleMediaServer.java example, a stand-alone application that connects
to Genesys servers and submits new Open Media interactions.

• Chapter 4, “Simple Custom Extension Example,” on page 45. Explains the
SimpleCustomExtension.java example used to run the simple media server
in custom mode.

Document Conventions
This document uses certain stylistic and typographical conventions—
introduced here—that serve as shorthands for particular kinds of information.

Document Version Number

A version number appears at the bottom of the inside front cover of this
document. Version numbers change as new information is added to this
document. Here is a sample version number:
76fr_ref_09-2005_v7.6.000.00

You will need this number when you are talking with Genesys Technical
Support about this product.

Type Styles

Italic

In this document, italic is used for emphasis, for documents’ titles, for
definitions of (or first references to) unfamiliar terms, and for mathematical
variables.

Examples: • Please consult the Genesys 7 Migration Guide for more information.
• A customary and usual practice is one that is widely accepted and used

within a particular industry or profession.
• Do not use this value for this option.
• The formula, x +1 = 7 where x stands for . . .

Java—Developer’s Guide 9

Preface Document Conventions

Monospace Font

A monospace font, which looks like teletype or typewriter text, is used for
all programming identifiers and GUI elements.
This convention includes the names of directories, files, folders, configuration
objects, paths, scripts, dialog boxes, options, fields, text and list boxes,
operational modes, all buttons (including radio buttons), check boxes,
commands, tabs, CTI events, and error messages; the values of options; logical
arguments and command syntax; and code samples.

Examples: • Select the Show variables on screen check box.
• Click the Summation button.
• In the Properties dialog box, enter the value for the host server in your

environment.
• In the Operand text box, enter your formula.
• Click OK to exit the Properties dialog box.
• The following table presents the complete set of error messages T-Server®

distributes in EventError events.
• If you select true for the inbound-bsns-calls option, all established

inbound calls on a local agent are considered business calls.
Monospace is also used for any text that users must manually enter during a
configuration or installation procedure, or on a command line:

Example: • Enter exit on the command line.

Screen Captures Used in This Document

Screen captures from the product GUI (graphical user interface), as used in this
document, may sometimes contain a minor spelling, capitalization, or
grammatical error. The text accompanying and explaining the screen captures
corrects such errors except when such a correction would prevent you from
installing, configuring, or successfully using the product. For example, if the
name of an option contains a usage error, the name would be presented exactly
as it appears in the product GUI; the error would not be corrected in any
accompanying text.

Square Brackets

Square brackets indicate that a particular parameter or value is optional within
a logical argument, a command, or some programming syntax. That is, the
parameter’s or value’s presence is not required to resolve the argument,
command, or block of code. The user decides whether to include this optional
information. Here is a sample:
smcp_server -host [/flags]

10 Media Interaction SDK 7.6

Preface Related Resources

Angle Brackets

Angle brackets indicate a placeholder for a value that the user must specify.
This might be a DN or port number specific to your enterprise. Here is a
sample:
smcp_server -host <confighost>

Related Resources
Consult these additional resources as necessary:
• Interaction SDK 7.6 Java Deployment Guide, which is delivered on the

Documentation Library DVD.
• Genesys Multimedia 7.6 User’s Guide, which contains step-by-step

instructions for using the Interaction Workflow Designer (IWD)
component of the Multimedia product.

• Genesys Multimedia 7.6 Deployment Guide, which outlines how to deploy
a Genesys Multimedia solution in your contact center.

• Genesys Multimedia 7.6 Universal Contact Server Manager Help
documentation, which introduces you to UCS.

• The Genesys Technical Publications Glossary, which ships on the Genesys
Documentation Library DVD and which provides a comprehensive list of
the Genesys and CTI terminology and acronyms used in this document.

• The Genesys 7 Migration Guide, also on the Genesys Documentation
Library CD, which provides a documented migration strategy from
Genesys product releases 5.1 and later to all Genesys 7.x releases. Contact
Genesys Technical Support for additional information.

• The Release Notes and Product Advisories for this product, which are
available on the Genesys Technical Support website at
http://genesyslab.com/support.

Information on supported hardware and third-party software is available on the
Genesys Technical Support website in the following documents:
• Genesys 7 Supported Operating Systems and Databases
• Genesys 7 Supported Media Interfaces
Genesys product documentation is available on the:
• Genesys Technical Support website at http://genesyslab.com/support.
• Genesys Developer website at http://devzone.genesyslab.com.
• Genesys Documentation Library DVD, which you can order by e-mail

from Genesys Order Management at orderman@genesyslab.com.

http://genesyslab.com/support
http://genesyslab.com/support/dl/retrieve/default.asp?item=B6C52FB62DB42BB229B02755A3D92054&view=item
http://genesyslab.com/support/dl/retrieve/default.asp?item=A9CB309AF4DEB8127C5640A3C32445A7&view=item
http://genesyslab.com/support
mailto:orderman@genesyslab.com
http://devzone.genesyslab.com

Java—Developer’s Guide 11

Preface Making Comments on This Document

Making Comments on This Document
If you especially like or dislike anything about this document, please feel free
to e-mail your comments to Techpubs.webadmin@genesyslab.com.
You can comment on what you regard as specific errors or omissions, and on
the accuracy, organization, subject matter, or completeness of this document.
Please limit your comments to the information in this document only and to the
way in which the information is presented. Speak to Genesys Technical
Support if you have suggestions about the product itself.
When you send us comments, you grant Genesys a nonexclusive right to use or
distribute your comments in any way it believes appropriate, without incurring
any obligation to you.

mailto:techpubs.webadmin@genesyslab.com

12 Media Interaction SDK 7.6

Preface Making Comments on This Document

Java—Developer’s Guide 13

Chapter

1 About the Media
Interaction SDK
This chapter introduces the Media Interaction SDK, its components, features,
and scope of use. In this chapter you will find the following topics:

Features Overview, page 13
Components, page 14
Scope of Use, page 14
Architecture, page 19
Connectivity to Other Genesys Components, page 20
API Overview, page 21

Features Overview
The Media Interaction SDK lets you build Java applications to manage third-
party media interactions in the Genesys Framework.
The Media Interaction SDK presents a simple Java API, including manager
interfaces for developing server applications that:
• Manage third-party media interactions submitted to the Interaction Server.
• Manage third-party media interactions in the Universal Contact Server’s

database.
• Use the ESP protocol (External Service Protocol) to handle interactions’

extensions through the Interaction Server.
• Monitor your application’s runmode from the LCA (Local Control Agent)

component’s point of view.

14 Media Interaction SDK 7.6

Chapter 1: About the Media Interaction SDK Components

Components
The Media Interaction SDK comprises the following components:
• The Open Media Commons library, written entirely in the Java language,

delivered as a set of .jar files on the product CD.
• The Media Interaction Layer (MIL) library, written entirely in the Java

language, delivered as a set of .jar files on the product CD.
• The Media Interaction SDK 7.6 Java API Reference, which is an HTML

tree in the docs/ subdirectory of the installed product directory.
• The Media Interaction SDK 7.6 Java Code Examples, a set of code

examples that exercise some important features of the API, delivered in
.zip and .tar.gz formats on the documentation CD. For details, see
“About the Examples” on page 25.

• Open Media Interaction Application Blocks for Java, available on the
product CD, include application blocks to develop a media server. For
further details, refer to the Open Media Interaction SDK 7.6 Application
Blocks Guide.

Scope of Use
Contact center agents routinely work with applications that are separate from
traditional CRM (Customer Relationship Management) or agent desktop
applications. Genesys Open Media allows you to create custom media types
that integrate this activity into the contact center workflow.
To use Open Media, you will need to define new interaction types in the
Configuration Layer. After you do this, you can use the Media Interaction SDK
to build client and server applications that manage them within the Genesys
platform. Finally, you will use the Agent Interaction SDK to allow agents to
process these interactions.
This section will provide an overview of the kinds of situations that lead
application developers to use Open Media interactions. It will then outline
some of the things you can do with Open Media using the Media Interaction
SDK. Finally, it will describe some real-world Open Media use cases in depth.

Note: For more information on the Agent Interaction SDK, see the Agent
Interaction SDK 7.6 Java Developer’s Guide. For more information on
multimedia interactions, see the Multimedia 7.6 User’s Guide and the
Multimedia 7.6 Open Media Interaction Models Reference Manual.

Java—Developer’s Guide 15

Chapter 1: About the Media Interaction SDK Scope of Use

Bridging the Contact Center and the Enterprise
There are many occasions on which contact centers could benefit from doing
work that is beyond their normal scope. Genesys Open Media makes such task
expansion a lot more productive than it would otherwise be.
For example, in the wake of a natural disaster, insurance companies tend to
receive high call volumes as people file their claims. At this point, you might
want to have claims adjusters and others available to expand the contact center
workforce.
But after most of the calls come in, the claims adjusters will have a lot of work
to do on these new claims. With Genesys Open Media, you can route calls to
adjusters when call volumes are high, and then you can route routine work
from the adjusters to the contact center when call volumes are low.
Another common scenario is for the contact center to handle faxed requests
when agents are idle. In this case, you could set up an interaction type that
includes the fax data for the agent to process. When the interaction is routed to
the agent’s desktop, the agent can process the data as appropriate and then
mark the item as done.
There are several ways you could use Open Media in these situations. In the
simplest cases, you might want to use Open Media interactions merely to route
work to an agent.

Basic Capabilities
The Media Interaction SDK’s typical usage scenarios include:
• Managing third-party media interactions:

Creating interactions of third-party media types.
Submitting a third-party interaction to Interaction Server.
Stopping the processing of third-party interactions in Interaction
Server.
Managing requests from Interaction Server through ESP (External
Service Protocol).

• Managing third-party interaction data in UCS (Universal Contact Server):
Saving third-party interaction data in UCS.
Updating third-party interaction data in UCS.
Finding third-party interaction data in UCS.

• Monitoring changes in the LCA (Local Control Agent) runmode assigned
to your application. (Runmodes are described in “LCA” on page 32.)

• Managing connections to Genesys servers, using the Open Media
Commons library. Connection services involve the following components
and protocols:

Interaction Server.
Configuration Layer.

16 Media Interaction SDK 7.6

Chapter 1: About the Media Interaction SDK Scope of Use

UCS (Universal Contact Server).
LCA (Local Control Agent).
ESP (External Service Protocol).

Routing Rejected Orders to an Agent
This example will show how you might use Genesys Open Media interactions
simply as a routing mechanism, while having an agent continue to work in an
application that is separate from his or her desktop.
Agents for a telephone company might use many applications, including an
order management application. When a customer calls in to order DSL (a form
of high-speed Internet service), an agent must enter the customer information
and submit the order. If the agent makes a mistake on the order form, the
system will reject the order and send it back to the agent for correction.
Because the order management system is not linked to the contact routing
platform, the rejected order will sit at the agent’s desktop—perhaps for
hours—until there is a lull in inbound activity that allows the agent to address
the problem.
With the addition of Genesys Open Media, the scenario is different. If the
agent makes a mistake on an order, the rejected order can be submitted to the
Genesys platform as a new activity to be queued and sent back to the agent.
Depending on the priority that you set, the agent may be taken off the phone
queue immediately and routed back to the order to make corrections. Here is
how you could use Genesys Open Media to create this kind of solution:
1. Define a new interaction type, DSLOrder, in the Configuration Layer.
2. Set up the appropriate routing for the new interaction type.
3. Use the Media Interaction SDK to write an application that can receive

information about rejected orders from the order management system, and
then submit an interaction including this information.

4. Use the Agent Interaction SDK to write agent desktop functionality that
allows the agent to mark the DSLOrder interaction as done.

When an order is rejected, the order entry system can integrate the MIL library
and submit a new interaction of type DSLOrder. Or it can send information
about the order to a separate Media Interaction application, which will create a
new interaction of type DSLOrder.
The Media Interaction application will submit the MIL interaction to the
Genesys servers for processing and routing.

Java—Developer’s Guide 17

Chapter 1: About the Media Interaction SDK Scope of Use

Figure 1: Submitting DSLOrder Interaction for Rejected Order

See “Simple Media Server Example” on page 37 for a code example that
shows how to create and submit an Open Media interaction.

Working on a CRM Case
Sometimes it is not enough to use Open Media as a routing and notification
mechanism. There are many cases where it makes more sense to write detailed
interaction-handling functionality directly into the agent desktop.
For example, you can use Open Media interactions to allow contact center
agents to handle incoming fax data for use in a Customer Relationship
Management system. This could be done in a way that is very similar to the
preceding example, but in this case, you might prefer that the inbound
interactions that you create would also carry data for the agent to process right
in his or her agent desktop application. Then, as a result of processing this data,
the agent might need to fax the customer with data that the agent has filled
in.To accomplish this, the agent might create an outbound interaction to carry
data that allows the CRM server to handle the outgoing fax.
As in the example above, you would need to define two new interaction types,
perhaps called CRMCaseIn for handling CRM inbound fax data and CRMCaseOut
for handling outgoing CRM fax data. You would also need to set up the
appropriate routing for these interactions.
Then, you would write a CRM server application that uses the Media
Interaction SDK. This application would create CRMCaseIn interactions, to
which it would attach inbound CRM fax data. In order to safeguard this
information, your application would save this interaction, then submit it to the
Genesys servers that would route it to the appropriate agent. This process is
shown in Figure 2.

Order Entry
System MIL Application Genesys

Servers Agent Desktop

Rejected Order Info

Submit
DSLOrder interaction

Route
DSLOrder interaction

18 Media Interaction SDK 7.6

Chapter 1: About the Media Interaction SDK Scope of Use

Figure 2: Handling an Inbound CRM Case

As a result of processing the CRMCaseIn interaction, the agent would create an
CRMCaseOut interaction. The parent of this interaction would be the CRMCaseIn
interaction. Your application would save the outbound CRM interaction and
submit it to Genesys servers.
To handle this outbound interaction, you would need to define an external
service in the routing strategy defined for the queue to which this interaction
would be submitted. This external service would send an ESP (External
Service Protocol) request to the CRM server, which would process it by
handling an outgoing fax. Then, your application would stop the two CRM
interactions, as shown in Figure 3.

CRM Server
integrating MIL

Genesys
ServersAgent Desktop

Save CRMCaseIn interaction

Route
CRMCaseIn interaction

Get CRM Data

Create CRMCaseIn
interaction,
subtype Inbound

Attach CRM data
to CRMCaseIn
interaction

Submit CRMCaseIn interaction

Java—Developer’s Guide 19

Chapter 1: About the Media Interaction SDK Architecture

Figure 3: Handling an Outbound CRM Case

See “Simple Custom Extension Example” on page 45 for an example that
shows how to manage an ESP request with MIL.

Architecture
The Media Interaction SDK is part of the 7.6 Open Media Interaction SDKs.
Accordingly, it works with the Open Media Commons library to manage
connections to the Genesys Framework and Genesys servers, as shown in
Figure 4.

CRM Server
integrating MIL

Genesys
ServersAgent Desktop

Route
CRMCaseIn interaction

Process CRMCaseIn

Create CRMCaseOut
interaction

Attach CRM data
to CRMCaseOut

Submit CRMCaseOut

Send ESP Request

Handle outgoing
CRM data

Stop CRMCaseIn and CRMCaseOut

Save CRMCaseOut

20 Media Interaction SDK 7.6

Chapter 1: About the Media Interaction SDK Connectivity to Other Genesys Components

Figure 4: MIL Architectural Overview

Media Interaction (Java API) exposes objects—such as MILInteraction,
MILLCAManager, and MILUCSManager—as interfaces that provide access to the
information and features available through the connected services.
The MIL library core is responsible for maintaining all TCP/IP connections to
servers, for maintaining the context, and for consolidating the data.

Interfaces to Core Objects
You do not access core objects of the Media Interaction SDK library directly.
Rather, you get interfaces on them using the MILFactory or using another MIL
interface.
Your application uses the MILFactory interface to initialize and access the
internal core factory object. The MILFactory object is a singleton. Because of
its singleton design, only one instance of the core factory object exists at
runtime. All MILFactory interfaces refer to this same object.

Connectivity to Other Genesys
Components

Connections to Genesys servers are maintained by the library core. There is a
mechanism through which the Media Interaction SDK user can be notified of
servers’ statuses—namely, of the loss of a connection.

Ixn Server

Configuration
Layer

Universal Contact
Server

Genesys Framework

Custom Media
Server

MIL
Routing

Genesys Servers

Local Control
Agent

Java—Developer’s Guide 21

Chapter 1: About the Media Interaction SDK API Overview

The MIL library core is designed to work in a single-tenant environment. See
the Interaction SDK 7.6 Java Deployment Guide for details.
Performance of a single application built around Media Interaction (Java API)
is satisfactory for a relatively large number of clients. However, that number
will vary, depending mainly on network (interaction) activity and on platform
features.
For example, as a guideline: When the number of simultaneous clients exceeds
200, check to verify that performance is satisfactory. To improve overall
performance for your site, you may deploy multiple-server applications.

Configuration Layer
The Genesys Configuration Layer stores configuration information. To run a
Media Interaction application, you must define its application parameters in
the Configuration Layer. See the Interaction SDK 7.6 Java Deployment Guide
for details.

Interaction Server
Interaction Server manages interactions and queues. The MIL library core
communicates with Interaction Server to manage Open Media interactions in
queues.
Additionally, Interaction Server can submit requests to the application
integrating the library through External Service Protocol.

Universal Contact Server
Universal Contact Server (UCS) manages contact-related information. It uses
the UCS database to store contact data (such as name, telephone number, and
so on), and interactions.

Local Control Agent
Local Control Agent (LCA) is a Genesys component for managing the runtime
status of Genesys applications. It enables you to build an application that has
different runmodes, and to provide facilities to deal with these runmodes.
For further details, see “LCA” on page 32, which gives examples of a pair of
modes.

API Overview
The API presents a common programmatic interface to manage your own
interactions’ life cycle in the Genesys environment, including data creation and

22 Media Interaction SDK 7.6

Chapter 1: About the Media Interaction SDK API Overview

storage in the UCS database. It also provides high flexibility and interactivity
with routing strategies, by managing requests and responses to Interaction
Server through External Service Protocol (ESP).
Your application design is largely a matter of managing data for interactions
that you create, and communicating with Genesys servers using the MIL
manager interfaces. MIL also provides packages to monitor services that
handle connections to servers. You do this by implementing event listeners on
objects. This section provides you with high-level information about the API’s
features.

Packages
The Media Interaction SDK 7.6 Java API Reference (whose home page is
index.html in the installation directory’s docs/ subdirectory) shows that the
API comprises the following packages:
• com.genesyslab.omsdk.commons—Exposes the Open Media Commons

classes for connecting servers, accessing connection services, and getting
application information.

• com.genesyslab.omsdk.commons.event—Exposes classes and interfaces
related to event notification in connections.

• com.genesyslab.omsdk.commons.exception—Exposes exceptions thrown by
Open Media Commons API methods.

• com.genesyslab.omsdk.mil—Exposes the main MIL API classes.
• com.genesyslab.omsdk.mil.event—Exposes classes and interfaces related

to event notification in MIL.
• com.genesyslab.omsdk.mil.exception—Exposes exceptions specific to

MIL API methods.

Events and Listeners
The Media Interaction Layer and Open Media Commons library cores provide
the push model through the Observer pattern. For instance, objects such as
OMSDKConnector and MILFactory implement the pattern.
The following sections gives you further details about the Observer pattern and
the event-thread implementation that Genesys recommends for MIL.

Event Push Model

The mechanism is that of sending an event on an object to a listener. This
permits each object to implement its own set of listeners and methods.
Generally, a listener declares only one method, a handle*Event() method,
which takes an event interface as an inbound parameter. The inbound event
interface is highly dependent on the original interface for which it is intended.

Java—Developer’s Guide 23

Chapter 1: About the Media Interaction SDK API Overview

Threads and Listeners

Commons service events are time-ordered and should be published in listeners
as soon as they occur, to ensure workflow and information consistency. Events
occurring for a service cannot block events of another service.
If you want to perform an extended treatment, or a treatment making calls to
MIL methods, be sure that your application implements such code in a separate
thread, as illustrated in the following code snippet:

// Avoid:
public void handleXXXEvent(XXXEvent myEvent){

///...
// my treatment
///...

}

// Prefer:
public void handleXXXEvent(XXXEvent myEvent){

java.lang.Runnable treatEvent = new java.lang.Runnable() {
public void run() {

//...
// my treatment
///...

}
}
java.lang.Thread doTreatment = new java.lang.Thread(treatEvent);
doTreatment.start();

}

The above code snippet shows one example of thread implementation. You
should choose the thread implementation that best fits your application
requirements.

What’s Next
The next chapter goes into further details about the examples provided with
this SDK. It provides installation instructions and gives a basic explanation of
the supported features.

24 Media Interaction SDK 7.6

Chapter 1: About the Media Interaction SDK API Overview

Java—Developer’s Guide 25

Chapter

2 About the Examples
This chapter introduces the code examples that accompany this developer’s
guide. It presents essential design considerations, and outlines some initial
tasks that an application performs in using Media Interaction (Java API). The
chapter contains the following sections:

Overview of the Code Examples, page 25
Installing the Code Examples, page 26
Introducing the Media Interaction Code Examples, page 27
Open Media Commons, page 28
Media Interaction (Java API), page 31

Overview of the Code Examples
All examples are Java applications that integrate a specific set of features
provided with MIL.
• OpenMediaSDKData—reads the OpenMediaSDK.properties file containing

connection data.
• SimpleConnector—establishes the connections to servers, based on

OpenMediaSDKData contents. This example illustrates how to connect, using
the Open Media Commons library.

• SimpleMediaServer—parses a source directory, and for each file, submits
an interaction (containing the file) as attached data to Interaction Server.

• StartMedia—launches the SimpleMediaServer application.

26 Media Interaction SDK 7.6

Chapter 2: About the Examples Installing the Code Examples

Installing the Code Examples
In order to develop applications with Media Interaction (Java API), you will
need a compiler, such as the one delivered in the JAVA 2 Standard Edition
SDK. It must conform to the 1.4.2 or 1.5 release.
In this guide, the JDK 1.4.2 from Sun Microsystems was used to compile and
run the code examples.
Before you install and use the examples, install Media Interaction SDK
Library. Refer to the Interaction SDK 7.6 Java Deployment Guide for details.
Then, set the following environment variables:
• Specify all Media Interaction SDK .jar files in the CLASSPATH environment

variable.
• Specify the location of the Java Runtime Environment in the JAVA_HOME

environment variable.

Source-Code Examples
On the Genesys Documentation CD, you will find the example source-code
files. When you expand the sdk_exmpl_ixn_java-media archive file containing
the code examples, you will find the following directory structure:
• The top-level directory contains the following files:

README.html provides instructions for compiling and running the
examples.
compile.sh and compile.bat are shell scripts (respectively for UNIX
and Windows) that, with a little editing, you can use to compile the
examples. They take a single argument, which is the name of the
example you want to compile (without the .java extension).
go.sh and go.bat are shell scripts (respectively for UNIX and
Windows) that, with a little editing, you can use to run the examples.
They take no arguments.
An OpenMediaSDK.properties file (used by the OpenMediaSdkData class
in OpenMediaSdkData.java).

• The classes/ directory is where the scripts store or access compiled
classes.

• Source files are stored in the media/sdk/java/examples/ directory.
• There is a doc/ directory containing Javadoc comments for each of the

examples.

Using the Code Examples
The examples are designed to run with the Genesys Configuration Layer,
Interaction Server, and Universal Contact Server.

Java—Developer’s Guide 27

Chapter 2: About the Examples Introducing the Media Interaction Code Examples

To run successfully, the examples provided for this document need valid
configuration data. This includes connections to servers, and such
configuration objects as business attributes for open media interactions
(interaction type, subtype, and so on).
For configuration details, see the Interaction SDK 7.6 Java Deployment Guide.

Introducing the Media Interaction Code
Examples

The code examples were designed to isolate API-related code from
presentation-related code as much as possible. This design should make it
easier for you to learn the Media Interaction SDK’s functionality.
In order to isolate the API code, separate classes have been set up to read
properties information, as shown in Figure 5 on page 28. As you are learning
the API functionality, you can ignore the OpenMediaData class.
The examples include a single class that connects your application to the
servers. This class is called SimpleConnector and will be explained in the next
section.
The examples also include the SimpleMediaServer class, which is explained in
Chapter 3, “Simple Media Server Example,” on page 37. This class
implements a simple media server that demonstrates the submission of new
open media interactions.
Another important class is the SimpleCustomExtension class, which manages
ESP requests. This class is discussed in Chapter 4, “Simple Custom Extension
Example,” on page 45.

28 Media Interaction SDK 7.6

Chapter 2: About the Examples Open Media Commons

Figure 5: Architectural Overview of the Media Interaction Examples

If you have comments on these examples, please contact Genesys, as described
in “Making Comments on This Document” on page 11.

Open Media Commons
The Open Media Commons library includes all material to instantiate
connections to the Genesys servers. This section discusses the Open Media
Commons library’s contents, including API connection features that are
essential for every application.
This discussion refers to the SimpleConnector.java example in the
sdk_exmpl_ixn_java-media/media/sdk/java/samples/ directory. This example
is not a stand-alone application: the SimpleMediaServer class uses it to handle
all connection-related tasks.
Before running the examples, be sure to edit the OpenMediaSDK.properties file
to specify the actual data in your Configuration Layer (host, port, application
name, and so on.) You will also need to compile OpenMediaSDKData.java and
SimpleConnector.java, in addition to compiling SimpleMediaServer.java.
SimpleConnector.java is a very simple class that shows how to initialize
connections using the OMSDKConnector interface.
The remainder of this section focuses mostly on classes and interfaces of the
com.genesyslab.omsdk.commons.* packages.

OpenMediaSDKDataSimpleConnector

SimpleMediaServer

1..1

1..1

StartMedia

Starts the server.

SimpleCustomExtension

StartCustomMedia

0..1

1..1
Starts the server
in custom mode.

Java—Developer’s Guide 29

Chapter 2: About the Examples Open Media Commons

Commons with Connection
Every MIL application must use the OMSDKConnector class to initialize the Open
Media Commons library, passing correct configuration data arguments.
To make connections possible and start the Open Media Common library, your
application will need to do two basic things:
• Set initialization parameters.
• Initialize the library.
To set initialization parameters, you need to create and fill in an
InitializationParameters instance. Before that, you must set or obtain the
following minimum configuration data:
• Configuration layer host name.
• Configuration layer port.
• Reconnection period.
• Maximum number of reconnection attempts.
In the SimpleConnector example, getting this information is a task passed on to
the OpenMediaSdkData class. All the following code snippets are from the
SimpleConnector constructor:

//Getting parameters for connecting Configuration Layer
OpenMediaSdkData data = new OpenMediaSdkData();

//Creating the required InitializationParameters
InitializationParameters ip = new InitializationParameters(

data.getConfigServerPrimaryHost(),
data.getConfigServerPrimaryPort(),
data.getConfigServerBackupHost(),
data.getConfigServerBackupPort(),
data.getApplicationName(),
data.getReconnectionPeriod(),
data.getReconnectionAttempts());

Then, to properly fill in this object, you must specify the correct list of services
that your application will use. Therefore, you get an InitializationServices
instance by calling the static MILFactory.getInitializationServices()
method. The returned object contains all the services you need, and you can
add it to your InitializationParameters object, as shown here:

ip.addInitializationServices(MILFactory.getInitializationServices());
OMSDKConnector.initialize(ip);

Once you have initialized the Open Media Commons library through the
OMSDKConnector interface, you can get a reference to this component to take

30 Media Interaction SDK 7.6

Chapter 2: About the Examples Open Media Commons

advantage of its features, and you are ready to proceed to the initialization of
the MIL library.

connector = OMSDKConnector.getInstance();
System.out.println("Open Media SDK Connector

initialized successfully.");

Commons with Services
Connections are represented as services available through the OMSDKConnector
interface. When connecting, your application uses service features to monitor
connections’ states, and to take into account possible disconnections.

Types of Services

Service features are available for several types of services—see ServiceType
for further details:
• CONFIGURATION—Connection to the Configuration Layer. This connection

lets your application access configuration information.
• INTERACTION_SERVER—Connection to Interaction Server. This connection

lets your application manage open media interactions.
• UCS—Connection to Universal Contact Server. This connection lets your

application manage interactions in the UCS database.
• LCA—Connection to Local Control Agent. This connection lets your

application update its status depending on LCA events.
• ESP—Connection to Interaction Server using ESP (External Service

Protocol). This connection lets your application manage requests from
Interaction Server.

Service Interfaces

The OMSDKConnector interface is the entry point to service features:
• It accesses each ServiceInfo instance that associates a ServiceStatus with

a ServiceType.
• It lets your application associate a ServiceListener listener with a service

type, in order to track status changes, which are propagated in
ServiceEvent events.

For further details about interfaces, see the Media Interaction SDK 7.6 Java
API Reference.

Java—Developer’s Guide 31

Chapter 2: About the Examples Media Interaction (Java API)

Media Interaction (Java API)
The Media Interaction Java (API) includes all material to manage open media
interactions. This section discusses the main features available through the
API, including MIL initialization needed for every application.
All interfaces and atomic methods provided with MIL for handling interactions
allow you to build your own interaction workflow and manage interaction-
related information (status, attached data, and so on).
As a consequence, when developing your applications, pay attention to
interaction data synchronization through servers, such as Interaction Server
and UCS.
This section focuses on classes and interfaces of the
com.genesyslab.omsdk.mil.* packages.

MILFactory
The MILFactory is the entry point to the Media Interaction Layer API. You
need this interface to initialize the library, then access other MIL interfaces.
The discussion refers to the SimpleMediaServer.java example in the
71_OpenMedia/media/sdk/java/examples/ directory.
Before initializing the MIL library, you must enable connections to servers
with the OMSDKConnector class. See “Commons with Connection” on page 29
for further details.
Then, initialization is straightforward, as shown in this code snippet:

MILFactory.initialize(new MILInitializationParameters(null));

Then, call the MILFactory.getMILFactory() method to access MIL
managers—for instance, MILInteractionManager to perform Interaction
Server’s actions, MILUCSManager to perform UCS actions, and so on.

Interaction Server
MIL provides several interfaces to manage your open media interactions
through Interaction Server:
• MILInteraction—represents an open media interaction.
• MILInteractionManager—accesses and manages MILInteraction objects

handled by Interaction Server.
Use the MILInteraction interface to set your interaction parameters and data.
Mandatory parameters for submitting an MILInteraction are passed when
calling the MILInteractionManager.createInteraction() method.

32 Media Interaction SDK 7.6

Chapter 2: About the Examples Media Interaction (Java API)

The MILInteractionManager interface provides synchronous and asynchronous
methods to perform requests on interactions handled by Interaction Server:
• Submit an interaction with its interaction parameters.
• Stop processing interactions.
• Change submitted interactions’ parameters.

Note: You cannot use MIL to manage Genesys multimedia interactions, that
is, chat and email interactions.

For further details about these interfaces, see the Media Interaction SDK 7.6
Java API Reference.
The SimpleMediaServer example demonstrates the use of these interfaces. See
Chapter 3, “Simple Media Server Example,” on page 37.

UCS
MIL provides UCS features that enable your application to:
• Save open media interactions before or after their submission.
• Get or search for open media interactions saved in the UCS database.
• Stop processing or delete open media interactions saved in the UCS

database.
These features are available through the MILUCSManager interface. When saving
a MILInteraction object, you should pay attention to its
MILUCSInteractionParameters.
Depending on options set in UCS, if you set some parameters with UCS keys,
UCS can add a contact ID to the interaction or UCS can create a new contact.
These keys are the following: LastName, FirstName, PhoneNumber, EmailAddress.
For logical reasons, some parameters are set only once. An example is
CanBeParent, which specifies whether or not the interaction can be a parent
interaction of other interactions saved in UCS. For further details about these
interfaces, see the Media Interaction SDK 7.6 Java API Reference.
Genesys recommends that when your application modifies open media
interactions’ data through Interaction Server, your application should save
these modifications in the UCS database.

LCA
Local Control Agent (LCA) is a daemon component that monitors, starts, and
stops Genesys server applications as well as third-party server applications that
you have configured in the Genesys configuration environment.
If the use-lca option defined in the Configuration Layer is true for your
application, you can get an MILLCAManager interface able to communicate with
LCA.

Java—Developer’s Guide 33

Chapter 2: About the Examples Media Interaction (Java API)

LCA sends a MILLCAEvent propagating your application’s runmode in the
Genesys environment. The predefined MIL LCA runmodes are enumerated
types of the MILLCARunMode class.
The LCA feature enables your application to work in different runmodes and
update its state within LCA events. Depending on your application’s
architecture, you can choose to implement one or several of these modes, so
that your application can easily integrate into your Genesys environment.
For example, you can implement a MIL server application running in two
modes, PRIMARY and BACKUP, so that you can run two application instances
concurrently.
Due to a Management Layer limitation, LCA does not notify applications of
type Third Party Server— including MIL applications— about runmode
changes at runtime. If a primary fail-over occurs, your application receives
LCA events for EXIT and PRIMARY/BACKUP switch-over, but MIL runmode does
not change.
For further details about implementing listeners and using the MILLCAManager,
see the Media Interaction SDK 7.6 Java API Reference.

ESP
External Service Protocol (ESP) is a Genesys protocol that MIL can use to
communicate with Interaction Server. Its purpose is to let Interaction Server
send requests to your application depending on external services defined in
your routing strategies.
Refer to your Multimedia 7.6 and Universal Routing 7.6 documentation for
details about implementing external services.
To take advantage of the ESP feature, define an extension package and
extension classes that inherit the MILESPExtension class, as shown in this code
snippet:

package com.genesyslab.examples.mil.extensions;
public class ServiceName implements MILESPExtension
{

public ServiceName(){
}
public void initialize(){

//Implement initialization
//...

}
public void shutdown(){

//Implement release
//...

}
//Name this method as you wish

34 Media Interaction SDK 7.6

Chapter 2: About the Examples Media Interaction (Java API)

//MILESPRequest parameter is mandatory
public void methodName(MILESPRequest request){

//Managing the request
//...

}
}

If you define an external service
com.genesyslab.examples.mil.extensions.ServiceName in your routing
strategies, Interaction Server will be able to make calls to
ServiceName.methodName(), passing data in MILESPRequest objects:
• Request parameters—key-value pairs specified in the external service.
• User data—properties (also called attached data) of the interaction

involved with the request.
MIL also includes MILESPResponse interfaces that let your application provide
request results to Interaction Server in a map added to interaction properties.
For further details, see the Media Interaction SDK 7.6 Java API Reference.

Bootstrapper
MILBootstrapper is a simple MIL server application that connects, then exits
when its LCA runmode changes to MILLCARunMode.EXIT. The
StartMediaServer.cmd command file delivered with MIL enables you to launch
MILBoostrapper and make a connection to the Genesys environment.
You can use this class as a container for a first MIL application. For further
details about this interface, see the Media Interaction SDK 7.6 Java API
Reference.

Stop Interactions
All interfaces and atomic methods provided with MIL for handling interactions
allow you to build your own interaction workflow.
Your application can terminate interactions when they reach the end of your
workflow by calling the MILInteractionManager.stopProcessing() method.
To save in the UCS database those MIL interactions that need to be archived
upon termination, synchronize the interaction status in UCS by calling the
MILUCSManager.stopProcessing() method.
To avoid de-synchronization in case that both or one of the corresponding
requests fails, your application design should define a strategy to manage the
sequence of calls to the MILInteractionManager.stopProcessing() and
MILUCSManager.stopProcessing() methods. These methods make calls to two
distinct servers, so their results do not collid.
For instance, the following scenario updates the interaction status in UCS with
the results of the requests sent to the Interaction Server. First, it modifies the

Java—Developer’s Guide 35

Chapter 2: About the Examples Media Interaction (Java API)

interaction status in UCS, then it tries to stop the interaction in the Interaction
Server. If the request to the Interaction Server fails, the code snippet again
modifies the interaction status in UCS.

// Creating a new inbound interaction
MILInteraction milInteraction =
isManager.createInteraction("Inbound",
"InboundNew","thirdPartyMedia");
//...
//change the interaction status in UCS
milUCSManager.stopProcessing(milInteraction.getId(), “Terminated”);
//...
try
{

MILInteractionManager.stopProcessing();
}
catch(RequestFailedException e)
{

//Test exception
milUCSParam.setstatus(MILUCSInteractionStatus.UNKNOWN);
MILUCSManager.saveInteraction(milInteraction);

}

What’s Next
The next chapter goes into further details about the SimpleMediaServer
example provided with this SDK. It explains how to use MIL to implement a
simple server that creates open media interactions.

36 Media Interaction SDK 7.6

Chapter 2: About the Examples Media Interaction (Java API)

Java—Developer’s Guide 37

Chapter

3 Simple Media Server
Example
This chapter explains the SimpleMediaServer.java example, a stand-alone
application that connects to Genesys servers and submits new Open Media
interactions.
This chapter includes the following sections:

Prerequisites, page 37
More Application Essentials, page 38
SimpleMediaServer, page 38

Before you read the “Simple Media Server” section, Genesys recommends that
you read the concepts and techniques discussed in the sections “Open Media
Commons” on page 28 and “Media Interaction (Java API)” on page 31.

Prerequisites
To follow the discussion in this chapter, you will need the Media Interaction
SDK 7.6 API Reference (which is located in the doc/ subdirectory of your
Media Interaction SDK installation directory) and the source code for the
SimpleConnector.java, startMedia.java, OpenMediaSDKData.java, and
SimpleMediaServer.java examples. See Chapter 2 for more information about
how to use the examples.

38 Media Interaction SDK 7.6

Chapter 3: Simple Media Server Example More Application Essentials

More Application Essentials
Now that you have been introduced to the Media Interaction Layer, it is time to
outline the steps you will need to make a very basic media server work. There
are three basic things this example does:
• Connect to Servers. This example uses the SimpleConnector class to

connect to Genesys servers, as explained earlier and shown in this
constructor:

SimpleConnector connector = new SimpleConnector();

• Create Independent Threads. This example uses synchronous methods
of the MIL interface. Because it creates several interactions
simultaneously, separate threads are in charge of these interactions’
management and these threads make use of MIL managers.

• Submit a new Open Media Interaction. This example demonstrates how
to use MIL managers and main interfaces to create, attach data to, save,
and submit a new Open Media interaction.

The examples have been designed to make these steps stand out so that you
can quickly learn to write your own real-world applications. The following
sections explore how they are implemented in the SimpleMediaServer example.

SimpleMediaServer
The SimpleMediaServer example provides a stand-alone application that
creates and submits new Open Media interactions, each of which contains a
file in its attached data.
This simple server periodically parses a source directory. For each file found in
this directory, the server creates a dedicated thread that submits a new
Open Media interaction to Interaction Server. The file attached to this
interaction is removed from the directory.
This section focuses on the steps to complete the submission of a new Open
Media interaction.
Here is how SimpleMediaServer carries out the three basic steps in writing an
MIL application.

Connect to Servers
As explained earlier, the example uses the SimpleConnector class to establish
the all-important connection with the Genesys servers and to initialize the
OMSDKConnector. For more information on how this is done, you can refer to

Java—Developer’s Guide 39

Chapter 3: Simple Media Server Example SimpleMediaServer

“Open Media Commons” on page 28. For the purposes of this example, the
following code snippet shows all you need to do:

SimpleConnector connector = new SimpleConnector();

Create Independent Threads
In the run() method of the main thread, SimpleMediaServer parses the directory
containing the inputs and process the file list by creating a thread for each file.

public void run()
{

int i= 0;
while(i<1)
{

getSourceFiles();
processFileList();
try {

Thread.sleep(1000);
} catch (InterruptedException e) {

e.printStackTrace();
stop();

}
}

}
//...
public synchronized void processFileList()
{

for(int i=0; i<filesToSend.length; i++)
{

//creates a thread for each file to send
System.out.println(filesToSend[i].getName());
SubmitThread p = new SubmitThread(filesToSend[i]);
p.start();

}
}

Submit a New Open Media Interaction
This section shows how the server application manages an interaction
submission. This task is handled in the SubmitThread class. This separate
thread makes calls to the main MIL managers in its run() method.
It carries out the following steps:
• Read the file to be attached to a new interaction.
• Create a new Open Media interaction and set its properties.
• Attach the file to the created interaction
• Save the interaction in UCS (Universal Contact Server.)

40 Media Interaction SDK 7.6

Chapter 3: Simple Media Server Example SimpleMediaServer

• Submit the interaction to Interaction Server.
If any of these steps fails, an exception is thrown and the thread stops.

Reading the Input File

In this example, the input files’ type has no importance, and the example server
will read any file of a size up to 50 KB as a byte[] array.

FileInputStream fileInputStream = new FileInputStream(fileToSend);
byte[] b = new byte[51200];
System.out.println(createTimeStamp()+

"Processing "+fileToSend.getName()+
" - Read:"+fileInputStream.read(b));

fileInputStream.close();

Before creating the interaction, the thread saves the file in the savePath
directory and removes the file from the sourcePath directory,

// Saving the file
// If the interaction submission fails,
// the saved file is not deleted
File saveFile =

File.createTempFile(fileToSend.getName(), ".sav",savePath);
FileOutputStream fileOutputStream = new FileOutputStream(saveFile);
fileOutputStream.write(b);
fileOutputStream.close();

//Deleting the original file, so that it is submitted once only
System.out.println(createTimeStamp()

+fileToSend.getName()+" Deleting.");
if(! fileToSend.delete())

System.out.println(createTimeStamp()+" Deletion aborted.");

This way, if any step involving MIL interfaces fails, the source file is preserved
and the media server does not keep on processing the same file of the source
directory.

Create a New Open Media Interaction

For the creation of each interaction, constructor parameters are mandatory. All
these parameters must be available through the Configuration Layer, or else
the interaction’s submission will fail.

//Creating the interaction
MILInteraction myInteraction =

ixnManager.createInteraction(interactionType,interactionSubtype,mediaType);

Java—Developer’s Guide 41

Chapter 3: Simple Media Server Example SimpleMediaServer

Now it is time to set additional properties that provide further details about this
interaction. Here, the thread assigns a date, a queue, and an ID to the
interaction. The provided ID must be unique, otherwise Interaction Server will
throw an exception and the submission will fail. In this example, the
incrementID() method is synchronous and prevents threads from creating
identical IDs.

//Setting Interaction properties
myInteraction.setReceivedAt(new GregorianCalendar().getTime());
String ID = IDRoot+incrementID();
myInteraction.setID(ID);
myInteraction.setQueueName(queueName);

Attach the File and Save the New Interaction

To attach the file to the created interaction, the thread adds it in the interaction
parameters. There are two types of interaction parameters:
• MILUCSInteractionParameters—Parameters for UCS. When saving your

interaction in UCS, these parameters are also saved.
• MILISInteractionParameters—Parameters for Interaction Server. When

submitting the interaction to Interaction Server, these parameters are also
submitted.

This thread adds the file to send to both UCS and IS (Interaction Server)
interaction parameters, so that the file is saved and sent with the interaction.
UCS and IS interaction parameters are independant. You can set IS interaction
parameters after having saved the interaction in UCS, as shown in this code
snippet:

//Attaching the file to UCS user data
MILUCSInteractionParameters ixnUCSparam = myInteraction.getUCSParameters();
ixnUCSparam.setProperty("FileName", fileToSend.getName());
ixnUCSparam.setProperty("FileBody", b);
ixnUCSparam.setProperty("Subject", "MIL interaction from Simple Media Server");
ixnUCSparam.setStatus(MILUCSInteractionStatus.IN_PROCESS);

//Printing object content
//...

//Saving the interaction
ucsManager.saveInteraction(myInteraction);

MILISInteractionParameters ixnISParam = myInteraction.getISParameters();

//Attaching the file to IS user data
ixnISParam.setProperty("FileName", fileToSend.getName());
ixnISParam.setProperty("FileBody", b);
ixnISParam.setProperty("Subject", "MIL interaction from Simple Media Server");

42 Media Interaction SDK 7.6

Chapter 3: Simple Media Server Example SimpleMediaServer

Submit the New Interaction

Submitting the interaction to Interaction Server is the easiest step. It requires a
single call to the MILInteractionManager.submit() method. This method is
synchronous, and does not return until the interaction submission succeeds or
fails.

//Submitting the interaction
ixnManager.submit(myInteraction);

Note: The MILInteractionManager also provides asynchronous methods,
including methods for interaction submission. See the Media
Interaction SDK 7.6 Java API Reference for further details.

Wrap Up
If you can master the preceding steps, you will have the foundation for writing
your own MIL servers. However, there is also some code in the
SimpleMediaServer constructor that you might be curious about. In order to
make it easier to understand this example, here is a brief explanation of how
the SimpleMediaServer constructor performs the setup tasks.
The constructor parameters define data for interaction creation. The following
parameters should all be defined in the Configuration Layer: queue name,
media type, interaction type, and interaction subtype. Refer to the Interaction
SDK 7.6 Java Deployment Guide for further details.
After calling its superconstructor (handling SimpleConnector),
SimpleMediaServer initializes the MIL factory, and get references on main
managers required to handle interaction creation, as shown here:

try {
MILFactory.initialize(new MILInitializationParameters(null));

//Getting Managers
ixnManager = MILFactory.getMILFactory().getInteractionManager();
ucsManager = MILFactory.getMILFactory().getUCSManager();

catch (MILInitializationException e) {
e.printStackTrace();
stop();

}

Runtime
Now that you understand the basics of the SimpleMediaServer application, you
can start running it in your environment.

Java—Developer’s Guide 43

Chapter 3: Simple Media Server Example SimpleMediaServer

To do so, compile and run the StartMedia.java example with appropriate
arguments (which are described in the examples’ Javadoc.)
Once SimpleMediaServer is started, each time you copy files from the source
directory, the server removes them, after having sent them to Interaction Server
in an Open Media interaction.

44 Media Interaction SDK 7.6

Chapter 3: Simple Media Server Example SimpleMediaServer

Java—Developer’s Guide 45

Chapter

4 Simple Custom Extension
Example
This chapter explains how the SimpleMediaServer example makes use of the
SimpleCustomExtension class to manage ESP (External Service Protocol)
requests. The simple media server demonstrated in this example connects to
Genesys servers and submits new Open Media interactions. When these
interactions go through a strategy that includes an external service, Universal
Routing Server (URS) sends an ESP request, referring to the simple custom
extension, through Interaction Server.
This chapter includes the following sections:

Prerequisites, page 45
More Application Essentials, page 46
SimpleCustomExtension, page 46

Before you read the “Simple Custom Extension” section, Genesys
recommends that you read the concepts and techniques discussed in the
sections “Open Media Commons” on page 28, “Media Interaction (Java API)”
on page 31, and “Simple Media Server Example” on page 37.

Prerequisites
To follow the discussion in this chapter, you will need:
• The Media Interaction SDK 7.6 Java API Reference (which is located in

the doc/ subdirectory of your Media Interaction SDK installation
directory)

• The source code for the SimpleConnector.java, startCustomMedia.java,
OpenMediaSDKData.java, SimpleMediaServer.java, and
SimpleCustomExtension.java examples.

See Chapter 2 for more information about how to use the examples.

46 Media Interaction SDK 7.6

Chapter 4: Simple Custom Extension Example More Application Essentials

Before you start with this example, you must define an ESP strategy in the
Interaction Routing Designer and create an External Service. In the External
Service Property text box, specify:
• The fully qualified name of the custom extension for the service name:

media.sdk.java.examples.SimpleCustomExtension

• The method to call during script execution:
doProcessRequest

Save the strategy and open Configuration Manager. In the Properties dialog
box of your URS application there, add the application defined for your simple
media server to the Connections tab. Click OK.
You are now ready to launch the StartCustomMedia script. For further details,
refer to the Readme.html file delivered with the samples.

More Application Essentials
Now that you have been introduced to the Media Interaction Layer and to the
simple media server, it is time to outline the steps you will need to make a very
basic custom extension work with the media server. There are four basic things
this example shows:
• Define a custom extension. This example shows which methods to

implement when inheriting the MILESPExtension interface.
• Preload the custom extension. This example explains why and how to

preload an extension.
• Process an ESP request from Interaction Server. This example

demonstrates the use of the MILESPRequest object received for each request
to process.

• Send an ESP response to Interaction Server. This example uses
synchronous methods of the MIL interface to send fault or success
responses.

The examples have been designed to make these steps stand out so that you
can quickly learn to write your own real-world applications. The following
sections explore how they are implemented in the SimpleCustomExtension
sample.

SimpleCustomExtension
The SimpleMediaServer example provides a stand-alone application that
creates and submits new Open Media interactions, each of which contains a
file in its attached data.
When one of these interactions goes through the routing strategy defined for
the queue to which it is submitted, URS uses the external service to send an

Java—Developer’s Guide 47

Chapter 4: Simple Custom Extension Example SimpleCustomExtension

ESP request to the MIL application you defined. Within this request, it passes
the service name and the method to be called by the MIL server.
The simple custom extension parses the text file attached to the submitted
interaction. If the file contains a string such as Gold, GOLD, or gold, the
extension sends an ESP response including a Gold Marker marker set to the
GoldCustomer value. (In the example’s scenario, this indicates a “gold” or first-
tier customer.)
URS waits for the ESP response and goes on processing the interaction in the
routing strategy.
This section focuses on the steps to process an ESP request and send an ESP
response. Here is how SimpleCustomExtension carries out the four basic steps
in writing an MIL extension.

Define a Custom Extension
As explained earlier, to define a custom extension, you must create a class that
inherits the MILESPExtension interface and implement at least three methods:
initialize(), shutdown(), and a third class to be called by the external service,
as shown here:

public class SimpleCustomExtension implements MILESPExtension {
/** Mandatory */
public void initialize(){

System.out.println(this.createTimeStamp() + " Custom Extension initialized ");
}
/** Mandatory */
public void shutdown(){

System.out.println(this.createTimeStamp() + " Custom Extension is shutdown ");
}

/** Mandatory - Method to be called when MIL gets a request for this extension.
 * @param request The ESP request to be processed.
 */
public void doProcessRequest(MILESPRequest request){

//...
}

//...
}

When developping your extensions, take into account that MIL uses the
extension as a singleton. A unique instance of each extension class is
initialized at runtime by calling its initialize() method. If the extension is
preloaded (see “Preload the Custom Extension” on page 48), the extension is
initialized at the MIL library’s initialization. Otherwise, the MIL library
creates the extension instance at the first ESP request.

48 Media Interaction SDK 7.6

Chapter 4: Simple Custom Extension Example SimpleCustomExtension

Note: The same instance of a custom extension may serve simultaneous
requests in separate threads. If your extension defines attributes, your
application must take care of data synchronization.

If the extension is preloaded at MIL initialization, then at the time MIL calls
the initialize() method, the library is not fully initialized. Therefore,
Genesys recommends that extensions’ initialize() methods do not make
calls to MIL interfaces and methods.
Whether or not extensions are preloaded, the shutdown() method is called
when the library is released. Therefore, do not use MIL interfaces in this
method.

Preload the Custom Extension
If you preload an extension, the corresponding object is already instantiated
when the MIL library receives its first ESP request. If you do not preload the
extension, MIL creates it upon the first ESP request involving this extension.

Note: Preloading extensions is a matter of design of your application.

In the SimpleMediaServer example, the SimpleCustomExtension class is
preloaded depending on a boolean value passed at application startup. This
custom boolean is set to true if you launch the StartCustomMedia script.
Preloading the extension is done in the SimpleMediaServer constructor by
passing the fully qualified name of the extension to the
MILInitializationParameters object used for initializing the MIL factory, as
shown in the following code snippet.

MILInitializationParameters milParam;
/// If you are running StartCustomMedia, custom is true
if(custom == true)

milParam = new MILInitializationParameters(
new String[]{"media.sdk.java.examples.SimpleCustomExtension"});

else
milParam = new MILInitializationParameters(null);

MILFactory.initialize(milParam);

Process an ESP Request
When the media server gets an ESP request, it receives the extension’s fully
qualified name and the name of the method to call. In this example, the method
to be called is SimpleCustomExtension.doProcessRequest().
This method has a MILESPRequest instance in its parameters. This object
contains parameters set in the external service you defined earlier, and all the

Java—Developer’s Guide 49

Chapter 4: Simple Custom Extension Example SimpleCustomExtension

user data of the relevant interaction—that is, the properties and data submitted
with the interaction to Interaction Server.
In this example, the doProcessRequest() method creates and starts a thread of
class ProcessThread to handle the processing of the request, as shown here:

public void doProcessRequest(MILESPRequest request){
ProcessThread p = new ProcessThread(request);
p.start();

}

The run() method of this thread is in charge of processing the request and
sending a response. This method first makes calls to MILESPRequest methods to
display information related to the received request.

System.out.println(this.createTimeStamp()+ " ESP request "+ request.getID()
+ " interaction ID " + request.getInteractionID()
+ " method " + request.getMethodName()
+ " service (extension) " + request.getServiceName());

Then, it retrieves the file attached to the interaction passed in the user data of
the ESP request. The example parses this file to find a gold string, as shown in
the following code snippet.

String fileName = (String) request.getUserData().get("FileName");
System.out.println(this.createTimeStamp() + " Processing Gold search on "+ fileName);

byte[] b = (byte[]) request.getUserData().get("FileBody");
ByteArrayInputStream mystream = new ByteArrayInputStream(b);
DataInputStream d = new DataInputStream(mystream);

boolean gold = false;
while(gold == false){

try {
String line = d.readLine();
if(line!=null &&(line.indexOf("gold")!= -1

|| line.indexOf("Gold")!= -1
|| line.indexOf("GOLD")!= -1))

{
gold = true;

}
}catch (IOException e) {

break;
}

}

50 Media Interaction SDK 7.6

Chapter 4: Simple Custom Extension Example SimpleCustomExtension

Send an ESP Response
To create an ESP response, your application calls a
MILESPRequest.create<Type>Response() method, assigns appropriate values to
the response, then sends it by calling the MILESPResponse.send() method, as
detailed in the following subsections.

Fault Response

Extensions should send a fault response in cases where they did not manage to
process the request. In the SimpleCustomExtension, this happens if the
ProcessThread thread did not manage to access user data and received an
unexpected exception.
Before the run() method sends the fault response, it must set an error code and
an error message, as shown here.

MILESPFaultResponse faultResponse = request.createFaultResponse();
faultResponse.setFaultCode(0);
faultResponse.setFaultString("No file found for this interaction");

System.out.println(this.createTimeStamp()
+ " Send fault response for ESP Request " +request.getID());

try {
faultResponse.send();

} catch (MILRequestFailedException e) {
e.printStackTrace();

}

Success Response

In the example, ProcessThread sends a success response if it managed to parse
the text attached to the interaction. It creates a MILESPSuccessResponse
instance and adds the result of the search to the user data of this object, as
shown below.

String goldString = "NotGold";
if(gold)

goldString = "GoldCustomer";

MILESPSuccessResponse successResponse = request.createSuccessResponse();
successResponse.setUserDataItem("GoldMarker", goldString);

System.out.println(this.createTimeStamp()
+ " Send sucess response gold("+ gold +") for ESP Request " +request.getID());

try {
successResponse.send();

} catch (MILRequestFailedException e) {

Java—Developer’s Guide 51

Chapter 4: Simple Custom Extension Example SimpleCustomExtension

e.printStackTrace();
}

The created MILESPResponse object originally contains an empty map of user
data: it does not include the user data and the parameters of the ESP request.
If your application makes calls to the MILESPResponse.setUserData() or
MILESPResponse.setUserDataItem() methods, then as shown in the above code
snippet, this user data is sent with the response. URS adds them to the
interaction’s properties as the value of the ItemAttachedData key in the array of
attached data.

Runtime
Now that you understand the basics of the SimpleCustomExtension
application, you can start running it in your environment.
To do so, compile and run the StartCustomMedia.java example with
appropriate arguments (which are described in the examples’ Javadoc.)
Once SimpleMediaServer is started, each time you copy files from the source
directory, the server removes them, after having sent them to Interaction Server
in an Open Media interaction.
When this interaction occurs in URS, Interaction Server sends an ESP request
to the media server, and you can see the extension activity in log traces. As a
result, if you start an agent application that is built on the Agent Interaction
SDK, and if the extension is solicited before the interaction occurs on the
agent’s place, you should able to see the GoldMarker value in the interaction’s
attached data.
For instance, see the Simple Open Media Interaction code example provided
with the Agent Interaction SDK (Java).

52 Media Interaction SDK 7.6

Chapter 4: Simple Custom Extension Example SimpleCustomExtension

Java—Developer’s Guide 53

Index

A
audience

defining 6

C
chapter summaries

defining 8
commenting on this document 11
commons

connection 29
configuration

service . 30
Configuration Layer 21
connection

OMSDKConnector. 29
connectivity. 20

D
document

conventions 8
errors, commenting on 11
version number 8

documentation 26

E
ESP 18, 33, 45
ESP request 48
ESP strategy 46
event listeners 22
extension33, 45, 47
external service 34, 45

H
handle-event method. 22

I
Interaction Server

service 30
interface

service feature 30

L
LCA runmode 34
Local Control Agent (LCA)32

M
MIL. .14
MILBootstrapper34
MILFactory31

O
Observer pattern22
OMSDKConnector29
Open Media Commons 28

P
preload an extension 48
push model 22

S
service

interfaces 30
type

configuration. 30
Interaction Server 30

SimpleConnector.java sample28
SimpleMediaServer sample 31

Index

54 Media Interaction SDK 7.6

T
tags

in ChapterExtraTemplate0303.fm 13
typographical styles 8

U
UCS .21, 39
UCS keys. 32
Universal Contact Server. 21, 32
URS .45, 46

V
version numbering

document 8

	Table of Contents
	Preface
	Intended Audience
	Usage Guidelines
	Chapter Summaries
	Document Conventions
	Related Resources
	Making Comments on This Document

	About the Media Interaction SDK
	Features Overview
	Components
	Scope of Use
	Bridging the Contact Center and the Enterprise
	Basic Capabilities
	Routing Rejected Orders to an Agent
	Working on a CRM Case

	Architecture
	Interfaces to Core Objects

	Connectivity to Other Genesys Components
	Configuration Layer
	Interaction Server
	Universal Contact Server
	Local Control Agent

	API Overview
	Packages
	Events and Listeners
	What’s Next

	About the Examples
	Overview of the Code Examples
	Installing the Code Examples
	Source-Code Examples
	Using the Code Examples

	Introducing the Media Interaction Code Examples
	Open Media Commons
	Commons with Connection
	Commons with Services

	Media Interaction (Java API)
	MILFactory
	Interaction Server
	UCS
	LCA
	ESP
	Bootstrapper
	Stop Interactions
	What’s Next

	Simple Media Server Example
	Prerequisites
	More Application Essentials
	SimpleMediaServer
	Connect to Servers
	Create Independent Threads
	Submit a New Open Media Interaction
	Wrap Up
	Runtime

	Simple Custom Extension Example
	Prerequisites
	More Application Essentials
	SimpleCustomExtension
	Define a Custom Extension
	Preload the Custom Extension
	Process an ESP Request
	Send an ESP Response
	Runtime

	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

