
Agent Interaction SDK 7.6

Services

Developer’s Guide

The information contained herein is proprietary and confidential and cannot be disclosed or duplicated
without the prior written consent of Genesys Telecommunications Laboratories, Inc.
Copyright © 2005–2013 Genesys Telecommunications Laboratories, Inc. All rights reserved.

About Genesys
Genesys is the world's leading provider of customer service and contact center software - with more than 4,000
customers in 80 countries. Drawing on its more than 20 years of customer service innovation and experience,
Genesys is uniquely positioned to help companies bring their people, insights and customer channels together to
effectively drive today's customer conversation. Genesys software directs more than 100 million interactions every day,
maximizing the value of customer engagement and differentiating the experience by driving personalization and multi-
channel customer service - and extending customer service across the enterprise to optimize processes and the
performance of customer-facing employees. Go to www.genesyslab.com for more information.
Each product has its own documentation for online viewing at the Genesys Technical Support website or on the
Documentation Library DVD, which is available from Genesys upon request. For more information, contact your sales
representative.

Notice
Although reasonable effort is made to ensure that the information in this document is complete and accurate at the
time of release, Genesys Telecommunications Laboratories, Inc., cannot assume responsibility for any existing errors.
Changes and/or corrections to the information contained in this document may be incorporated in future versions.

Your Responsibility for Your System’s Security
You are responsible for the security of your system. Product administration to prevent unauthorized use is your
responsibility. Your system administrator should read all documents provided with this product to fully understand the
features available that reduce your risk of incurring charges for unlicensed use of Genesys products.

Trademarks
Genesys and the Genesys logo are registered trademarks of Genesys Telecommunications Laboratories, Inc. All other
company names and logos may be trademarks or registered trademarks of their respective holders. © 2013 Genesys
Telecommunications Laboratories, Inc. All rights reserved.
The Crystal monospace font is used by permission of Software Renovation Corporation,
www.SoftwareRenovation.com.

Technical Support from VARs
If you have purchased support from a value-added reseller (VAR), please contact the VAR for technical support.

Technical Support from Genesys
If you have purchased support directly from Genesys, please contact Genesys Technical Support. Before contacting
technical support, please refer to the Genesys Care Program Guide for complete contact information and
procedures.

Ordering and Licensing Information
Complete information on ordering and licensing Genesys products can be found in the Genesys Licensing Guide.

Released by
Genesys Telecommunications Laboratories, Inc. www.genesyslab.com

Document Version: 76sdk_dev_ixn_services-agent_07-2013_v7.6.501.00

http://www.genesyslab.com
http://www.genesyslab.com
http://docs.genesyslab.com/wiki/index.php/Special:Repository/80g_licensing.pdf?id=49b7ab19-1dfa-4642-8e5f-559cc24ffa78
http://genesyslab.com/support/contact
http://docs.genesyslab.com/wiki/index.php/Special:Repository/8genesys-care.pdf?id=204d8312-d2ac-44eb-8f33-f28551241aa0

Services—Developer’s Guide 3

Table of Contents
Preface ... 13

Intended Audience... 13
Usage Guidelines .. 14
Chapter Summaries... 16
Document Conventions ... 17
Related Resources .. 19
Making Comments on This Document .. 20
Contacting Genesys Technical Support... 20

Chapter 1 About Agent Interaction SDK Services .. 21

Overview.. 21
Components .. 22
Platform Requirements.. 22

Development Platform .. 22
Production Runtime Platform.. 23

Scope of Use... 23
Architecture ... 24

Service-Oriented Architecture... 24
Multithreaded .. 24
Synchronization .. 25
Connectivity .. 25

Chapter 2 About the Examples... 27

Generating a SOAP Proxy... 27
Opening a Session ... 28

Using the .NET Proxy .. 29
Service Factory... 29
Access Services ... 30
XML Configuration File for .NET... 31
HTTP Redirections ... 35

Using the Java Proxy... 36
Service Factory... 36
Access Services ... 36

Table of Contents

4 Interaction SDK 7.6 Java

XML Configuration File for Java ... 36
GIS License .. 40
HTTP Redirections ... 40

API Overview... 41
Building an Application Using Services .. 42
The Remote Services ... 42
Using the Services.. 43

Chapter 3 Data Transfer Object .. 47

Introduction.. 47
DTOs in the Service API.. 47

Dedicated Classes.. 48
Attributes... 48

DTOs Handling .. 49
Reading DTOs .. 50
Setting DTOs .. 50
DTOs and Events.. 51
DTOs and Wildcards... 52

Chapter 4 The Event Service... 53

Event Service Overview .. 53
Understanding the Event Service .. 54

Events Associated with Services .. 54
Understanding TopicsEvents and Events ... 55
Understanding TopicsServices ... 59

Handling Topics Objects .. 59
Building TopicsEvent... 59
Building TopicsServices .. 61
Subscribing to the Events of a Service ... 62
Unsubscribing from Topics.. 64
Handling Subscription Errors .. 65

Getting Events ... 65
Pull Mode.. 66
Push Mode.. 66
Reading DTOs in Events .. 68

Event Notification in Java .. 68
Notification Classes Generation ... 69
Simple Notification Server .. 69

Chapter 5 The Agent Service .. 71

Introduction.. 71

Services—Developer’s Guide 5

Table of Contents

Agent Service Essentials... 73
Agent and Statuses .. 73
Agent and Possible Actions .. 78
Agent and Events ... 80

Forms and Agent Actions .. 80
Forms for Voice Media.. 81
Forms for Other Media.. 82
Agent Login... 83
Agent Logout .. 83
Getting Ready or Not Ready... 84

Chapter 6 Place, DNs, and Media ... 85

Introduction.. 85
What Are Places? ... 85
Place and Other Services ... 86
DNs–Voice Specifics... 86

Understanding Place, DNs, and Media ... 87
Place, Agent, and Statuses .. 87
Media and Voice-Media Information ... 90
Place and DNs’ Consolidation .. 90
DN’s Callable Number .. 91

Using the Place Service .. 92
Getting Place DTOs.. 92
PlaceEvents.. 93

Using the DN Service .. 93
Features and Possible Actions ... 93
Events of the DN Service.. 95
Switch-Specific ... 97

Chapter 7 The Interaction Service .. 101

Introduction.. 101
What Is an Interaction?... 101
What Is the Interaction Service?... 102
Specific Interaction Services... 103

Using IInteractionService... 103
Handling Interaction DTOs .. 105

Specific Getting DTO Methods ... 105
Opening a Workbin Interaction .. 106
Attached Data.. 107

Attached Data DTOs... 107
Attached Data and Event.. 108

Table of Contents

6 Interaction SDK 7.6 Java

Chapter 8 Voice Interactions... 109

Introduction.. 109
Voice Interaction Essentials... 110

Voice Attributes..111
Voice Actions ...111
Voice Interaction Status .. 112
Voice Events ... 114
TEvent DTOs .. 115

Making and Answering Voice Calls ... 115
Making a Call .. 116
Answering a Call ... 119
Terminating a Call ... 120

Transferring Voice Calls... 121
Single-Step and Mute Transfers ... 121
The Dual-Step Transfer .. 122

Managing Conference Calls .. 125
Single-Step Conference.. 125
Dual-Step Conference .. 126
Leaving the Conference.. 129

Chapter 9 E-Mail Interactions.. 131

Introduction.. 131
Common E-Mail Features... 131
Collaboration Features ... 132
E-Mail Service Dependencies... 132

E-Mail Essentials ... 133
E-Mail Attributes ... 133
E-Mail Types ... 134
E-Mail Actions... 136
E-Mail Statuses... 136
E-Mail Interactions Events .. 137

Common E-Mail Management... 139
Sending an E-Mail .. 140
Filling an E-Mail Interaction .. 142
Answering an E-Mail ... 143
Replying to an E-Mail.. 145
Marking Done an E-Mail Interaction ... 147

Collaboration Essentials .. 147
Collaboration Attributes .. 148
Collaboration Interaction Types .. 148
Collaboration Status ... 150

Collaboration Handling .. 151

Services—Developer’s Guide 7

Table of Contents

Managing a Collaboration Session ... 151
Participating in a Collaboration Session ... 153

Chapter 10 Chat Interactions .. 155

Introduction.. 155
Chat Interaction Essentials.. 156

Chat Interaction Attributes .. 157
Chat Actions ... 157
Chat Interaction Status ... 158
Chat Interaction Events .. 159

Managing a Chat Session ... 162
Answering a Chat Interaction.. 162
Getting Parties .. 163
Sending Chat Messages... 164
Conferences ... 164
Releasing a Chat Interaction .. 165
Marking a Chat Interaction as Done ... 165

Transferring a Chat Interaction .. 166
Transferring to an Agent ... 166
Transferring to a Place.. 166

Chapter 11 The Contact Service ... 167

Introduction.. 167
What Is a Contact? ... 167
What Is the Contact Service? ... 167

Contact Information ... 168
Contacts’ Attributes... 168
Information Update ... 172

Retrieving Contact Information .. 175
Retrieving Contact MetaData.. 176
Retrieving Contact Values... 177

Searching Contacts ... 178
Contact Filter Trees .. 178
Contact Search ... 182
Tuning the Contact Search ... 183

Managing Contacts.. 184
Creating a Contact.. 184
Merging Contacts.. 186
Setting Attribute Values... 187
Removing Attribute Values.. 188

Table of Contents

8 Interaction SDK 7.6 Java

Chapter 12 The Callback Service.. 191

Introduction.. 191
Callback Essentials ... 192

Record Attributes .. 194
Record Actions ... 194
Record Status ... 195
Record Events .. 195

Records Management ... 197
Accepting a Record .. 197
Rejecting a Record ... 198
Canceling a Record .. 198
Rescheduling a Record .. 198
Marking a Record as Processed... 199

Chapter 13 The SRL Service ... 201

Introduction.. 201
Standard and Suggested Responses ... 201
What Is a Category? ... 202
What Is the SRL Service?... 202

Using Standard Responses and Categories ... 203
Using Standard Response.. 203
Category Information .. 203

Getting Categories and Standard Responses 206
Getting Category DTO .. 206
Getting Standard Responses.. 207
Using the getStandardResponseBody() Method 207

Managing Favorites ... 207
Getting the Favorite Standard Responses.. 207
Adding Standard Responses to Favorites .. 208
Removing Standard Responses from Favorites 209

Chapter 14 The Outbound Service ... 211

Introduction.. 211
Outbound Campaigns... 211
Outbound Records.. 212
Outbound Chains.. 212
The Outbound Service.. 212

Outbound Campaigns.. 213
Campaign Attributes ... 213
Campaign Dialing Modes.. 214
Campaign Actions... 215
Campaign Status .. 215

Services—Developer’s Guide 9

Table of Contents

Campaign Events ... 216
Outbound Chain Events.. 216

Outbound Chains and Records ... 217
Subscribe to Outbound and Chain Events.. 218
Check Interactions for Outbound Information 218
Outbound Attributes.. 219
Outbound Actions ... 220

Outbound Campaign in Preview Mode.. 220
Outbound Campaign in Predictive Mode... 222

Active Campaigns... 222
Handling a Predictive Outbound Interaction 222

Chapter 15 Expert Contact .. 225

Introduction.. 225
What is an Expert? ... 225
What is an Expert Contact Application? ... 226
What Is the Expert Contact Service?.. 226

Expert Contact Essentials ... 228
Expert Context Attributes.. 229
Expert Context Actions ... 230
Expert Context Status... 230
Expert Events ... 230

Using Expert Contact Features ... 232
Managing On Call ... 232
Managing Preview Calls ... 233
Managing Status Request .. 233
Managing Re-Route.. 234
Easy New Call and Auto Mark Done .. 234

Chapter 16 Additional Services .. 235

The History Service ... 235
History Information.. 236
Getting History Information ... 236

The Workflow Service.. 237
Handling a Workbin Interaction... 239
Workbin Information.. 239
Workbin Interaction Information .. 239
Getting Information ... 240

The System Service .. 241
Server Information .. 241
Retrieving Server Information ... 243
System Events.. 243

Table of Contents

10 Interaction SDK 7.6 Java

The Resource Service ... 243
Resource Information ... 244
Interaction Information .. 245
Getting Resource Information... 246

The Monitor Service .. 247
Monitor Information... 247
Getting Monitor Information .. 247

Chapter 17 Best Coding Practices ... 251

Introduction.. 251
Avoid Wildcards... 251
Tips for Events Processing.. 252

A Single Subscriber .. 252
About Subscriptions.. 253
About Notification.. 253

Tips for DTOs .. 253
Guidelines... 253
Additional Details .. 254

Tips for High Availability .. 255
Voice Interactions in Specific Service Status.................................... 255
E-Mail and Open Media Interactions .. 255
Update Status ... 256

Chapter 18 The Agent Status Example .. 259

Introduction.. 259
Agent Status Short Description... 260
AgentStatusExample Project .. 262

Agent Status Architecture.. 263
Agent Status Classes .. 264

Class Connection.. 264
Class Agent .. 265
Class AgentStatusForm.. 266
Class LoginForm... 267

Managing Agent Status Data... 267
Connecting to the GIS Server... 268
Setting Agent Properties... 268
Updating Statuses in the Datagrid .. 273
Updating Buttons in the Form ... 274
Managing Agent Actions on DNs and Media 275

Handling Events .. 276
Subscribing to Events ... 276
Handling the Pull Mode... 279

Services—Developer’s Guide 11

Table of Contents

Handling the Push Mode .. 283
Handling Event Changes .. 286

Index ... 289

Table of Contents

12 Interaction SDK 7.6 Java

Services—Developer’s Guide 13

Preface
Welcome to the Agent Interaction SDK 7.6 Services Developer’s Guide. This
document introduces you to the concepts, terminology, and procedures relevant
to the Agent Interaction Service Proxy Libraries.
This guide presents an overview of the architecture and communication
protocols, the setup procedures for client development, and the product’s API
capabilities via Genesys Interface Server (GIS).
This document is valid only for the 7.6 release(s) of this product.

Note: For versions of this document created for other releases of this product,
please visit the Genesys Technical Support website, or request the
Documentation Library CD, which you can order by e-mail from
Genesys Order Management at orderman@genesyslab.com.

This preface contains these sections:
Intended Audience, page 13
Usage Guidelines, page 14
Chapter Summaries, page 16
Document Conventions, page 17
Related Resources, page 19
Making Comments on This Document, page 20

The Agent Interaction Service Proxy Library for .NET provides you with
access to the Agent Interaction Layer (AIL) Java API through the Genesys
Interface Server (GIS).

Intended Audience
This document, primarily intended for developers who are familiar with
Simple Object Access Protocol (SOAP), Hypertext Transfer Protocol (HTTP),
XML (Extensible Markup Language) technologies, assumes that you have a
basic understanding of:
• Computer-telephony integration (CTI) concepts, processes, terminology,

and applications.

mailto:orderman@genesyslab.com

14 Agent Interaction SDK 7.6

Usage Guidelines

• Network design and operation.
• Your own network configurations.
You should also be familiar with these tools:
• XML Schema
• SOAP (Simple Object Access Protocol)
• WSDL (Web Services Description Language)
Depending on the technology choice for client development, working
knowledge of Java or of some other Web Services client-side programming
language may be required.
Developers should be familiar with the Genesys Framework and with the AIL
library.

Usage Guidelines
The Genesys developer materials outlined in this document are intended to be
used for the following purposes:
• Creation of contact-center agent desktop applications associated with

Genesys software implementations.
• Server-side integration between Genesys software and third-party

software.
• Creation of a specialized client application specific to customer needs.
The Genesys software functions available for development are clearly
documented. No undocumented functionality is to be utilized without
Genesys’s express written consent.
The following Use Conditions apply in all cases for developers employing the
Genesys developer materials outlined in this document:
1. Possession of interface documentation does not imply a right to use by a

third party. Genesys conditions for use, as outlined below or in the Genesys
Developer Program Guide, must be met.

2. This interface shall not be used unless the developer is a member in good
standing of the Genesys Interacts program or has a valid Master Software
License and Services Agreement with Genesys.

3. A developer shall not be entitled to use any licenses granted hereunder
unless the developer’s organization has met or obtained all prerequisite
licensing and software as set out by Genesys.

4. A developer shall not be entitled to use any licenses granted hereunder if
the developer’s organization is delinquent in any payments or amounts
owed to Genesys.

Services—Developer’s Guide 15

Usage Guidelines

5. A developer shall not use the Genesys developer materials outlined in this
document for any general application development purposes that are not
associated with the above-mentioned intended purposes for the use of the
Genesys developer materials outlined in this document.

6. A developer shall disclose the developer materials outlined in this
document only to those employees who have a direct need to create, debug,
and/or test one or more participant-specific objects and/or software files
that access, communicate, or interoperate with the Genesys API.

7. The developed works and Genesys software running in conjunction with
one another (hereinafter referred to together as the “integrated solutions”)
should not compromise data integrity. For example, if both the Genesys
software and the integrated solutions can modify the same data, then
modifications by either product must not circumvent the other product’s
data integrity rules. In addition, the integration should not cause duplicate
copies of data to exist in both participant and Genesys databases, unless it
can be assured that data modifications propagate all copies within the time
required by typical users.

8. The integrated solutions shall not compromise data or application security,
access, or visibility restrictions that are enforced by either the Genesys
software or the developed works.

9. The integrated solutions shall conform to design and implementation
guidelines and restrictions described in the Genesys Developer Program
Guide and Genesys software documentation. For example:
a. The integration must use only published interfaces to access Genesys

data.
b. The integration shall not modify data in Genesys database tables

directly using SQL.
c. The integration shall not introduce database triggers or stored

procedures that operate on Genesys database tables.
Any schema extension to Genesys database tables must be carried out using
Genesys Developer software through documented methods and features.
The Genesys developer materials outlined in this document are not intended to
be used for the creation of any product with functionality comparable to any
Genesys products, including products similar or substantially similar to
Genesys’s current general-availability, beta, and announced products.
Any attempt to use the Genesys developer materials outlined in this document
or any Genesys Developer software contrary to this clause shall be deemed a
material breach with immediate termination of this addendum, and Genesys
shall be entitled to seek to protect its interests, including but not limited to,
preliminary and permanent injunctive relief, as well as money damages.

16 Agent Interaction SDK 7.6

Chapter Summaries

Chapter Summaries
In addition to this preface, this document contains the following chapters:
• Chapter 1, “About Agent Interaction SDK Services,” on page 21. This

chapter provides an overview of the Agent Interaction SDK Services
architecture.

• Chapter 2, “About the Examples,” on page 27. This chapter introduces
techniques for developing your application based on code snippets in the
documentation.

• Chapter 3, “Data Transfer Object,” on page 47. This chapter discusses the
use of Data Transfer Objects (DTO).

• Chapter 4, “The Event Service,” on page 53. This chapter discusses the
management of events.

• Chapter 5, “The Agent Service,” on page 71. This chapter discusses agent
features and management.

• Chapter 6, “Place, DNs, and Media,” on page 85. This chapter covers how
media are working in a place with the services, how to monitor them and
how to deal with the specific voice media, that is DNs.

• Chapter 7, “The Interaction Service,” on page 101. This chapter presents
the management for characteristics common to all interactions, no matter
their media.

• Chapter 8, “Voice Interactions,” on page 109. This chapter discusses voice
interactions’ management.

• Chapter 9, “E-Mail Interactions,” on page 131. This chapter discusses e-
mail and collaboration features.

• Chapter 10, “Chat Interactions,” on page 155. This chapter discusses chat
interactions’ management.

• Chapter 11, “The Contact Service,” on page 167. This chapter discusses
the management of contacts.

• Chapter 12, “The Callback Service,” on page 191. This chapter covers the
management of callback records.

• Chapter 13, “The SRL Service,” on page 201. This chapter presents how to
provide agents with standard responses to help them process interactions.

• Chapter 14, “The Outbound Service,” on page 211. This chapter covers the
management of outbound campaigns.

• Chapter 15, “Expert Contact,” on page 225. This chapter covers the
management of expert features.

• Chapter 16, “Additional Services,” on page 235. This chapter covers the
management of additional services.

Services—Developer’s Guide 17

Document Conventions

• Chapter 17, “Best Coding Practices,” on page 251. This chapter reviews
the rules you would otherwise find throughout this book for developing a
high-performance application on top of the Agent Interaction Services.

• Chapter 18, “The Agent Status Example,” on page 259. This chapter
covers the implementation of the agent status example which is available
on the Documentation CD in the sdk_exmpl_ixn_services-agent.zip file.

Document Conventions
This document uses certain stylistic and typographical conventions—
introduced here—that serve as shorthands for particular kinds of information.

Document Version Number

A version number appears at the bottom of the inside front cover of this
document. Version numbers change as new information is added to this
document. Here is a sample version number:
76fr_ref_03-2007_v7.6.000.00

You will need this number when you are talking with Genesys Technical
Support about this product.

Type Styles

Italic

In this document, italic is used for emphasis, for documents’ titles, for
definitions of (or first references to) unfamiliar terms, and for mathematical
variables.

Examples: • Please consult the Genesys Migration Guide for more information.
• A customary and usual practice is one that is widely accepted and used

within a particular industry or profession.
• Do not use this value for this option.
• The formula, x +1 = 7 where x stands for . . .

Monospace Font

A monospace font, which looks like teletype or typewriter text, is used for
all programming identifiers and GUI elements.
This convention includes the names of directories, files, folders, configuration
objects, paths, scripts, dialog boxes, options, fields, text and list boxes,
operational modes, all buttons (including radio buttons), check boxes,

18 Agent Interaction SDK 7.6

Document Conventions

commands, tabs, CTI events, and error messages; the values of options; logical
arguments and command syntax; and code samples.

Examples: • Select the Show variables on screen check box.
• Click the Summation button.
• In the Properties dialog box, enter the value for the host server in your

environment.
• In the Operand text box, enter your formula.
• Click OK to exit the Properties dialog box.
• The following table presents the complete set of error messages

T-Server® distributes in EventError events.
• If you select true for the inbound-bsns-calls option, all established

inbound calls on a local agent are considered business calls.
Monospace is also used for any text that users must manually enter during a
configuration or installation procedure, or on a command line:

Example: • Enter exit on the command line.

Screen Captures Used in This Document

Screen captures from the product GUI (graphical user interface), as used in this
document, may sometimes contain a minor spelling, capitalization, or
grammatical error. The text accompanying and explaining the screen captures
corrects such errors except when such a correction would prevent you from
installing, configuring, or successfully using the product. For example, if the
name of an option contains a usage error, the name would be presented exactly
as it appears in the product GUI; the error would not be corrected in any
accompanying text.

Square Brackets

Square brackets indicate that a particular parameter or value is optional within
a logical argument, a command, or some programming syntax. That is, the
parameter’s or value’s presence is not required to resolve the argument,
command, or block of code. The user decides whether to include this optional
information. Here is a sample:
smcp_server -host [/flags]

Angle Brackets

Angle brackets indicate a placeholder for a value that the user must specify.
This might be a DN or port number specific to your enterprise. Here is a
sample:
smcp_server -host <confighost>

Services—Developer’s Guide 19

Related Resources

Related Resources
Consult these additional resources as necessary:
• Agent Interaction SDK 7.6 Genesys Interface Server Deployment Guide,

which provides an overview of the Genesys Interface Server architecture
and technologies and instructions for installing, configuring, starting and
stopping, and uninstalling it.

• Agent Interaction SDK 7.6 Java Developer’s Guide, which describes the
features and capabilities of the AIL library that underlies the Agent
Interaction Services API.

• Genesys Agent Interaction SDK 7.6 Services API Reference, located on the
Genesys documentation CD.

• Genesys Agent Interaction SDK 7.6 Java API Reference, located on the
product CD.

• Genesys Agent Desktop 7.6 .NET Toolkit Developer’s Guide, which
describes similar techniques and product features for developing .NET
applications.

• The Genesys Technical Publications Glossary, which ships on the Genesys
Documentation Library CD and which provides a comprehensive list of the
Genesys and CTI terminology and acronyms used in this document.

• The Genesys Migration Guide, also on the Genesys Documentation
Library DVD, which provides a documented migration strategy from
Genesys product releases 5.1 and later to all Genesys 7.x releases. Contact
Genesys Technical Support for additional information.

• The Release Notes and Product Advisories for this product, which are
available on the Genesys Documentation website at
http://docs.genesyslab.com.

Information on supported hardware and third-party software is available on the
Genesys Technical Support website in the following documents:
• Genesys Supported Operating Environment Reference Guide
• Genesys Supported Media Interfaces Reference Manual
Genesys product documentation is available on the:
• Genesys Technical Support website at http://genesyslab.com/support.
• Genesys Documentation website at http://docs.genesyslab.com.
• Genesys Documentation Library CD, which you can order by e-mail from

Genesys Order Management at orderman@genesyslab.com.

http://docs.genesyslab.com/
http://docs.genesyslab.com/wiki/index.php?title=Genesys_Supported_Operating_Environment_Reference_Guide
http://docs.genesyslab.com/wiki/index.php/Special:Repository/80g_ref_smi.pdf?id=ac6c69e0-63e8-43c0-a00d-ba405458a06d
http://genesyslab.com/support
http://docs.genesyslab.com
mailto:orderman@genesyslab.com

20 Agent Interaction SDK 7.6

Making Comments on This Document

Making Comments on This Document
If you especially like or dislike anything about this document, please feel free
to e-mail your comments to Techpubs.webadmin@genesyslab.com.
You can comment on what you regard as specific errors or omissions, and on
the accuracy, organization, subject matter, or completeness of this document.
Please limit your comments to the information in this document only and to the
way in which the information is presented. Speak to Genesys Technical
Support if you have suggestions about the product itself.
When you send us comments, you grant Genesys a nonexclusive right to use or
distribute your comments in any way it believes appropriate, without incurring
any obligation to you.

Contacting Genesys Technical Support
If you have purchased support directly from Genesys, please contact Genesys
Technical Support. Before contacting technical support, please refer to the
Genesys Care Program Guide for complete contact information and
procedures.

mailto:techpubs.webadmin@genesyslab.com
http://genesyslab.com/support/contact/
http://genesyslab.com/support/contact/
http://genesyslab.com/support/dl/retrieve/default.asp?item=B3BFC6DABE22B62AAE32A6D31E6396E3&view=item

Services—Developer’s Guide 21

Chapter

1 About Agent Interaction
SDK Services
The Agent Interaction Services Libraries product provides developers with the
services of the Agent Interaction SDK, as well as developer essentials (such as
documentation and code examples) to assist you in creating an agent
application capable of handling interactions of all media types.
To run any agent applications developed with this SDK, you need to install the
Genesys Integration Server (GIS), which exposes the Agent Interaction
Services.
This chapter presents the following topics:

Overview, page 21
Components, page 22
Platform Requirements, page 22
Scope of Use, page 23
Architecture, page 24

Overview
To develop successful client applications with the Agent Interaction SDK, you
can:
• Use the microsoft .NET Framework SDK version 1.1 to create a C# based

application.
• Use the Apache AXIS toolkit version 1.1 or version 1.3 to create stubs for

a Java-based application.
• Your applications might have some of the following purposes:
• A contact center agent desktop application to let agents interact with

Genesys software and handle interactions processed by the contact center.
• An application that integrates third-party software with Genesys software.

22 Agent Interaction SDK 7.6

Chapter 1: About Agent Interaction SDK Services Components

• Other applications specific to your needs.

Components
The Agent Interaction Services Libraries product includes the following
components.
• The Agent Interaction Service Proxy Library for .NET—provides the .NET

proxy that includes the SOAP protocol to communicate with GIS.
• The Agent Interaction Service Proxy Library for Java—provides the Java

proxy that includes the SOAP protocol to communicate with GIS.
• The Agent Interaction Service GSAP Library for .NET—provides the

.NET proxy that includes the GSAP protocol to communicate with GIS.
• The Agent Interaction Service Proxy Library for Java—provides the Java

proxy that includes the GSAP protocol to communicate with the GIS
• The Agent Interaction SDK 7.6 Services API Reference for the .NET Proxy

in CHM format, covering the Agent Interaction Services .NET API.
• The Agent Interaction SDK 7.6 Services API Reference for the Java Proxy

in HTML format, covering the Agent Interaction Services Java API.
• This Developer’s Guide, delivered on the documentation CD.
This set of components supports an application that lets you manage agent and
interaction features, as well as services such as voice, outbound campaigns,
and callback.
The Agent Interaction Service API is designed to allow development of
applications that have specific requirements for the custom manipulation of
particular service features. The communication protocol used to interact with
GIS depends on the library that you use for your development.

Platform Requirements
The platform requirements for developing your application are a little different
from those needed to use your application.

Development Platform
For .NET development:

Microsoft .NET Framework SDK, version 1.1 or 2.0, available at
http://msdn.microsoft.com/netframework/
Microsoft Visual Studio .NET 2003 or 2005

For Java development:
Apache AXIS toolkit, version 1.1, available at
http://xml.apache.org/axis/index.html

Services—Developer’s Guide 23

Chapter 1: About Agent Interaction SDK Services Scope of Use

Java Development Kit (JDK), version 1.3, 1.4.x or 1.5.

Production Runtime Platform
For .NET development:

Microsoft .NET Framework, version 1.1 or 2.0, available at
http://msdn.microsoft.com/netframework/

For Java development:
Apache AXIS toolkit, version 1.1 or 1.3, available at
http://xml.apache.org/axis/index.html

Java Runtime Environment (JRE), version 1.3, 1.4.x or 1.5.

Scope of Use
Typical usage scenarios include:
• Managing agent activity:

Implement login and logout functionality.
Implement ready, not-ready, and after-call-work features.

• Handling voice interactions (depending on your switch’s available
features):

Make an outgoing call.
Answer an incoming call.
Hold and retrieve a call.
Transfer a call.
Alternate calls.
Initiate, enter, and leave a conference.

• Handling the callback feature:
Accept, reject, or cancel a request.
Accept and dial a callback request.
Reschedule the record.

• Handling e-mail:
Create and send an e-mail.
Answer an e-mail.
Transfer an e-mail.
Pull an e-mail from a workbin.

• Handling outbound campaigns:
Add a new record to the campaign.
Request a record.
Cancel a record.
Reject a record.

24 Agent Interaction SDK 7.6

Chapter 1: About Agent Interaction SDK Services Architecture

• Using the Standard Response Library:
Get standard responses.
Get standard response information about categories.
Get standard responses by category.
Manage favorite standard responses.

• Managing contacts:
Add a contact.
Remove a contact.
Modify contact information.
Search a contact.

• Using contact history information.
• Using the workbin features to store interactions:

Get the workbin’s queues and views.
Put an interaction in the Workbin.

• Using the system features to get options about the application used in the
Configuration Layer.

Architecture
On the Genesys Interface Server side, the exposed services deal with the
Genesys Framework and perform the client-side services’ requests.

Service-Oriented Architecture
The Service-Oriented Architecture (SOA) is a specific type of distributed
system in which features are exposed through services. When you use the
Agent Interaction Service Libraries, you are dealing with service interfaces
that do not manage anything locally. Each service defines a specific feature of
your distributed system. Data management and actions are performed by GIS,
and you are concerned only with the interface descriptions.

Multithreaded
The Agent Interaction Service Libraries are thread-safe and therefore your
application can run in multithreaded environments. In particular, parallel
threads can make calls to the same services’ methods at the same time without
encountering issues.

Services—Developer’s Guide 25

Chapter 1: About Agent Interaction SDK Services Architecture

Synchronization
Your application establish a link with GIS, exposing the service which
performs your client-application requests. The communication with GIS is
synchronous.

Connectivity
Connections to Genesys servers are maintained by GIS. Your client-side
application can be notified of servers’ statuses, namely any loss of a
connection.
GIS can maintain connections to multiple T-Servers.
GIS is designed to work in a single-tenant environment. It is possible to create
a multi-tenant application, but all configuration layer objects that your
application uses must be specified in the Tenants tab of the application, and
these names must be unique.
For further information, refer to the Genesys Integration Server 7.6
Deployment Guide.

Framework Compatibility

GIS connects to the following Genesys servers in the Genesys Framework:
• Configuration Server—Configuration Server (and the Configuration Layer

generally) stores configuration information such as application parameters,
or objects description such as DNs, places, or persons. The library core
monitors the configuration server to update modifications. The library
provides full integration with Genesys Configuration Layer objects such as
Agent, Place, and DN.

• T-Server—Genesys T-Servers handle telephony requests and events by
communicating with switches.

For voice-only mode, your application should connect with a
Configuration Server, at least one T-Server, and, optionally, a Contact
Server (included with Multimedia).
Supported switches (and their corresponding T-Servers) include:
Nortel Meridian 1, Nortel Symposium, Alcatel 4400, Lucent G 3,
Siemens Hicom, Genesys IP Media Exchange, Aspect, DMS 100, MD
110, and NEC Apex.

Genesys Multimedia Compatibility

GIS connects to the Genesys Multimedia components, such as Interaction
Server and Universal Contact Server, and provides full multimedia support for
e-mail, chat, and open media interactions.

26 Agent Interaction SDK 7.6

Chapter 1: About Agent Interaction SDK Services Architecture

Connectivity to handle these interactions involves the following Multimedia
components:
• Interaction Server—This server manages e-mail, chat, and open media

interaction information along with the Genesys Framework.
• Chat Server—This server manages chat interactions between agents and

web visitors.
• Universal Contact Server (UCS)—This database server is used to retrieve

e-mails, history, and contact information. It also allows manipulation of the
contact history and the standard response library. This server is optional for
an application designed to run in voice-only configuration.

For e-mail handling, GIS should connect with a Configuration Layer, a UCS,
and an Interaction Server (the last two included with Multimedia).
For chat handling, GIS should connect with a Configuration Layer, a Chat
Server, a UCS, and an Interaction Server (the last three being included with
Multimedia).
For open media interaction handling, GIS should connect with a Configuration
Layer, a UCS, and an Interaction Server (the last two included with
Multimedia).

Outbound Campaign Support

GIS also connects to the Genesys Outbound Solution:
• Outbound Campaign Server—This server controls and organizes outbound

campaigns.
For Outbound Campaign handling, GIS should connect with a Configuration
Layer, an Outbound Campaign Server, and at least one T-Server.

Voice Callback Support

GIS connects to the Genesys Universal Callback Solution:
• Callback Server—This server controls and organizes callback records.
For Voice Callback handling, GIS should connect with a Configuration Layer,
a Callback Server, and at least one T-Server.

Services—Developer’s Guide 27

Chapter

2 About the Examples
This release of the documentation includes code snippets in most chapters.
These code snippets illustrate many product features and can serve as a basis
for developing your own applications.
The code snippets in this Developer’s Guide are in C#, but there are differences
across these examples depending on the generated proxy and the language. For
instance, in the Agent Interaction SDK Services API Reference for the .NET
Proxy, C# service interfaces are defined in accordance with the following rule:
I<service_name>Service. In the generic Agent Interaction SDK 7.6 Services
API Reference for the Java Proxy, on the other hand, service interfaces are
defined in accordance with the following rule: <service_name>Service.
You can do any of the following:
• Use a toolkit to generate a proxy from the provided WSDL files.
• Use one of the provided .NET proxies available on the product CD in the

tools/ directory.
• Use one of the provided Java proxies available on the product CD in the

tools/ directory.
Then, use the chosen proxy to build your desktop application using the Agent
Interaction SDK Service that the Agent Interaction Services Libraries expose.
This chapter covers the following topics:

Generating a SOAP Proxy, page 27
Using the .NET Proxy, page 29
Using the Java Proxy, page 36
API Overview, page 41

Generating a SOAP Proxy
You can use a toolkit to generate a SOAP proxy from the provided WSDL
files—for example, Apache AXIS toolkit, version 1.1 or 1.3, for Java

28 Agent Interaction SDK 7.6

Chapter 2: About the Examples Generating a SOAP Proxy

development (for further information, see:
http://ws.apache.org/axis/java/user-guide.html).
With a SOAP proxy, use the GIS session service to connect your client
application and to set options. Refer to the Statistics SDK 7.6 Web Services
Developer’s Guide for further details about the session service, and see this
chapter’s “API Overview” on page 41 for further details about available
options.

Opening a Session
The first step your Agent Interaction SDK Services client application must
perform is to open a session in GIS to get a session ID, which must be passed
in the URL of all SOAP requests. As your application creates services, for each
service, specify the ENDPOINT_ADDRESS_PROPERTY and the session ID as shown in
the following code snippet.

/// creation of an agent service using a stub created with
/// Apache Axis toolkit 1.1

import com.genesyslab.www.ail.*;
import com.genesyslab.www.ail.agent.*;

//Creating a gis session - GIS server location set when
//generating the stub
SessionServiceServiceSoapBindingStub sessionService =
 (SessionServiceServiceSoapBindingStub) new

SessionServiceServiceLocator().getSessionServiceService();

// Time out after a minute
sessionService.setTimeout(60000);
Identity id = new Identity();
id.setPrincipal("example");
id.setCredentials("");
sessionId = sessionService.login(id);

System.out.println("sessionId= " + sessionId);
sessionService._setProperty(

sessionService. ENDPOINT_ADDRESS_PROPERTY,
sessionService._getProperty(

sessionService.ENDPOINT_ADDRESS_PROPERTY)
+ "?GISsessionId=" + sessionId);

// Accessing Services
String[] value = sessionService.getServices(new java.lang.String[] {
"GIS_INTERACTIONSERVICE"});

AgentServiceSoapBindingStub agentService =
(AgentServiceSoapBindingStub)

new AgentService_ServiceLocator().getAgentService();

Services—Developer’s Guide 29

Chapter 2: About the Examples Using the .NET Proxy

agentService.setTimeout(60000);

/// Property used to pass session id in requests
agentService._setProperty(

agentService.ENDPOINT_ADDRESS_PROPERTY,
agentService._getProperty(

agentService.ENDPOINT_ADDRESS_PROPERTY)
+"?GISsessionId=" + sessionId);

// then using agent service is similar to C#
// logging an agent

LoginVoiceForm loginVoiceForm = new LoginVoiceForm();
loginVoiceForm.setLoginId(loginId);
loginVoiceForm.setWorkmode(WorkmodeType.AFTERCALLWORK);
MediaInfoError[] values = agentService.login(agentId, placeId,
loginVoiceForm, null);

Using the .NET Proxy
You can use the provided .NET proxy to minimize session management tasks
and to simplify service creation. This proxy is available in the tools/ directory
on the GIS Product CD.
This section presents how to connect to GIS, and how to use XML and options
for instantiating this connection.

Service Factory
The com.genesyslab.ail.ServiceFactory class is the entry point for the .NET
proxy. You must create a ServiceFactory object in order to connect. The
connection can be synchonous or asynchronous, according to the method
called:
• ServiceFactory.createServiceFactory()—At creation, the factory

instance tries to connect synchronously to GIS. If the connection fails, it
raises an exception.

• ServiceFactory.asyncCreateServiceFactory()—After the factory creation,
the factory instance tries to connect asynchronously to GIS until a
connection succeeds or the factory is released. To monitor the connection
status, you must specify an IServiceFactoryListener listener at factory
creation.

When you create the factory (synchronously, or asynchronously), you must
specify parameters to configure your connection:
• You can fill a Hashtable and pass it at ServiceFactory creation. See “XML

Configuration File for .NET” on page 31 for details about options.

30 Agent Interaction SDK 7.6

Chapter 2: About the Examples Using the .NET Proxy

• You can use an XML file to configure your ServiceFactory object.
Using an XML file is simple: write your own XML file that defines the factory
parameters, or use the default ail-configuration.xml file; then, indicate the
factory parameters to be used.
The following code snippet shows the ServiceFactory creation based on the
WebServicesFactory factory defined in the ail-configuration.xml file.

// Instantiation of a ServiceFactory to make the connection
ServiceFactory myServiceFactory =

ServiceFactory.createServiceFactory(“WebServicesFactory”, null,
null);

See “XML Configuration File for .NET” on page 31 for further details.

Note: An ail-configuration.xml file is available on the GIS product CD in
the tools/ directory.

Access Services
To access the available services, you create them by calling the
createService() method of your instantiated factory, as shown in the
following code snippet.

IXxxService iservice =
myServiceFactory.createService(typeof(IXxxService), null)

as IXxxService;

If the Hashtable parameter is null in the createService() call, the Agent
Interaction Service layer takes into account the current context of the factory.
Otherwise, the Agent Interaction Service layer uses the specified Hashtable for
service creation.
The following code snippet shows how to create an agent service:

IAgentService myAgentService =
myServiceFactory.createService(typeof(IAgentService), null)

as IAgentService;

Note: Your application can typically use the current factory context for
service creation.

Services—Developer’s Guide 31

Chapter 2: About the Examples Using the .NET Proxy

XML Configuration File for .NET
In your XML configuration file, or in the default ail-configuration.xml file,
you must specify for the factory tag one of the following two attributes with
their url option, according to the protocol used to communicate with GIS:
• For GSAP:

PropFactory—The factory name.
url option—The value is prop://[Server address]:[Server port].

• For SOAP:
WebServicesFactory—The factory name.
url option—The value is http://[Server Address]:[Server
Port]/gis.

The following sections present the optional attributes, based on proxy type,
attached to the mandatory attributes specified above.

XML Optional GSAP Attributes

Table 4 presents the GSAP optional attributes available for an XML
configuration file written for the Agent Interaction Services .NET proxy.

Table 1: Optional GSAP Attributes

Name Type Description

backupUrls string A list of backup URLs to be used in case of disconnection,
separated by commas as shown in this example:
"[http://[host1][:port1]/gis,http://[host2][:port2
]/gis]"

logger string The path to the log file.

logger.level string The level of the ROOT logger.

logger.levels string The levels of the loggers.

initial.connect.timeout string The timeout interval for the first connection to the GSAP
Connector in synchonous mode.

timeout.ack string The timeout interval for acknowledgements from the
server, in milliseconds.

timeout.response string The timeout interval for responses from
the server, in milliseconds.

threads.max.worker string Maximum number of threads in system pool. Should be
greater than 50.

32 Agent Interaction SDK 7.6

Chapter 2: About the Examples Using the .NET Proxy

XML Optional SOAP Attributes

Table 5 shows all the attributes that you can define for SOAP.

threads.max.io string Maximum number of threads for IO operations in system
pool. Should be greater than 50.

connector.buffersize.receive string Receive buffer size for the sockets operations, in bytes.
Should be greater than 8000 bytes.

connector.buffersize.send string Send buffer size for the sockets operations, in bytes.
Should be greater than 8000 bytes.

connector.tcpnodelay string Should be true. Do not change this option.

Table 1: Optional GSAP Attributes (Continued)

Name Type Description

Table 2: Optional SOAP Attributes

Name Type Description

UseCookieContainer bool Specifies whether or not the use of cookie
containers is alloed. By default, it is set to false.
You must set it to true to manage http sessions.
This is mandatory for enabling high availability.

BackupUrls string A list of backup URLs to be used in case of
disconnection, separated by commas as shown in
this example:
"[http://[host1][:port1]/gis,http://[host2]
[:port2]/gis]"

Timeout int The timeout interval for an XML web service
client that waits for a synchronous XML web
service request, to complete, in milliseconds. The
default value is 100000 milliseconds.

NbRetriesOnFailure string The maximum number of reconnection attempts
when calling a service method. The default value
is 0.

RetryPeriodOnFailure string The period in milliseconds between two
reconnection attempts.

Services—Developer’s Guide 33

Chapter 2: About the Examples Using the .NET Proxy

ThreadPool.MaxWorkerThreads int Indicates the maximum number of worker threads
allowed at runtime. You must increase this
number if your application makes multiple calls to
service method, especially if the calls concern the
IEventService.getEvents method.

gis.asynchronousConnectionInterval int Specifies the time period in seconds (30 seconds
by default) between two connection attempts. This
option is used in case your application connects
asynchonously.

gis.checkSessionInterval int The check session interval, in seconds. A value of
0 means no check.

gis.username string The GIS user name to log in the factory. Refer to
Configuration Layer documentation for details.

gis.password string The GIS password to log in the factory. Refer to
Configuration Layer documentation for details.

gis.tenant string The GIS tenant to use with the factory. Refer to
Configuration Layer documentation for details.

gis.sessionId string The GIS session identity to use with the factory. If
you use this option, do not use gis.username,
gis.password, and gis.tenant.

notification.HTTPport int The notification HTTP port. The default value is 0,
in which case the remote system chooses an open
port on your behalf.

notification.createHTTPchannel bool Specifies whether to create an HTTP channel. The
default value is true.

notification.objectURI string Specifies the remote object Universal Resource
Identifier (URI). By default, the URI is generated
by the WebServiceFactory.

notification.reachableURL string The reachable URI from the server.

service-point-
manager.defaultConnectionLimit

int The service point manager’s connection limit. The
default value is 2.

service-point-
manager.maxServicePointIdleTime

int The service point manager’s maximum idle time.
The default value is 900,000 milliseconds (15
minutes).

Table 2: Optional SOAP Attributes (Continued)

Name Type Description

34 Agent Interaction SDK 7.6

Chapter 2: About the Examples Using the .NET Proxy

XML Configuration File Example

The following is an example of an XML configuration file for a SOAP
connection:

<?xml version="1.0"?>
<configuration default-factory="WebServicesFactory"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<factory name="WebServicesFactory"
classname="com.genesyslab.ail.WebServicesFactory"
assembly="AilLibrary">

<option name="Url"
value="http://[Server Address]:[Server Port]/gis" />

<option name="gis.username" value="default" />
<option name="gis.password" value="password" />

<!--- OPTIONAL
<option name="gis.sessionId" value="1234567"/>
<option name="notification.HTTPport" type="int" value="10000"/>
<option name="notification.createHTTPchannel"

type="bool"
value="true"/>

<option name="notification.objectURI" value="NotifLoad"/>
<option name="gis.checkSessionInterval" type="int" value="900"/>
<option name="service-point-manager.defaultConnectionLimit"

type="int"
value="10"/>

<option name="notification.reachableURL"
value="http://localhost:8080/ail"/>

<option name="service-point-manager.maxServicePointIdleTime"
type="int"
value="90000"/>

END OPTIONAL -->
</factory>

</configuration>

The following code snippet is an example of an XML configuration file for an
Agent Interaction SDK Services application using GSAP to communicate with
GIS:

<?xml version="1.0"?>
<configuration default-factory="PropFactory"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<factory name="PropFactory"
 classname="com.genesyslab.ail.propprotocol.PropFactory"
 assembly="AilServicesPropProtocol">

<option name="url"
type="string"
value="prop://[Server address]:[Server port]"/>

Services—Developer’s Guide 35

Chapter 2: About the Examples Using the .NET Proxy

<option name="logger" type="string" value="log.log"/>
<option name="logger.level" type="string" value="DEBUG"/>
<option name="logger.levels"

type="string"
value="BinaryFormatter:FATAL"/>

<option name="timeout.ack" type="string" value="20000"/>
<option name="timeout.response" type="string" value="60000"/>
<option name="timeout.check_interval"

type="string"
value="1000"/>

<option name="threads.max.worker" type="string" value="100"/>
<option name="threads.max.io" type="string" value="100"/>
<option name="threads.max.io" type="string" value="100"/>
<option name="connector.buffersize.receive"

type="string"
value="524288"/>

<option name="connector.buffersize.send"
type="string"
value="524288"/>

<option name="connector.tcpnodelay"
type="string"
value="true"/>

</factory>

</configuration>

HTTP Redirections
By default, redirections are disabled at startup. To enable redirections, you
must set the AllowAutoRedirect property to true as follows:
WebServicesFactory wsf = mAilServiceFactory.ServiceFactoryImpl as
WebServicesFactory;
wsf.gisSessionService.AllowAutoRedirect = true;

This option is dynamic and can be modified at runtime or during the
compilation.
Table 3 lists the supported HTTP codes in this configuration.

Table 3: Redirection Codes tested with the .NET Proxy

HTTP Code Supported Description

300 Yes POST, then GET to the new URL.

301 Yes POST, then GET to the new URL.

302 Yes POST, then GET to the new URL.

303 Yes POST, then GET to the new URL.

304 Yes No redirect.

36 Agent Interaction SDK 7.6

Chapter 2: About the Examples Using the Java Proxy

Using the Java Proxy
You can use the provided Java proxy to minimize session management tasks
and to simplify service creation. This proxy is built from the Apache Axis
toolkit, version 1.3, and is available in the tools/ directory on the GIS Product
CD.
This section presents how to connect to GIS, and how to use XML and options
for instantiating this connection.

Service Factory
The com.genesyslab.soa.client.ServiceFactory class is the entry point of the
proxy. You must create a ServiceFactory object in order to connect. The
connection can be synchonous or asynchronous, according to the method
called.
Except for the default configuration file name, the process and the method to
be called are identical to those described in “Service Factory” on page 29.

Note: The default XML configuration filename is proxy-configuration.xml.
For further details, see “XML Configuration File for Java” on page 36.

Access Services
To access the available services, you create them by calling the
createService() method of your instantiated factory, as detailed in “Access
Services” on page 30.

XML Configuration File for Java
In your XML configuration file, or in the default proxy-configuration.xml file,
you must specify for the factory tag one of the following two attributes with
their url option, according to the protocol used to communicate with GIS:
• SOAP

AilWebServicesFactory—The factory name.

307 Yes POST, then POST to the new location.

308 No No redirect.

Table 3: Redirection Codes tested with the .NET Proxy

HTTP Code Supported Description

Services—Developer’s Guide 37

Chapter 2: About the Examples Using the Java Proxy

Url option—The value is http://[Server Address]:[Server
Port]/soa.

• GSAP
GSAPServiceFactoryImpl—The factory name.
url option—The value is prop://[Server Address]:[Server Port].

Your application reads the XML configuration file—by default, proxy-
configuration.xml—to determine which protocols and options should be used
for instanciating its connection to GIS.
The following sections present the optional attributes, according to proxy type,
attached to the mandatory attributes specified above.

XML Optional GSAP Attributes

Table 4 presents GSAP optional attributes available for an XML configuration
file written for the Java proxy.

Table 4: Optional GSAP Attributes

Name rules Description

backupUrls string List of backup connection urls to be used in case of
disconnection.

connect.interval positive
integer

Interval between connection attempts in async mode
and when reconnecting after connection loss (msec).

connect.timeout positive
integer

The timeout period in milliseconds for the TCP socket
connection.

timeout.ack positive
integer

The timeout period to get an acknowledgement from
the GIS, in milliseconds. If the timeout expires, the
associated request fails.

timeout.response positive
integer

The timeout period to get a response from the server, in
milliseconds. If the timeout expires, the associated
request fails.

connector.buffersize.receive positive
integer

Receive buffer size for the sockets operations, in bytes.
Should be greater than 8000 bytes.

connector.buffersize.send positive
integer

Send buffer size for the sockets operations, in bytes.
Should be greater than 8000 bytes.

connector.tcpnodelay bool Disables the Nagle’s algorithm. Should always be true.
Do not change this option.

38 Agent Interaction SDK 7.6

Chapter 2: About the Examples Using the Java Proxy

XML Optional SOAP Attributes

Table 5 shows all the attributes that you can define for SOAP protocol.

Table 5: Optional SOAP Attributes

Name Description

Username Username pour basic authentification.

Password Password pour basic authentification.

MaintainSession Indicates whether or not the HTTP session must be
maintained. By default, it is set to false.

DocumentMode Indicates the document mode, false for rpc/encoding,
otherwise true for document/literal.The default value is
false.

NbRetriesOnFailure The maximum number of reconnection attempts when
calling a service method. The default value is 0.

RetryPeriodOnFailure The period in milliseconds between two reconnection
attempts.

Connection.Timeout The timeout interval for an XML web service client that
waits for a synchronous XML web service request to
complete, in milliseconds. The default value is 100000
milliseconds.

gis.asynchronousConnectionInterval Specifies the time period, in seconds (30 seconds by
default), between two connection attempts. This option is
used if your application connects asynchonously.

gis.checkSessionInterval The check session interval, in seconds. A value of 0 means
no check.

gis.username The GIS user name to log in the factory. Refer to
Configuration Layer documentation for details.

gis.password The GIS password to log in the factory. Refer to
Configuration Layer documentation for details.

gis.tenant The GIS tenant to use with the factory. Refer to
Configuration Layer documentation for details.

gis.sessionId The GIS session identity to use with the factory. If you use
this option, do not use gis.username, gis.password, and
gis.tenant.

Services—Developer’s Guide 39

Chapter 2: About the Examples Using the Java Proxy

XML Configuration File Example for the Java Proxy

The following code snippet presents a proxy-configuration.xml file to be used
with the Agent Interaction Services Proxy Library for Java:

<?xml version="1.0" ?>
<configuration default-factory="AilWebServicesFactory"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" >
<factory name="AilWebServicesFactory"

classname="com.genesyslab.ail.ws.client.AilWebServicesFactory" >
<option name="Url" value="http://localhost:8080/soa"/>
<option name="gis.username" value="default"/>
<option name="gis.password" value="password"/>
<option name="gis.tenant" value=""/>
<option name="MaintainSession" value="false"/>
<option name="DocumentMode" value="false"/>
<option name="Username" value=""/> // username pour basic authentification
<option name="Password" value=""/> // password for basic authentification
<option name="http.proxyHost" value=""/> // proxy host
<option name="http.proxyPort" value=""/> // proxy port
<option name="http.proxyUser" value=""/> // proxy user
<option name="http.proxyPassword" value=""/> // proxy password
<option name="ConnectionTimeout" value="60"/> // timeout request response in s
<option name="gis.asynchronousConnectionInterval" value="30"/>
<option name="gis.checkSessionInterval" value="900"/>
<option name="gis.sessionId" value="1234567"/>
<option name="notification.HTTPport" value="0"/>
<option name="notification.reachableURL" value="http://[client host]:[client port]"/>
 </factory>
</configuration>

notification.HTTPport The notification HTTP port. The default value is 0, in
which case the remote system chooses an open port on
your behalf.

notification.reachableURL The reachable URI from the server.
http://[client host]:[client port]

http.proxyHost The name for the proxy host.

http.proxyPort The port of the proxy host.

http.proxyUser The username for the proxy host.

http.proxyPassword The password for the proxy host.

Table 5: Optional SOAP Attributes (Continued)

Name Description

40 Agent Interaction SDK 7.6

Chapter 2: About the Examples Using the Java Proxy

GIS License

SOAP

The GIS_INTERACTIONSERVICE license is checked out when your application
needs to call the ServiceFactory.createFactory() method. To check the
license in, your application calls the ServiceFactory.releaseFactory()
method.
In a scenario where the agent logs out and the application properly terminates,
your application should release the ServiceFactory instance when the
application ends; this frees the agent’s license.
In an application crash scenario, the license is checked in when the GIS session
ends, as is also the case with the GIS_CONFIGURATION_SERVICE and
GIS_STATSERVICE licenses.

GSAP

The GIS_INTERACTIONSERVICE license is checked out when your application
connects. Then, the license is checked in when your application disconnects
from GIS, regardless the reason of the disconnection (crash or regular
shutdown).

HTTP Redirections
Unlike with the .NET proxy, you cannot enable or disable redirections at
compilation or runtime. In Java, the Axis client handles the HTTP connection
through a library, which is defined in the wsdd client file, and relies on the
v3.0.1 Jakarta HTTP client (see HttpClient Home.)
For instance, to enable redirections, you should disable the HttpCommonsSender
library in the Java client that implements the proxy library:

context.setProperty("EnableHttpCommonsSender", "false");

Then, you can provide your own client-config.wsdd file which defines the
transport layer, as shown below.

<?xml version="1.0" encoding="UTF-8"?>
<deployment name="defaultClientConfig"
 xmlns="http://xml.apache.org/axis/wsdd/"

xmlns:java="http://xml.apache.org/axis/wsdd/providers/java">
 <globalConfiguration>
 <parameter name="disablePrettyXML" value="true"/>
 <parameter name="enableNamespacePrefixOptimization"
value="false"/>

http://hc.apache.org/httpclient-3.x/
http://hc.apache.org/httpclient-3.x/

Services—Developer’s Guide 41

Chapter 2: About the Examples API Overview

 <parameter name="sendMultiRefs" value="false"/>
 </globalConfiguration>
 <transport name="http"
pivot="java:com.genesyslab.soa.impl.channel.axis.handler.HTTPSender
" />
 <transport name="https"
pivot="java:org.apache.axis.transport.http.CommonsHTTPSender"/>
 <transport name="local"
pivot="java:org.apache.axis.transport.local.LocalSender"/>
 </deployment>

To develop a transport layer, you should extend the
org.apache.axis.handlers.BasicHandler class. Refer to the official Axis
documentation for further information.

API Overview
The Agent Interaction Services API works with the mirroring services
available in GIS. Typically, your application is a client application, integrating
Agent Interaction Services to perform agent actions and to communicate data
and events with the Genesys Framework, as shown in Figure 1.

Figure 1: Services Integrated in an Agent Application

Your application deals with services that transparently hide GIS and the
Genesys Framework, which handles information and CTI objects. These
services provide the following features:
• handling agent activity, such as login and logout.
• handling voice interactions such as answering, calling, and callback.
• handling e-mail interactions.
• handling outbound campaigns.

Genesys FrameworkAgent Desktop Application

GUI

Integrated Agent Services

Event

GIS

Agent data

Voice data

E-mail data

Data and
events

Data and
action

requests

E-mail

Voice

Agent

http://axis.apache.org/axis/
http://axis.apache.org/axis/

42 Agent Interaction SDK 7.6

Chapter 2: About the Examples API Overview

• using the Standard Response Library.
• handling contacts and their histories.
One particularity of the Agent Interaction Services API is its service approach
design. This means that a service deals with dedicated information concerning
a set of remote objects. For example, the agent service deals with agent data
only.

Building an Application Using Services
Take the following steps (a general strategy) to build your application on the
Agent Interaction Services API:
1. Connect your application. See “Opening a Session” on page 28.
2. Get an event service. See Chapter 4, “The Event Service,” page 53.
3. Get an agent service. See Chapter 5, “The Agent Service,” page 71.
4. Subscribe to events.
5. Get the services required to implement your application features.
6. Update your application any time you retrieve an event according to

possible actions or status changes.

The Remote Services
When using the Agent Interaction Services API, you are dealing with remote
services integrating the Agent Interaction Layer library. This library is part of
the Genesys Agent Interaction (Java API). See the Agent Interaction SDK Java
documentation for full details of AIL features.
The AIL library internally implements models of Genesys products, such as
Framework voice calls, e-mail, outbound campaigns, and so on.
The remote services are exposed in GIS, as shown in Figure 2.

Figure 2: The Remote Services and the Genesys Interface Server

On the GIS side, the remote services implement the AIL library, which
internally handles models of the Genesys Framework. On the agent-desktop-
application side, the integrated services hide the interactions with the remote
services which encapsulate the AIL library.

Agent Desktop Application GIS

Genesys
Framework

Agent Interaction
Service Library

R
em

ot
e

S
er

vi
ce

s

AIL Library
Protocol

(SOAP, GSAP)

Services—Developer’s Guide 43

Chapter 2: About the Examples API Overview

The AIL library maintains models of the Genesys objects used by your
application. These objects might include, for example, DNs, a Places, agents,
or interactions. The native AIL library API offers interfaces to perform actions
on these objects, and the library core internally handles the state models, as
illustrated in Figure 3.

Figure 3: The Remote Services and the AIL Internal Core

The numbered labels in Figure 3 show the following actions:
1. implementation of an AIL Interface dealing with a core object
2. calling an AIL object method
3. AIL Sending a set of requests
4. AIL Receiving Events
5. AIL core updating core object models
6. AIL sending events to the Event Service
As shown in Figure 3, the AIL core notifies the remote services with events
when the states of objects or data change. For example, if your service requests
an agent login on a media type, once the agent is logged in, the AIL core
notifies the event service that the agent status on the media is now READY or
NOT_READY. If your application has registered to listen to events on the agent, it
receives the event and can inspect the data.

Note: Genesys recommends that you base your agent desktop application on
the state models provided by the Agent Interaction Services API.

Using the Services
The Agent Interaction Services API provides a set of services. A service is an
interface dealing with a group of objects. For example, an interaction service
gives access to interactions’ data. A single request can apply to a group of
several interactions. Figure 4 illustrates the service concept.

GIS

Genesys
Framework

Agent Interaction Layer

AIL Core

Object models

Remote Services

Event

Other services
1, 2

6 4

3

5

44 Agent Interaction SDK 7.6

Chapter 2: About the Examples API Overview

Figure 4: Service Concept

Services are agent-oriented; that is, services are designed to fulfill requests of
agent type and should be used for this purpose.
The Agent Interaction Services API represents services suitable to perform
agent actions and to retrieve any data required by an agent-oriented
application. How you make use of the various services is a matter of your
application design.
Your application integrates at least two services: the agent service and the
event service, as shown in Figure 5.

Figure 5: Using the Services in Your Agent Desktop Application

To properly use other services, your application requires:
• An agent service—This service manages agent actions and data; without

an agent logged in with this service, some services cannot fulfill actions
and data requests.

• An event service—Your application must update according to the data
propagated in events which are published in this service.

Application Service (visible interface)

Object 1

Object 2

...

Object n

Agent Desktop Application

GUI

Agent Interaction Services

Event

Other services

Agent

Mandatory

Update

Actions, DTOs

Services—Developer’s Guide 45

Chapter 2: About the Examples API Overview

Possible Actions

The Agent Interaction Service API is designed to implement agent desktop
applications. Therefore, services have been designed to perform agent actions
that affect the components managed by the Genesys Framework.
For example, getting ready, logging in, and logging out on media are actions
handled by the IAgentService interface, and performed by calls to the
corresponding methods.
However, a given service’s actions might not all be available at a given point in
time. An obvious example is an agent not being allowed to become READY on
media where he or she has not yet logged in.
Thus, to perform a particular action, your application must first check to see if
this action is possible:
• Actions are identified in the <service_name>Action enumeration.
• Possible actions are provided with attributes of the

I<service_name>Service interface attributes.
• Possible actions are updated and propagated with events.
A good use of possible actions is enabling or disabling graphical components
that the agent uses to perform actions.

Statuses

The services interact with objects and provide you with their statuses during
runtime.
• Statuses are identified in the *Status enumeration of service namespaces.
• Status access is provided with attributes of the I<service_name>Service

interface.
• Status changes are propagated in events.
You should base your application design on these statuses. For example, in a
GUI context, if a call status is IDLE (terminated), the associated GUI
components have no need to be visible anymore.

Note: To determine which actions are available in the current status of the
application, rely on the provided possible actions.

46 Agent Interaction SDK 7.6

Chapter 2: About the Examples API Overview

Services—Developer’s Guide 47

Chapter

3 Data Transfer Object
This chapter discusses the use of Data Transfer Objects (DTO).
The information in this chapter is divided amongst the following topics:

Introduction, page 47
DTOs in the Service API, page 47
DTOs Handling, page 49

Introduction
The purpose of this section is to introduce the general DTO concepts.
In a client application, a transaction may require multiple server requests to
complete. This going back and forth takes up significant amount of time to
complete the transaction.
To improve the performance of a set of requests, the solution is to package all
the required data into a Data Transfer Object (DTO) that can be sent with a
single call.
A DTO is a generic container for a key-value list of data associated with
several distinct remote objects. You specify in the list only the keys you are
interested in.
You use this list to retrieve or modify attributes’ values according to their
properties.

DTOs in the Service API
The Agent Interaction Service API makes use of the DTO Pattern for services
attributes that can be retrieved, set or published. DTOs are involved in
published events, in services methods calls, and so on.

48 Agent Interaction SDK 7.6

Chapter 3: Data Transfer Object DTOs in the Service API

DTOs carry key-value attributes of several services. They are handled with
dedicated methods and classes as presented in the following sections.

Dedicated Classes
Each service namespace includes classes gathering attributes for DTO
handling. You can find several types of DTO classes:
• XxxDTO—This class manages the DTO related to Xxx; for example

InteractionDTO is a class managing the DTO of an interaction.
• XxxListDTO—This class manages an array of XxxYyyDTO; for example

AgentListDTO manages an array of PersonDTO.
• XxxSummaryDTO—This class manages the DTO of an Xxx summary; for

example AgentSummaryDTO is a class managing the DTO of an agent
summary.

The attributes list of a DTO is a KeyValue array. The KeyValue class is a very
simple container having two fields:
• KeyValue.key—The attribute name
• KeyValue.value—The object corresponding to the attribute value.

Attributes
Each service handles a set of objects and proposes several domains defining
accessible attributes to deal with objects data.

Note: To determine what are the available attributes of a service, see the
service interface description in theAgent Interaction SDK 7.6 Services
API Reference.

For example, the IAgentService interface is a service dealing with a set of
agents. Agents have two defined domains:
• person defines common data associated with persons (even if the person is

not an agent) as for example: person:lastname and person:firstname.
• agent defines specific agent data as for example agent:defaultPlaceId

(default place for the agent) or agent:currentPlaceId (current place for the
agent).

Notation

For each service, the domain attributes used in DTO are defined in accordance
with the following rule:
domain[[.subdomain]...]:attributeName

For example, the following attributes exist:
• interaction:interactionId

Services—Developer’s Guide 49

Chapter 3: Data Transfer Object DTOs Handling

• interaction.voice:phonenumber

• interaction.mail.out:invitations

Warning! When you use an attribute, you have to use the complete attribute
name, including the domain and sub-domains.

Properties

An attribute can have the properties defined, as shown in Table 6.

Note: To determine an attribute’s properties, see the attribute description in
the service interface definition in the Agent Interaction SDK 7.6
Services API Reference.

DTOs Handling
Agent desktop applications use DTOs to read and write service attributes.
DTOs also play an essential role in event handling.

Note: Genesys recommends that you avoid the use of the * wildcard in DTOs
since they cause longer processing times for transactions.

This section shows how to read and set DTO attributes values and introduces
the use of DTOs in events.

Table 6: Attribute Properties

Attribute Properties

read The IXxxService attribute is readable and can be
retrieved with a IXxxService.getXxxDTO() method.

read-default The IXxxService attribute is likely to be often read,
so it is part of the default attributes.

write The IXxxService attribute is writable using a
IXxxService.setXxxDTO() method.

event The attribute can be published via the event service.

event-default The attribute is likely to be often published via the
event service, so it is part of the default attributes.

50 Agent Interaction SDK 7.6

Chapter 3: Data Transfer Object DTOs Handling

Reading DTOs
Reading a DTO consists in reading a list of attributes identified with a read
property in the service domain. You first define the list of attribute names, then
use the appropriate get*DTO() method.
For example, if you want to read the person:firstname and person:lastname
attributes of the IAgentService interface, first define an array of these attribute
names:

string[] myAttributeNames = new string[]{“person:firstname”,
 “person:lastname” };

Retrieve the corresponding values using the IAgentService.getPersonsDTO()
method as illustrated in the following code snippet:

/// Defining the list of agents you are interested in:
string[] myAgentIds = new string[]{ “agent0”, “agent1”};

/// Retrieving for each agent the attributes value
/// defined in mAttributeNames
PersonDTO[] myValues = myAgentService.getPersonsDTO(myAgentIds,

myAttributeNames);

Access to the attribute values in the data field of the AgentDTO object.
/// Displaying agent0 attributes name and value:
foreach(KeyValue data in myValues[0].data)
{

System.Console.WriteLine("{0}={1}",
 data.key,
 data.value.ToString());

}

Setting DTOs
You can set new values for service attributes having the write property in the
service domain.
Create a *DTO containing the KeyValue pairs of the writable service attributes
and their new values. Once you have created the DTO, you call the appropriate
I**Service.set*DTO() method.
For example, the IAgentService interface allows you set an array of PersonDTO.
Each PersonDTO object associates a list of KeyValue attributes with an agent ID.
You can create a DTO containing the writable agent:signature attribute and
set it with the IAgentService.setPersonsDTO() method, as illustrated in the
following code snippet:

Services—Developer’s Guide 51

Chapter 3: Data Transfer Object DTOs Handling

/// Creating a DTO array
AgentDTO[] aNewDTO = new PersonDTO[1];

/// Creating a new DTO
aNewDTO[0] = new PersonDTO();

/// This DTO is related to agent0 information
aNewDTO[0].personId = “agent0”;
aNewDTO[0].data = new KeyValue[1];

/// The targeted data is the agent0 signature
aNewDTO[0].data[0] = new KeyValue();
aNewDTO[0].data[0].key = "agent:signature";
aNewDTO[0].data[0].value = "This is agent0 signature";

/// Setting the new DTO
PersonError[] errors = myAgentService.setPersonsDTO(aNewDTO);
/// Displaying the errors
foreach(PersonError err in errors)
{

System.Console.WriteLine("Setting DTO: {0} -", err.ToString());
}

The attributes are updated in the order of the KeyValue array. If an error occurs
on an attribute, the method returns an error in an array specifying on which
attribute the error has occurred.

Note: If an error occurs on the update of an attribute, it does not stop the
update process: the remaining attributes are updated.

DTOs and Events
Domain attributes that have the event property or the event-default property
are published in events.
To determine which attributes are published by an event, refer to the Agent
Interaction SDK 7.6 Services API Reference. The available attributes are listed
in the event description (part of the service interface definition).
When you subscribe to events, you specify which attributes are retrieved.
Then, the incoming events contain the KeyValue array with these attributes and
their current value.
For further information about event handling, refer to Chapter 4:
• See “Building TopicsEvent” on page 59 for further details on DTO when

subscribing to events.
• See “Reading DTOs in Events” on page 68 for further details on published

DTOs.

52 Agent Interaction SDK 7.6

Chapter 3: Data Transfer Object DTOs Handling

DTOs and Wildcards
Agent Interaction SDK 7.6 Services API includes wildcards which simplify the
code for getting attributes through DTOs.
Table 7 lists the possible wildcards to access groups of attributes. However,
Genesys recommends that your application makes a limited use of these
wildcards.
Retrieving large groups of attribute values causes longer processing times for
transactions, and decreases your application’s performances. In particular,
Genesys recommends that you avoid using the * wildcard.
The default wildcard should be your preferred one, because attributes marked
as default are commonly used by applications deployed above the Agent
Interaction SDK 7.6 Services API.,

Table 7: Attribute Wildcard

Wildcard Meaning

* All the attributes of all the domains and
subdomains.

default All the attributes marked default in all
domains and subdomains.

domain:* All the attributes of this domain.

domain:default All the attributes marked as default in this
domain.

domain.*:* All the attributes of the subdomains.

domain.*:default All the attributes marked as default in the
subdomains.

domain.subdomain:* All the attributes of this domain.subdomain.

domain.subdomain:default All the attributes marked as default in this
domain.subdomain.

Services—Developer’s Guide 53

Chapter

4 The Event Service
The event service is the IEventService interface defined in the
com.genesyslab.ail.ws._event namespace. To manage events, your
application must integrate this interface and use classes of its namespace to
deal with it. This chapter covers the following topics:

Event Service Overview, page 53
Understanding the Event Service, page 54
Handling Topics Objects, page 59
Getting Events, page 65
Event Notification in Java, page 68

Event Service Overview
Event handling is achieved through the event service and is based on the
Subscribe/Publish Pattern. To deal with events, your application integrates the
event service, which is in charge of published events.
A TopicsEvent associates a topic with a type of event. This class defines which
events are available and specifies which data to propagate with this type of
event.
To receive events concerning your application, first define TopicsEvents for
each service, then subscribe to these TopicsEvents with the IEventService
interface. Then, the IEventService interface can use pull or push mode to
retrieve the events published by a service, as shown in Figure 6.

54 Agent Interaction SDK 7.6

Chapter 4: The Event Service Understanding the Event Service

Figure 6: The Integrated Event Service

Figure 6 shows that subscribed topics allow your application to retrieve the
correct events. Notice that the other Agent Interaction Services do not provide
any management related to events.
Incoming events reflect changes in the Genesys Framework—for example, the
contact e-mail address is modified or an e-mail is properly sent.
Events are specialized. For example, a VoiceMediaEvent is an agent event on
voice media and strictly involves the agent service. If your agent service
requests a login on a DN for the agent0 agent, your event service receives a
VoiceMediaEvent as soon as agent0’s login is successful.
For each service, the associated event names are listed in the interface
description. For each type of event, you can see the list of available attributes
to retrieve with the received event. You define the attributes to propagate with
the event in the same TopicsEvent that specifies the event to which to
subscribe.

Understanding the Event Service
The event service is designed to optimize the network activity. Once you have
subscribed to the events of a set of services, you get all the events in a single
request, in either push or pull mode.
The following subsections introduce principal concepts of the event service,
and of the classes of the com.genesyslab.ail.ws._event namespace, that you
should take into account in your application design.

Events Associated with Services
As presented in “Event Service Overview” on page 53, the event service
receives all of your application’s events. The other services integrated into
your application do not deal directly with events.

Agent Desktop Application

Integrated web
services

GUI

IEventService

Other services

GIS Genesys Framework

Other remote
services

Update Subscribed
topic events

read/write/
actions

Actions
DTOs E-mails

Agent

Voice

Subscribed
events

Events

Services—Developer’s Guide 55

Chapter 4: The Event Service Understanding the Event Service

However, these services are interfaces for a set of objects. Events can occur on
the objects hidden by a service. Therefore, each service has its own set of
events, which are designed to be appropriate to activites for that service. A few
services, such as the SRL and resource services, have no events, because their
use is restricted to simple data access.
To find the list of events for any particular service in the Agent Interaction
SDK 7.6 Services API Reference, open its service interface. For example, under
com.genesyslab.ail.ws.agent, open the IAgentService interface, scroll past its
list of attributes (in domain:attribute notation) to find the available types of
events:
• VoiceMediaEvent
• MediaEvent
• PlaceChangedEvent

For each service, the attributes that have an event property are likely to be
published in the service events. Event descriptions in the Agent Interaction
SDK 7.6 Services API Reference list all the attributes published by each event.

Understanding TopicsEvents and Events
To receive events, you define TopicsEvents for each event type to which you
want to subscribe.
TopicsEvent is a class of the com.genesyslab.ail.ws._event namespace that
has the following attributes:
• eventName—The string type of the targeted events (for example,

MediaEvent).
• filters—An array of key-value pairs defined to filter this type of event.
• triggers—An array of one or more key-value pairs defined to select

events occurring on specific Genesys objects.
• attributes—A string array specifying keys for the attribute list of the

event.
TopicsEvents use:
• Triggers and filters to define which specific events you want to receive.
• List of attribute keys to retrieve values for service attributes propagated

with the event.
The following subsections explain these aspects of event handling.

Understanding Triggers and Filters

Triggers identify the Genesys objects involved in an event.
For example, if your application uses the agent service to perform agent
actions on e-mail media, your application can subscribe to MediaEvents. Your

56 Agent Interaction SDK 7.6

Chapter 4: The Event Service Understanding the Event Service

application specifies a trigger, in this case, which agent to monitor—for
example, agent0—so as to receive any MediaEvents involving agent0.
Filters identify specific values of some attributes published with events. If your
application sets no filters, it receives any event that matches a trigger. If your
application set some filters, it receives events that match one of the filter
values.
For example, your application can define a filter so as to receive MediaEvents
only for a specific status change in the media. If agent0 performs a successful
login on certain media, your application might receive a MediaEvent due to a
status change and associated with the NOT_READY agent media status. Your
application can choose to receive only these events.
Triggers and filters are values or fields of some published attributes. An event
matches a TopicsEvent if its published attributes match one of the triggers and
one of the filters. If no filter is defined, then the event just has to match the
trigger.
Figure 7 and Figure 8 on page 57 present the general matching process for
triggers and filters.

Figure 7: MediaEvents Matching a TopicsEvent

Figure 7 shows an example of what happens on the server-application side
when an IEventService has subscribed to a TopicsEvent for a MediaEvent.
When the server-side application receives a MediaEvent, it checks with the
TopicsEvent to determine whether one of the triggers and one of the filters
match. If so, the IEventService can retrieve an Event object corresponding to
the MediaEvent.

MediaEvent ‘1'
(published attributes)

MediaEvent ‘0'
(published attributes)TopicsEvent: MediaEvent

Triggers

Filters

AGENT=
"Agent1"

AGENT=
"Agent0"

STATUS _CHANGED
= "NOT_READY"

STATUS _CHANGED
= "READY"

person :agentId
"Agent0"

agent:mediaInfo
"NOT_READY"

(…)

person :agentId
"Agent1"

agent:mediaInfo
"READY"

(…)

Matching

Matching

Matching

Matching

Services—Developer’s Guide 57

Chapter 4: The Event Service Understanding the Event Service

Figure 8: MediaEvent Not Matching a TopicsEvent

Figure 8 shows a MediaEvent that does not match a TopicsEvent defined for
MediaEvent. Although the event matches the Agent0 trigger, no filter
corresponds.

Retrieved Events and TopicsEvents

Whatever type of event is received on the server-side application, the
IEventService interface retrieves only Event objects.
The Event class is part of the com.genesyslab.ail.ws._event namespace. Its
attributes include the following:
• eventName—A string representing the event type.
• serviceName—A string representing the service name involved in the

event.
• triggers—A key-value array of the triggers matched by the event.
• attributes—A key-value array of the published attributes propagated with

the event.
In each event description in the Agent Interaction SDK 7.6 Services API
Reference, the published attributes are listed. Only these attributes can be
propagated in the Event.attributes field.
The TopicsEvent class lets your application specify the keys of the published
attributes to retrieve with an Event.

TopicsEvent: MediaEvent

Triggers

Filters

AGENT=
"Agent1"

AGENT=
"Agent0"

STATUS _CHANGED
= "NOT_READY"

STATUS _CHANGED
= "READY"

Matching

Not Matching

MediaEvent ‘3'
(published attributes)

person :agentId
"Agent0"

agent:mediaInfo
"LOGGED_OUT"

(…)

58 Agent Interaction SDK 7.6

Chapter 4: The Event Service Understanding the Event Service

Figure 9 illustrates the relationship between the attributes keys of a
TopicsEvent, the published attributes of an event, and the key-value pairs
propagated with an Event object.

Figure 9: TopicsEvent and Event Relationship

As shown in Figure 9, the attribute keys specified in the TopicsEvent determine
which attributes are propagated in the Event object retrieved by the
IEventService.

Note: There is no need to propagate filters in order to use them. Filters are
independent from the published attribute values.

TopicsEvent: MediaEvent

Matching filter

MediaEvent ‘0'
(published attributes)

Matching trigger

AGENT=
"Agent0"

STATUS _CHANGED
= "NOT_READY"

person:agentId
"Agent0"

agent:mediaInfo
"NOT_READY"

person:lastname
"Smith"

Attributes to retrieve

agent:mediaInfo

person :lastname

Event (retrieved by IEventService)

triggers

eventName="MediaEvent "
serviceName="AgentService "

key="AGENT"
value="Agent0"

attributes

key="agent:mediaInfo "
value="NOT_READY"

key="person:lastname "
value="Smith"

Services—Developer’s Guide 59

Chapter 4: The Event Service Handling Topics Objects

Understanding TopicsServices
The TopicsService class lets your application subscribe to the IEventService
interface. A TopicsService associates a set of TopicsEvent with a service, as
presented in the following diagram.

Figure 10: The TopicsService Class Diagram

Your application should subscribe to general TopicsService objects for every
service that your application integrates. The IEventService interface offers a
set of features to dynamically remove, add, or modify these objects, according
to your application needs, as presented in the following sections.

Handling Topics Objects
According to your requirements, your application must deal with services’
events. Therefore, your application must subscribe to TopicsService and
TopicsEvents to define the set of events to retrieve.
These classes are part of the com.genesyslab.ail.ws._event namespace, as
detailed in the following subsections.

Building TopicsEvent
The TopicsEvent class is used to define the events to which to subscribe.
• Your application can specify triggers and filters to determine the list of

events to receive.
• Your application can specify the attributes to retrieve in a DTO

(Data Transfer Object) when the targeted events occur.
Each TopicsEvent is dedicated to a single type of event. It defines, for example,
which MediaEvent to receive for the agent service.

/// Defining a topic event for MediaEvent
TopicsEvent myTopicsEvent = new TopicsEvent() ;
myTopicsEvent.eventName = "MediaEvent" ;

Defining Triggers and Filters

Triggers and filters are (respectively) TopicsEvent.triggers and
TopicsEvent.filters attributes. The filter is related to the event occurrence

TopicsEvent
+eventName
+attributes

TopicsService
-serviceName

+TopicsEvents

1 *

Topic
+key : string(idl)
+value : string(idl)

+triggers filters

1 *

60 Agent Interaction SDK 7.6

Chapter 4: The Event Service Handling Topics Objects

and the trigger to the identifier of the monitored object. See “Understanding
Triggers and Filters” on page 55 for further explanation.

Note: The trigger attribute is mandatory when filling in a TopicsEvent
object.

Triggers and filters are both Topic objects (see Figure 10 on page 59).
The Topic class is a simple container for a key-value pair. For example, the
following code snippet shows how to set some triggers and filters for a
MediaEvent.

/// Defining the filter for the TopicsEvent.
myTopicsEvent.filters = new Topic[1];

/// Defining a filter for a specific media status
myTopicsEvent.filters[0] = new Topic();
myTopicsEvent.filters[0].key = "STATUS_CHANGED";
myTopicsEvent.filters[0].value = "NOT_READY";

/// Defining the trigger agent0.
myTopicsEvent.triggers = new Topic[1] ;

/// Specifying the targeted agent
myTopicsEvent.triggers[0]= new Topic();
myTopicsEvent.triggers[0].key = "AGENT" ;
myTopicsEvent.triggers[0].value = “agent0”;

The above code snippet specifies retrieval conditions for each MediaEvent
occurring on agent0 with a NOT_READY agent media status, as follows:
• If your application does not define any other trigger and filter for the

MediaEvent, it only retrieves events with these characteristics.
• If your application sets a null value for the TriggerFilter.filter attribute,

it retrieves any MediaEvent occurring on agent0.
For further information about the existing key-value pairs for triggers and
filters, refer to the events description in the Agent Interaction SDK 7.6 Services
API Reference.

Propagated Attributes

The TopicsEvent.attributes field defines the published attributes to retrieve
for the events that match a trigger and a filter (if filters are defined). See
“Retrieved Events and TopicsEvents” on page 57 for further details.
Your application can only retrieve attributes that have an event property (as
specified in their description that appears in services’ attribute lists, in the API
reference.)

Services—Developer’s Guide 61

Chapter 4: The Event Service Handling Topics Objects

The following code snippet sets a list of MediaEvent attributes to retrieve.

/// Defining a topic event for MediaEvent
TopicsEvent myTopicsEvent = new TopicsEvent() ;
myTopicsEvent.eventName = "MediaEvent" ;

/// Setting the filters and triggers
///...

/// Setting the key list of attributes to retrieve in the Event
myTopicsEvent.attributes = new String[] {

"agent:mediaInfo",
"agent:mediaAgentStatus"
"agent:mediasActionsPossible"} ;

Wildcards

Your application can employ wildcards when setting the
TopicsEvent.attributes field. Genesys recommends that your application
rather uses the default wildcard than the * wildcard. Default attributes are the
most commonly used attributes in applications based on this SDK, and they
should provide your application with most values it needs, without increasing
significantly the activity on the network. At the contrary, the usage of the *
wildcard could disturb the network traffic and reduce your application’s
performances.
In the following code snippet, the default wildcard specifies that the default
attributes in the agent domain having an event property are propagated. For
further information about wildcards, see Chapter 3, “Data Transfer Object,” on
page 47.

myTopicsEvent = new TopicsEvent() ;
myTopicsEvent.eventName = "MediaEvent" ;
/// Retrieving all the agent attributes
myTopicsEvent.attributes = new String[] {"agent:default"};
/// ...

Building TopicsServices
The TopicsService class associates a specific service with an array of
TopicsEvent to which to subscribe (see Figure 10, “The TopicsService Class
Diagram,” on page 59).
The TopicsService.TopicsEvents array must contain TopicsEvent objects for
events occurring for the TopicsService.serviceName service.
For example, MediaEvent, VoiceMediaEvent, and PlaceChangedEvent might
occur if your application uses the agent service. They can be specified in the
TopicsEvent objects of a TopicsService object dedicated to the agent service.

62 Agent Interaction SDK 7.6

Chapter 4: The Event Service Handling Topics Objects

The following code snippet defines a TopicsService object for the agent
service. Its TopicsEvents lets your application subscribe to MediaEvent and
VoiceMediaEvent only.

/// Creating a TopicsService for the Agent Service
TopicsService myTopicsServices = new TopicsService() ;
myTopicsServices.serviceName = "AgentService" ;

/// Creating Topics Events for the Agent Service
TopicsEvent[] myTopicsEvents = new TopicsEvent[2] ;

/// Defining a topic event for MediaEvent
myTopicsEvents[0] = new TopicsEvent() ;
myTopicsEvents[0].eventName = "MediaEvent" ;
/// ...

/// Defining a topic event for VoiceMediaEvent
myTopicsEvents[1] = new TopicsEvent() ;
myTopicsEvents[1].eventName = "VoiceMediaEvent" ;
/// ...
/// Adding the previous TopicsEvents to the TopicsService object
myTopicsServices.topicsEvents = myTopicsEvents ;

Note: Refer to the Agent Interaction SDK 7.6 Services API Reference for
more information about available events: See services’ interface
descriptions.

Subscribing to the Events of a Service
Your application can subscribe to several topics’ services. To do so, it must:
1. Get an event service.
2. Build an array of TopicsService.
3. Create a subscriber.
4. Subscribe to the topics.

Initial Subscription

Next, create a TopicsServices array that includes TopicsEvents to which your
application must subscribe, as illustrated in the following code snippet:

/// Creating the array of topics
TopicsService[] myTopicsServices = new TopicsService[2] ;
myTopicsServices[0] = new TopicsService() ;
myTopicsServices[0].serviceName = "AgentService" ;
///

Services—Developer’s Guide 63

Chapter 4: The Event Service Handling Topics Objects

myTopicsServices[1] = new TopicsService() ;
myTopicsServices[1].serviceName = "InteractionService" ;
///

For further information on TopicsServices, see “Building TopicsServices” on
page 61.
Once the array is filled, create a subscriber:

/// Creating a Subscriber
SubscriberResult mySubscriber =

myEventService.createSubscriber(null,myTopicsServices) ;

Note: Use this SubscriberResult for your further subscribing and
unsubscribing operations. This ensures the use of a single subscriber
for your application.

Further Subscriptions

During runtime, your application’s needs for event-propagated data can
change. Your application can define new TopicsService objects and use the
IEventService.subscribeTopics() method to subscribe to them, as presented
in the following code snippet:

/// Creating the array of new topics
TopicsService[] newTopicsServices = new TopicsService[2] ;
///...
/// Subscribing
myEventService.subscribeTopics(mySubscriber.subscriberId,

newTopicsServices);

Warning! When your application subscribes to a TopicService using a
TopicsEvent with a trigger that has already been subscribed, filters
and attributes are all replaced by new ones.

Remove Subscriber

Before your application logs out from GIS, first it must remove its subscriber,
as shown in the following code snippet.

myEventService.removeSubscriber(mySubscriber.subscriberId);

64 Agent Interaction SDK 7.6

Chapter 4: The Event Service Handling Topics Objects

Unsubscribing from Topics
Your application may unsubscribe from TopicsServices, or modify
TopicsEvents’ content, during application runtime to fulfill your application’s
needs. The following subsections detail the corresponding IEventService
features.

Removing All the Topics Events

Your application can remove all the TopicsEvents for all the services. Use the
IEventService.unsubscribeAllTopics() method.
The following code snippet unsubscribe from all the topics objects defined for
your application subscriber:

myEventService.unsubscribeAllTopics(mySubscriber.subscriberId);

All the TopicsEvents previously defined with a TopicsService are removed.
Your application receives no further events.

Removing Specific Topics for a Service

The process of removing a specific topic for a service is similar to the
subscription process. Instead of subscribing to a TopicsService array, your
application unsubscribes using a TopicsServiceRemove array.
A TopicServiceRemove object is dedicated to a service and includes the
TopicsEventRemove objects that list the removed events for this service. The
removed events are associated with a trigger.
The following code snippet removes the trigger agent0 of the MediaEvent for
the agent service:

/// Defining the trigger
Topic myTriggerToRemove = new Topic();
myTriggerToRemove.key = "AGENT";
myTriggerToRemove.value = “agent0”;

/// Creating the array of event to remove
TopicsEventRemove[] myTopicsEventToRemove = new

TopicsEventRemove[1];
myTopicsEventToRemove[0] = new TopicsEventRemove();

/// Setting the trigger for the MediaEvent
myTopicsEventToRemove[0].eventName = "MediaEvent";
myTopicsEventToRemove[0].triggers = new Topic[1];
myTopicsEventToRemove[0].triggers[0] = new Topic();
myTopicsEventToRemove[0].triggers[0] = myTriggerToRemove;

Services—Developer’s Guide 65

Chapter 4: The Event Service Getting Events

/// Creating the array of TopicsServiceRemove
TopicsServiceRemove[] myTopicsServiceToRemove =

new TopicsServiceRemove[1];

/// Creating a TopicsServiceRemove for the Agent Service
myTopicsServiceToRemove[0] = new TopicsServiceRemove();
myTopicsServiceToRemove[0].serviceName="AgentService";

/// Associating the previous topics with the Agent Service
myTopicsServiceToRemove[0].topicsEventsRemove =

myTopicsEventToRemove;
/// Unsubscribing
myEventService.unsubscribeTopics(mySubscriber.subscriberId,

myTopicsServiceToRemove);

The above code snippet ensures that subsequent MediaEvents retrieved with the
mySubscriber.subscriberId no longer involves events for agent0.

Handling Subscription Errors
When your application subscribes or unsubscribes, the topics objects are
processed sequentially: If an error occurs for one topic, the remaining topics
are processed. The errors are returned in an array of TopicServiceError
objects, as shown in the following code snippet:

/// subscribing to topics
TopicServiceError[] myTopicsServiceErrors =

myEventService.subscribeTopics(mySubscriber.subscriberId,
myTopicsServices);

/// Displaying the topics errors
foreach(TopicServiceError err in myTopicsServiceErrors)
{

System.Console.WriteLine("Subcr. error for event {0}: key = {1}
val = {2}",
err.eventName, err.filter.key,
err.filter.value.ToString());

}

In the above code snippet, the event service processes a subscription and errors
are displayed in the console.

Getting Events
There are two available modes to get events:
• Pull mode—your application retrieves the events.
• Push mode—your application is notified of the events.

66 Agent Interaction SDK 7.6

Chapter 4: The Event Service Getting Events

Pull Mode
In pull mode, your application must periodically retrieve events; it is not
notified when an event occurs. The server-side application waits for the client-
side application request to deliver the subscribed events.

Retrieving Events

To retrieve events, your application defines topics for the services, then
subscribes to these topics. See “Subscribing to the Events of a Service” on
page 62.
Once your application has subscribed, it can retrieve events associated with the
SubscriberResult.subscriberId identifier by calling the
IEventService.getEvents() method. The following code snippet is an example
of a getEvents() call:

/// Retrieving the last occurred events
/// timeout in seconds is set to 1
Event[] events = myEventService.getEvents(mySubscriber.subscriberId,

1);

/// Displaying the events
foreach(Event evt in events)
{

System.Console.WriteLine("Occured {0}",evt.ToString());
}

Warning! If you set a non-zero value for the timeout parameter of the
IEventService.getEvents() method, this method does not return
until either an event occurs or the timeout is reached.

Specifics

In pull mode, the subscriber must be sure to retrieve the events before the
server-side timeout is reached.

Warning! The default timeout is 10 minutes. If no event has been retrieved
within 10 minutes, the subscriber is removed.

Push Mode
In push mode, your application is notified of events as they occur. Your
application must:
1. Implement the notifyEvents() method of a class inheriting the

INotifyService interface.

Services—Developer’s Guide 67

Chapter 4: The Event Service Getting Events

2. Subscribe to the event service.
Then, during runtime, whenever events occur, the notifyEvents() method is
called and its code content is executed.

Using the INotifyService Interface

Your application must create a class inheriting the
com.genesyslab.ail.ws._event.INotifyService class. This inherited class
must implement the INotifyService.notifyEvents() method.
The following code snippet presents a short implementation of an inherited
class. This class’ notifyEvents() method displays, in the console, the content
of reported events.

public class NotificationImpl :
com.genesyslab.ail.ws._event.INotifyService

{
public void notifyEvents(string subscriberId,

com.genesyslab.ail.ws._event.Event[] events)
{

if (events == null)
{

System.Console.WriteLine("notifyEvents - null \n");
return ;

}
System.Console.WriteLine("notifyEvents getEvents : " +

events.Length + "\n") ;
foreach(Event evt in events)
{

System.Console.WriteLine("Service :"+ evt.serviceName
+ "Event: "+ evt.eventName
+ "timeStamp:"+ evt.timeStamp
+"\n");

}
}

}

Subscribing

Use an instance of your inherited INotifyService class to fill the
notif.notificationEndpoint field.

Notification notif = new Notification();
notif.notificationEndpoint = new NotificationImpl();

68 Agent Interaction SDK 7.6

Chapter 4: The Event Service Event Notification in Java

Then, subscribe to the Notification instance:

SubscriberResult result =
myEventService.createSubscriber(notif,myTopicsServices) ;

Reading DTOs in Events
When your application subscribes to events, it specifies a set of published
attributes to retrieve with the events (see “Building TopicsEvent” on page 59).
The attributes can be accessed with the Event.attributes attribute, which is a
KeyValue array. The following code snippet is a pull-mode example:

/// Retrieving the last occurred events
Event[] events = myEventService.getEvents(mySubscriber.subscriberId,
1);
foreach(Event evt in events)
{

KeyValue[] attributes = evt.attributes ;
foreach(KeyValue attr in attributes)
{

System.Console.WriteLine(
“Service: {0}\tKey: {1} value: {1}",
evt.serviceName, attr.key, attr.value) ;

}
}

The above code snippet displays the attribute key-value pairs retrieved with the
events.

Event Notification in Java
This section describes how to use Interaction SDK (Web Services) Notification
with Java. Several solutions are available to use unsolicited events in Java with
GIS.
In this section, we use the Apache Axis SOAP toolkit, version 1.1, to
implement a client-side notification mechanism in a simple notification server.
This example supposes that we have GIS running on host <GIS_HOST> and port
<GIS_PORT>. All the following subsections are related to this example.

Services—Developer’s Guide 69

Chapter 4: The Event Service Event Notification in Java

Notification Classes Generation
To generate classes used in notification events, we will use WSDL2java, a tool
provided by Apache Axis. Replace the italicized placeholders when typing the
following command line:

java org.apache.axis.wsdl.WSDL2Java
-o output
--server-side http://<GIS_HOST>:<GIS_PORT>/gis/services/AIL_NotifyService?wsdl

The required classes will be generated in the directory specified by output.
These classes must be added to your source path. The WSDL2java tool generates
a mapping file that maps the SOAP types to Java classes.
The tool generates the classes for each type from WSDL, using a type-
mapping file (deploy.wsdd). It also generates the following server
implementation class:

com/genesyslab/www/services/ail/wsdl/event/NotifyServiceSoapBindingImpl.java

This class has a method notifyEvents(String subscriberId, Event[]events),
which is called on each notification event, as shown in the following example:

public void notifyEvents(String subscriberId, Event[] events) throws
java.rmi.RemoteException,
com.genesyslab.www.services.ail.wsdl.event.WServiceException

{
// Put action to process for each event received here

}

Simple Notification Server
This subsection introduces the implementation of a simple notification server
for your client application. To achieve this, you can use a little server provided
by the Axis toolkit and identified as the following class:

org.apache.axis.transport.http.SimpleAxisServer

To provide it with all the deployment information included in the deploy.wsdd
file, start it as shown in the following code snippet:

org.apache.axis.client.AdminClient adminClient =
new org.apache.axis.client.AdminClient();

String[] argsDeploy = {"deploy.wsdd", "-p", Integer.toString(<CLIENT_PORT>)};

adminClient.process(argsDeploy);

70 Agent Interaction SDK 7.6

Chapter 4: The Event Service Event Notification in Java

Once the server is started, you can browse Notify Service on the client side at:

http://client_host:client_port/axis/services/NotifyService?wsdl

When creating a subscriber in your application for the event service, you must
define the notification location by setting the following fields to:
• notificationEndPoint

http://<CLIENT_HOST>:<CLIENT_PORT>/axis/services/NotifyService

• notificationType

SOAP_HTTP

Services—Developer’s Guide 71

Chapter

5 The Agent Service
The agent service is the IAgentService interface defined in the
com.genesyslab.ail.ws.agent namespace. To be able to manage agent
features, your application has to integrate this interface and uses classes.
This chapter is divided amongst the following topics:

Introduction, page 71
Agent Service Essentials, page 73
Forms and Agent Actions, page 80

Introduction
The agent service is used to access the agent features managed on the server-
side application. This service is required for most of the applications developed
with the Agent Interaction Service API. Without it, you cannot access most of
the features with others services that require an identified agent.
For example, if your application has to make a call, it requires an
IInteractionVoiceService to access to a DN performing the call (see
Chapter 8,“Voice Interactions”). To access to this DN, your application needs
to login an agent on the DN. Therefore your application needs to integrate an
agent service.
To use correctly the agent service, your application must take into account
integrated services events including agent services events when subscribing
TopicsEvent with the IEventService interface. (See Chapter 4,“The Event
Service”).
Then, your application needs to log in an agent with the IAgentService
interface. If the login is successful, your application receives the corresponding
events and is able to use other services features, including agent service
features. Services actions—corresponding to the Agent Interaction Service
features—generate events that are taken into account according to the current
TopicsEvent subscribed by your IEventService. Once your agent service logs

72 Agent Interaction SDK 7.6

Chapter 5: The Agent Service Introduction

out agents, services that depend on a logged in agent do not fulfill action
requests. Figure 11 demonstrates a typical request and event flow.

Figure 11: The Integrated Agent Service

1. Subscribing to TopicsEvent for integrated services, including agent
service.

2. Requesting an agent login with the agent service login action.
3. Receiving an agent event for a successful agent login.
4. Requesting services actions depending on the logged agent, including

agent services actions (ready, not ready, and so on).
5. Receiving events due to services actions.
6. Requesting an agent logout with the agent service logout action.
7. Receiving an agent event for logout.
Figure 11 shows the general agent service handling in an application
integrating services depending on logged agents. As you can see, the agent
service plays a predominant and determinant role for services requiring an
agent.
The agent service is designed to:
• Access all the data related to a set of agents.
• Access agents status and possible agents actions for any logged agent.
• Perform agent actions on media, such as login, logout, ready, not ready, or

aftercallwork actions.
A characteristic of this agent service is that voice media have dedicated classes
to handle voice media data, whereas other media—chat and e-mail—use a set
of common media classes.
Moreover, some agent actions require a filled form handling action data.

Agent Desktop Application

Integrated web
services

GUI

IEventService

Other services

GIS Genesys Framework

Subscribed
topic events update

Data (voice,
chat,e-

mail,workbins)

Agent

5,7

Events

IAgentService

1

3,5,7

2,6 2,4

 4

3

 4 2,4,6

Services—Developer’s Guide 73

Chapter 5: The Agent Service Agent Service Essentials

Agent Service Essentials
This section introduces essential aspects for using features of the agent service
needed in most agent desktop applications developed in the Agent Interaction
Service API.

Agent and Statuses
The agent status is not a general status of an agent. Rather, an agent status is
related to a medium, that is an agent status is the status of an identified agent
for a particular medium.

Using an Agent Status

The agent media status is modified:
• Each time an action requested by the agent service is performed on the

media.
• When the media is impacted by a performed action that another service

requested.
• When the media is affected by an internal change (for example, a system

issue).
In terms of development requirements, take into account agent media statuses
so as to:
• Inform your agent of its current status on a media and of any status change.
• Base on statuses your application design.

Agent Status for Voice Media

Voice media involve underlying switches and imply a dedicated management
taken into account by the voice state model.

The Existing Voice Media Statuses

The VoiceMediaStatus type is an enumerated type describing the agent status
on a DN:
• LOGGED_OUT—the agent is logged out.
• READY—The agent is logged and ready to work on the DN.
• BUSY_READY—The agent is busy.
• NOT_READY—The agent is logged and not ready for working.
• BUSY_NOT_READY—The agent is busy and not ready.
• BUSY_LOGGED_OUT—The agent is busy and logged out.
• AFTERCALLWORK—The agent is in After Call Work mode.

74 Agent Interaction SDK 7.6

Chapter 5: The Agent Service Agent Service Essentials

• BUSY_AFTERCALLWORK—The agent is busy and in After Call Work mode.
• OUT_OF_SERVICE—The DN is out of service.

Note: The VoiceMediaStatus type is defined in the
com.genesyslab.ail.ws.place namespace as it is a media information.
See Chapter 6.

Warning! For voice media, some statuses depend on the switch capability.
For example, the AFTERCALLWORK status is usable only if the switch
offers this feature.

Figure 12 on page 74 shows examples of the state transition that can occur due
to calls to agent service features.

Figure 12: Examples of State Diagrams for Voice Media

Example of transitions involving BUSY statuses

BUSY_NOT_
READY BUSY_READY

BUSY_
AFTERCALL

WORK

Ready

Not Ready

After Call
Work

After
Call Work

Example of transitions involving
READY, NOT_READY, and AFTERCALLWORK statuses

NOT_READY READYAFTERCALL
WORK

After
Call WorkNot Ready

ReadyAfter Call
Work

Services—Developer’s Guide 75

Chapter 5: The Agent Service Agent Service Essentials

Warning! This figure is provided as an informative example. It does not
include all the existing transitions.

The transition from one state to another is not always due to a performed agent
service action. State changes can occur due to other reasons, as for example, a
T-Server event, or internal management on the server-side application.

Warning! Do not assume any status sequence in your application design.
Design your application always to update with the provided
possible agent actions and current agent status.

Dealing with Voice Media Statuses

The statuses are handled in the VoiceMediaInfo class of the
com.genesyslab.ail.ws.place namespace. This class associates the status
VoiceMediaInfo.status with a DN identifier VoiceMediaInfo.dnId.
You can retrieve VoiceMediaInfo objects with the following attributes of the
IAgentService interface:
• agent:dns—VoiceMediaInfo array containing all the DNs of the current

place of the agent.
• agent:loggedDns— VoiceMediaInfo array containing all the DNs where

the agent is logged.
Getting these attributes values is done with agent DTO classes of the
com.genesyslab.ail.ws.agent namespace as shown in the following code
snippet:

/// Retrieving the DTOs
PersonDTO[] agentDTO =

myAgentService.getPersonsDTO(new string[]{ “agent0” },
new string[]{ "agent:loggedDns"});

///Getting the VoiceMediaInfo array
VoiceMediaInfo[] arrayInfo =

(VoiceMediaInfo[]) agentDTO[0].data[0].value ;

/// Displaying the status for each DN
foreach(VoiceMediaInfo info in arrayInfo)
{

System.Console.WriteLine(“agent0 status on “+ info.dnId +
“ is “+info.status.ToString()+”\n”);

}

Note: Attributes related to statuses are published in events. You should
update your agent desktop application with the statuses of the agent
when a VoiceMediaEvent occurs with a matching STATUS_CHANGED filter.

76 Agent Interaction SDK 7.6

Chapter 5: The Agent Service Agent Service Essentials

Agent Status for Other Media

Chat and e-mail are standard media and their agent media statuses
management is similar to agent voice media statuses.

The Existing Media Statuses

The MediaStatus type is an enumerated type describing the agent status on a
medium:
• LOGGED_OUT—The agent is logged out.
• READY—The agent is logged and ready to work with the media.
• BUSY_READY—The agent is busy.
• NOT_READY—The agent is logged and not ready for working.
• BUSY_NOT_READY—The agent is busy and not ready.
• OUT_OF_SERVICE—The medium is out of service.

Note: The MediaStatus type is defined in the com.genesyslab.ail.ws.place
namespace as it is a media information. See Chapter 6, “Place, DNs,
and Media,” page 85.

Figure 13 shows examples of state transitions that can occur due to an
IAgentService feature call.

Figure 13: An Example of Agent Media Status Diagram

Example of transitions for a MEDIA involving BUSY statuses

BUSY_NOT_
READY BUSY_READY

Ready

Not Ready

NOT_READY READY

Ready

Not due to an
IAgentService call

Not due to an
IAgentService call

Not Ready

Services—Developer’s Guide 77

Chapter 5: The Agent Service Agent Service Essentials

Warning! This figure is provided as an informative example. It does not
include all the existing statuses and transitions.

The transition from one state to another is not always due to a performed agent
service action. State changes can occur due to other reasons, as for example, a
T-Server event, or internal management on the server-side application.

Warning! Do not assume any status sequence in your application design.
Design your application always to update with the provided
possible agent actions and current agent status.

Dealing with Media Statuses

The MediaInfo class of the com.genesyslab.ail.ws.place namespace
associates the status MediaInfo.status with a media name MediaInfo.name.

Note: Possible values for the MediaInfo.name attribute are chat or email.

You can retrieve MediaInfo objects with the following attributes of the
IAgentService interface:
• agent:availableMedias—array of the mediaType available on the current

place of the agent.
• agent:loggedMedias—MediaInfo array containing all the media on which

the agent is logged.
Dealing with MediaInfo objects is performed with agent DTO classes of the
com.genesyslab.ail.ws.agent namespace as shown in the following code
snippet:

/// Retrieving the DTOs
PersonDTO[] agentDTO =

myAgentService.getPersonsDTO(new string[]{ “agent0” },
new string[]{ "agent:loggedMedias"});

///Getting the MediaInfo array
MediaInfo[] arrayInfo =

(MediaInfo[]) agentDTO[0].data[0].value ;

/// Displaying the status for each media
foreach(MediaInfo info in arrayInfo)
{

System.Console.WriteLine(“agent0 status on “+ info.name +
“ is “+ info.status.ToString()+”\n”);

}

78 Agent Interaction SDK 7.6

Chapter 5: The Agent Service Agent Service Essentials

Note: The IAgentService attributes are published in events. You should
update your agent desktop application with the statuses of the agent
when a MediaEvent occurs with a matching STATUS_CHANGED filter.

Agent and Possible Actions
In the agent service, voice media actions are differentiated from other media
actions. There are two enumerated types defining the existing actions for an
agent:
• AgentDnActions—actions that the IAgentService interface can perform on a

voice medium, that is, a DN.
• AgentMediaActions—actions that the IAgentService interface can perform

on media such as chat and e-mail.
Each action defined in these enumerated types is associated with a method of
the IAgentService interface. For example, AgentDnAction.LOGIN represents the
IAgentService.login() method that is able to perform the login of an agent on
a set of media.
The following sub-sections details possible agent action use with the
IAgentService interface.

Understanding Agent Possible Action

The IAgentService interface lets your application retrieve the possible actions
associated with a media. You can use this information to enable or disable your
desktop application’s features that use the corresponding calls to your service.
For example, if at a certain point in time a ready action is not possible for a
given medium, your application should disable its ready button if the user
selects this medium.
The possible actions take into account:
• The current state of the media concerned by the action.
• The capability of the underlying genesys solution to realize the action.
You retrieve these possible actions with DTOs as explained in the following
subsections.

Warning! It is not possible to retrieve the attribute values corresponding to
possible actions on media on which no agent is logged.

Voice Media Possible Actions

The possible actions for a voice media are accessed with the
agent:dnsActionsPossible attribute of the IAgentService interface. This

Services—Developer’s Guide 79

Chapter 5: The Agent Service Agent Service Essentials

attribute contains an array of DnActionsPossible associating the current
available actions with DN identifiers.
The following code snippet shows how to display the voice available actions
for agent0 using DTO classes of com.genesyslab.ail.ws.agent namespace:

/// Retrieving the DTOs
PersonDTO[] agentDTO =

myAgentService.getPersonsDTO(new string[]{ “agent0” },
new string[]{"agent:dnsActionsPossible"});

DnActionsPossible[] myPossibleActionsOnDN =
(DnActionsPossible[]) agentDTO[0].data[0].value ;

/// Displaying the Possibilities for each DN.
foreach(DnActionsPossible myPossibleActions in

myPossibleActionsOnDN)
{

System.Console.WriteLine(“agent0 possible actions on “
+ myPossibleActions.dnId +” are:”);

foreach(AgentDnAction action in myPossibleActions.agentActions)
{

System.Console.Write(“\t”+action.ToString());
}
System.Console.WriteLine(“\n”);

}

Other Media Possible Actions

The possible actions for other media are accessed with the
agent:mediaActionsPossible attribute of the IAgentService interface. This
attribute contains an array of MediaActionsPossible associating the current
available actions with media names.

Note: The authorized values for media names are chat and email.

The following code snippet shows how to display the available actions for
agent0 using DTO classes of com.genesyslab.ail.ws.agent namespace:

/// Retrieving the DTOs
PersonDTO[] agentDTO =

myAgentService.getPersonsDTO(new string[]{ “agent0” },
new string[]{"agent:mediaActionsPossible"});

MediaActionsPossible[] myPossibleActionsOnMedia =
(MediaActionsPossible[]) agentDTO[0].data[0].value ;

/// Displaying the possible actions for each media.

80 Agent Interaction SDK 7.6

Chapter 5: The Agent Service Forms and Agent Actions

foreach(MediaActionsPossible myPossibleActions in
myPossibleActionsOnMedia)

{
System.Console.WriteLine(“agent0 possible actions on “

+ myPossibleActions.mediaType +” are:”);
foreach(AgentMediaAction action in

myPossibleActions.agentActions)
{

System.Console.Write(“\t”+action.ToString());
}
System.Console.WriteLine(“\n”);

}

Agent and Events
There are two types of agent event related to media:
• VoiceMediaEvent—agent events occurring on voice media.
• MediaEvent—agent events occurring on chat or e-mail media.
These events enable application update based on agent, place, voice, and media
events.
The available attributes through these events let your application:
• Update the agent media statuses with:

agent:mediaInfo for a media
agent:voiceMediaInfo for a DN.

• Update the possible agent actions for a medium with:
agent:dnActionsPossible for a single DN
agent:mediaActionsPossible for another medium such as e-mail.

The PlaceChangedEvent occurs when an agent changes place. This lets your
application update GUI components displaying information related to the
place.

Note: The place is an object associating an agent with several media. For
further information, see Chapter 6, “Place, DNs, and Media,” page 85.

Forms and Agent Actions
The Agent Interaction Service API includes form classes to handle the data
related to a medium. Voice is managed differently from other media, such as
chat and e-mail.
For most agent actions on media, your application has to define a form
containing the parameters required for perform the actions.

Services—Developer’s Guide 81

Chapter 5: The Agent Service Forms and Agent Actions

The following subsections detail the existing forms and show their use in agent
service features.

Forms for Voice Media
The forms used for voice media are classes of com.genesyslab.ail.ws.agent
namespace. There are several form objects that may be defined in a voice
context:
• LoginVoiceForm—This class is used to login on voice DNs.
• LogoutVoiceForm—This class is used to logout on voice DNs.
• ReadyVoiceForm—This class is used to get ready or not ready on voice

DNs.
• AfterCallWorkVoiceForm—This class is used when getting in an

AfterCallWork status on voice DNs.
Each form is dedicated to an action. However, the data are characteristics of
the voice media. For example, the LoginVoiceForm class is used to fill forms
required for a login and includes the whole list of the data involved in voice
forms. The following code snippet shows how to fill this form.

// Creating the voice form for the login of the agent0
LoginVoiceForm myLoginVoiceForm = new LoginVoiceForm();

// Defining the set of DNs concerned with the login
myLoginVoiceForm.dnIds = new string[]{ “DN0” };

// Setting the login ID of the agent0
myLoginVoiceForm.loginId = “login0”;

// Setting the agent password
myLoginVoiceForm.password = “Password0”;

// Setting the queue parameter
myLoginVoiceForm.queue = “myQueue”;

// Optional: you can set reasons otherwise null
myLoginVoiceForm.reasons = null;

// You can tune your application with switch specific data
myLoginVoiceForm.TExtensions = null;

// You can specify the workmode for your login.
myLoginVoiceForm.workmode = WorkmodeType.MANUAL_IN;

For further information on each form attributes see the Agent Interaction SDK
7.6 Services API Reference.

82 Agent Interaction SDK 7.6

Chapter 5: The Agent Service Forms and Agent Actions

T-Extensions

T-Extensions are data used by the underlying switches. T-Extensions are
switch specific, you can fine-tune your application with these data for a
specific switch type.
Use a KeyValue array to specify T-Extension keys-values as shown in the
following code snippet:

// Specifying a trunk for the G3 Lucent switch
KeyValue[] myTExtensions = new KeyValue[1];
myTExtensions[0]=new KeyValue();
myTExtensions[0].key = “Trunk”;
myTExtensions[0].value = “myTrunk”;

Note: For further information about key-value T-Extensions, refer to the T-
Server documentation associated with your switch. See also “T-
Extensions and T-Reasons” on page 98.

Workmode

Workmode is switch specific. Switches don’t always provide all the
workmodes defined by the com.genesyslab.ail.ws.agent.WorkmodeType
enumeration. Refer to your T-Server documentation for further information.

Note: The workmode can affect the state sequence of the agent. See also
“Workmode” on page 82.

Forms for Other Media
Other media –e-mail or chat– require the MediaForm class of the
com.genesyslab.ail.ws.agent namespace to perform agent service actions,
such as login, logout, ready, and so on.
This form is a container which specify the media types concerned by the agent
service actions.
The following code snippet shows how to define this form for chat and e-mail.

// Creating an instance of MediaForm
MediaForm myMediaForm = new MediaForm();
// Defining the types of concerned media
myMediaForm.mediaTypes =

new string[]{ “email”, “chat” };

Services—Developer’s Guide 83

Chapter 5: The Agent Service Forms and Agent Actions

Agent Login
The IAgentService interface has a login() method to let agents login on a
place for a set of media defined in their corresponding forms. See “Forms for
Voice Media” and “Forms for Other Media”.
The following code snippet shows a login of the agent0 agent performed on an
authorized place, using the myLoginVoiceForm and myMediaForm that were
defined in the previous sections:

MediaInfoError[] errors =
myAgentService.login(“agent0”, “placeForAgent0”,

myLoginVoiceForm,
myMediaForm);

The login is performed on the set of DNs defined in the LoginVoiceForm and on
the media that are defined in the place and specified in the types of the
MediaForm.
You retrieve in MediaInfoErrors objects both errors and useful information
about the login attempt.

Agent Logout
The IAgentService interface has a logout() method to let agents logout a
place. The agent performs a logout only for the set of media defined in their
corresponding forms.
The following code snippet is an example of a logout performed by the agent0
agent.

// Creating a instance of LogoutVoiceForm
LogoutVoiceForm myLogoutVoiceForm = new LogoutVoiceForm();

// Defining the set of IDs concerned by the logout
myLogoutVoiceForm.dnIds = new string[]{ “DN0” };

// Setting the queue and the reason attributes
myLogoutVoiceForm.queue = “myQueue”;
myLogoutVoiceForm.reasons = null;

// Logout action of the agent0 performed on DN0
// and the media defined in myMediaForm
MediaInfoError[] errors=

myAgentService.logout(“agent0”,
myLogoutVoiceForm,
myMediaForm);

84 Agent Interaction SDK 7.6

Chapter 5: The Agent Service Forms and Agent Actions

Getting Ready or Not Ready
The IAgentService interface has ready() and notReady() methods to let agents
get ready or not ready on media defined in a place. The agent performs the
ready and not ready actions on the set of media defined in their corresponding
forms.
The following code snippet is an example of a ready action performed by the
agent0 agent.

// Creating a instance of ReadyVoiceForm
ReadyVoiceForm myReadyVoiceForm = new ReadyVoiceForm();
// Defining the set of IDs concerned by the ready (or not ready)
myReadyVoiceForm.dnIds = new string[]{ “DN0” };

// Setting the other attributes
myReadyVoiceForm.queue = “myQueue”;
myReadyVoiceForm.reasons = null;
myReadyVoiceForm.TExtensions=null;
myReadyVoiceForm.workmode = WorkmodeType.MANUAL_IN;

// Agent0 getting ready on DN0
// and the media defined in myMediaForm
MediaInfoError[] errors =
myAgentService.ready(“agent0”, myReadyVoiceForm, myMediaForm);

The notReady() call is equivalent to the ready() call as illustrated in the
following code snippet:

MediaInfoError[] errors =
myAgentService.notReady(“agent0”, myReadyVoiceForm, myMediaForm);

Services—Developer’s Guide 85

Chapter

6 Place, DNs, and Media
Media are resources that services use to perform actions such as making a call,
sending an e-mail, and so on. This chapter covers how media work in an
agent’s place with the Agent Interaction Service API, how to monitor them,
and how to deal with specific voice media, that is DNs.
This chapter covers:
• The IPlaceService interface of the com.genesyslab.ail.ws.place

namespace.
• The IDnService interface of the com.genesyslab.ail.ws.dn namespace.
This chapter contains the following sections:

Introduction, page 85
Understanding Place, DNs, and Media, page 87
Using the Place Service, page 92
Using the DN Service, page 93

Introduction
Places, media, and DNs are objects defined in the Configuration Layer. These
objects offer important information that your application might have to take
into account.

What Are Places?
A place defines a set of media and DNs that can all be used together by a single
agent at a given time. Media types are EMAIL and CHAT, whereas DNs are voice
media resources that offer phone-call features. Figure 14 on page 86 presents
an example of a place defined for the agent Agent0.

86 Agent Interaction SDK 7.6

Chapter 6: Place, DNs, and Media Introduction

Figure 14: A Place for Agent0

A place can be associated with a single chat media type and a single e-mail
media type but with several DNs.
The place service is designed to provide your application with information
about the places defined in the Configuration Layer, and also with information
about media and DNs associated with these places.
The place service provides the following features:
• List a place’s DN identifiers and media types with their status.
• Retrieve the identifier of an agent logged into a place.
• Retrieve the possible workmodes for a place’s DNs.
• Events for place modification:

Media added or removed.
DNs added or removed.
Changes of place identifier.

Place and Other Services
The place has an important role in other services. The agent has first to log into
a place, and this logged-in agent can use interaction services only if the
requested media are logged in on this place.
Once this requirements are met, the place can help your application perform
some management. For example, the IInteractionService interface lets your
application retrieve all current interactions on a place. Another example is the
IInteractionMailService interface, which uses the place to pull interactions.

DNs–Voice Specifics
DNs are resources that handle voice interactions. Depending on the underlying
switches, DNs have some specific features, for example, the Do Not Disturb
feature.
The DN service, IDnService, deals with all DNs configured in the
Configuration Layer. A DN has a string identifier dnId, and a callable number

DN0 DN1

Place

Agent0

e-mail

Services—Developer’s Guide 87

Chapter 6: Place, DNs, and Media Understanding Place, DNs, and Media

that is readable with the dn:callableNumber attribute of the DN service. DN
identifiers are mandatory in any call to the DN service’s methods.
The DN service’s features are the following:
• Activate/Deactivate the Do Not Disturb feature.
• Activate/Deactivate the Forward feature.
• Retrieve the preceding features’ statuses (activated or deactivated).
• Retrieve the possible workmodes of a DN.
• Retrieve DN information with DTOs.
• Fine-tune your application with switch specific information.

Note: To use the DN service features on a DN, your application must have an
agent logged into the DN.

Understanding Place, DNs, and Media
The place service does not let your application perform actions on places. The
place service is designed to provide your application with information about
places’ media and DNs.
Your application may use the place service in scenarios like the following:
• Display whether a place is used by an agent.
• Display the available media and DN for a logged place.
• Inform the agent when new media are added to his or her place.
The following subsections specify the relationships amongst place, media, and
DN.

Place, Agent, and Statuses
The place service can provide the statuses of places’ logged media and DNs.
These statuses of media and voice media (DNs) are the statuses of an agent on
these media.

Place and Login

When your application logs in an agent with the agent service, the application
specifies the place and media on which the agent will log in. For details, see
“Agent Login” on page 83.
While the agent is logged into one of the place’s media types (or DNs), the
place and its media are associated with the agent, as shown in Figure 14 on
page 86.

88 Agent Interaction SDK 7.6

Chapter 6: Place, DNs, and Media Understanding Place, DNs, and Media

To start working, the agent must log into the place’s media types or DNs which
are defined in the Configuration Layer. As long as the agent is logged into one
of the place’s media types or DNs, the agent is also logged into the place, and
the place, its DNs, and its media are associated with the agent.
To get the place’s media types, your application takes a login action on at least
one of the place’s media types. When your application requests a login action
on media types, media types are added to the place, and the ones specified in
the request are logged in. If the agent logs out of the media types, your
application no longer accesses them, as shown in Figure 15.

Figure 15: Agent Actions on the Media of a Place

agent0 logs out of all media

agent0 requests to logout
DN_0 -> agent0 logs out of
PLACE_0

PLACE_0

agentId = "agent0" MediaStatus
LOGGED_IN

EMAIL

MediaStatus
LOGGED_OUT

CHAT

VoiceMediaStatus
LOGGED_IN

DN_0

PLACE_0

agentId = "agent0" MediaStatus
LOGGED_OUT

EMAIL

MediaStatus
LOGGED_OUT

CHAT

VoiceMediaStatus
LOGGED_IN

DN_0

PLACE_0

agentId = "agent0" MediaStatus
LOGGED_OUT

EMAIL

MediaStatus
LOGGED_OUT

CHAT

VoiceMediaStatus
LOGGED_OUT

DN_0

Services—Developer’s Guide 89

Chapter 6: Place, DNs, and Media Understanding Place, DNs, and Media

Figure 15 on page 88 shows the place PLACE_0 where agent agent0 has first
logged in on a DN DN_0 and e-mail media of the place.
At runtime, the media only exist in the Interaction Server. To get the media of a
place, your application must call the IAgentService.login() method and pass
in argument a MediaForm instance which contains at least one media type.
As a result, the available media are added to the place, and the ones specified
in the request are logged in. If your application logs out media per media, the
Interaction Server considers that the place is still logged in.
To definitly logout of the place, your application must call the
IAgentService.logoutMultimedia() method, that will logout all medias at
once, including in the Interaction Server, if you set the MediaForm.mediaNames
field to null for the mediaForm passed in parameters, of if you pass an empty
MediaForm instance as shown in the following code snippet.

myAgentService.logout(“agent0”, “place0”, null, new MediaForm()
);

Note: When an agent is logged into one of the place’s media types, the agent
is logged into the place.

VoiceMediaStatus and MediaStatus

The VoiceMediaStatus and MediaStatus enumerated types are part of the
com.genesyslab.ail.ws.place namespace.

VoiceMediaStatus The VoiceMediaStatus type is an enumerated type describing the agent status
on a DN when an agent is logged in.
When no agent is logged into the DN, the voice media status is LOGGED_OUT, or
else OUT_OF_SERVICE if there is an issue with the DN. For details, see “Agent
Status for Voice Media” on page 73.

MediaStatus The MediaStatus type is an enumerated type describing the agent status on a
media type when an agent is logged into a place.
When the agent is not logged into any media type of a place, no media type is
available on this place, and your application cannot get any media status for
this place.
When the agent is logged into at least one of the place’s media types, all media
types are available on this place, and your application can get media status for
any media type. For logged-out media types, the media status is LOGGED_OUT, or
else OUT_OF_SERVICE if there is an issue with the media type. For details, see
“Agent Status for Other Media” on page 76.

90 Agent Interaction SDK 7.6

Chapter 6: Place, DNs, and Media Understanding Place, DNs, and Media

Media and Voice-Media Information
The com.genesyslab.ail.ws.place namespace offers the VoiceMediaInfo and
the MediaInfo classes to deal with essential information about the media
associated with a place.
The place service lets your application retrieve this information using two
attributes:
• place:medias—An array of VoiceMediaInfo, containing information about

media of type MediaType associated with a place.
• place:dns—An array of MediaInfo, containing information about the DNs

associated with a place.

VoiceMediaInfo The VoiceMediaInfo class is a simple container for the main data of the voice
media (DNs) belonging to a place. The attributes of this class are:
• dnId—The identifier of the relevant DN.
• status—The VoiceMediaStatus of the DN.

MediaInfo The MediaInfo class represents an information container for a media type
belonging to a place.
The attributes of this class are
• type—The MediaType of the media type.
• status—The MediaStatus of the media type.
• name—The string to display for this media type.

Note: Each place can contain zero to one media of each type MediaType.
Therefore, the type of the media identifies the media.

Place and DNs’ Consolidation
Switch DNs’ types—for example, ACD position or extension—are mostly
switch-specific. They affect the use of features provided by the agent service,
such as login, logout, and ready actions.
The underlying AIL library provides consolidation of the DN objects in its
model. In all cases, the services expose a single DN, even if a place’s
configuration requires more DNs in the Configuration Layer for compliance
with the underlying switch.
To find the required configuration for each switch, and to thus find which DN
identifier is visible, refer to the Interaction SDK Java Deployment Guide.

Warning! You must respect this DN consolidation model for your
applications to handle DNs properly.

Services—Developer’s Guide 91

Chapter 6: Place, DNs, and Media Understanding Place, DNs, and Media

For example, to work in regular mode with an A4400 switch, the server-side
application:
• Registers the ACDPosition and Extension.
• Exposes a single Dn object.
The Agent Interaction Service API presents a single DN, and transparently
manages the requests to hidden ACDPosition and Extensions. The DN ID
exposed in the API is the ACDPosition.
To work in substitute mode on an A4400 switch, your application must manage
an Extension’s activities on a place, as well as an ACDPosition’s activities on
that place.
When an agent logs in successfully, the event service receives two place
events:
• dnRemoved carries notification that the Extension is no longer visible.
• dnAdded carries notification that a DN of type ACDPosition is now visible.
Successful agent login generates a voice media event. All subsequent voice
media events and request activities occur with respect to the ACDPosition DN,
not the Extension.
When the agent logs out, logout is performed through the ACDPosition DN, and
upon successful logout, the event service receives four place events:
• An event carrying notification of successful logout.
• A dnRemoved event carrying notification that the ACDPosition DN is no

longer visible.
• A dnAdded event with notification that the Extension is now visible.
• An event carrying notification of the Extension’s status.
While no agent is logged in, the extension is visible and the ACDPosition DN is
not visible. While an agent is logged in, the ACDPosition DN is visible in the
place.

DN’s Callable Number
A DN has an identifier (or ID) and a callable number. The ID is used to access
the corresponding DN’s data through the services. To avoid any ambiguity and
ensure unique DN IDs, a DN ID is now defined in accordance with the
following rule: <DN_CME_Name>@<switch_name>
The callable number is the number that your application must use to reach a
DN. Depending on the switch, the DN number declared in the configuration
layer might not be the number to dial in call operations, such as make call,
transfer, or conference. For example, you must remove some leading numbers
to reach a Nortel DMS 100’s DN.
The number to dial can also depend on the DN status. For example, if an agent
is logged into the DN, you have to dial the agent ID.

92 Agent Interaction SDK 7.6

Chapter 6: Place, DNs, and Media Using the Place Service

Finally, because of the switch abstraction, some DNs can be hidden, but still be
the real ones to dial instead of their visible counterpart. Once again, the
callable number of a visible DN properly returns the hidden's one.
It is recommended to use callable numbers to access CTI features.

Using the Place Service
The place service is designed to provide your application with information
about media and DNs associated with a place. The place service does not offer
any direct actions on places.
The following subsections detail how to use the place service.

Getting Place DTOs
To retrieve the attribute values of the place service, use the PlaceDTO class of
the namespace and the getPlacesDTO() method of the IPlaceService interface,
as shown in the following code snippet.

/// Retrieving the DTOs
PlaceDTO[] myPlacesDTO =

myPlaceService.getPlacesDTO(new string[]{“Place0”}, //Place ids
new string[]{ "place:medias" }); //Attributes to retrieve

/// displaying the DTO content for each Place
foreach(PlaceDTO myPlace in myPlacesDTO)
{

// Displaying the id of the place associated with the DTO content
System.Console.WriteLine("Place : "+myPlace.placeId+"\n");

// Displaying the DTO content
foreach(KeyValue data in myPlace.data)
{

//Displaying media info only
if(data.key == "place:medias")
{

MediaInfo[] myMedias = (MediaInfo[]) data.value
as MediaInfo[];

foreach(MediaInfo media in myMedias)
{

System.Console.WriteLine("Medium name: "+media.name
+ " Type: " + media.type.ToString()
+ " Status:" + media.status.ToString()+"\n");

}
}

}
}

Services—Developer’s Guide 93

Chapter 6: Place, DNs, and Media Using the DN Service

The above code snippet retrieves the place:medias and place:dns attributes of
a place and displays the content of the corresponding information objects.

PlaceEvents
The place service defines PlaceEvent, which is triggered when modifications
on a place occur. To handle PlaceEvent, two important attributes are
propagated:
• place:placeId—String identifier of the place concerned by the PlaceEvent.
• place:eventReason—Reason for this PlaceEvent.
Table 8 lists the existing PlaceEventReasons and the associated attributes to
take into consideration.

For further information on events and subscription, see Chapter 4 on page 53.

Using the DN Service
The DN service is specific to voice media management. A DN is an access
point for phone calls identified by a callable number, which is the
dn:callableNumber attribute of the IDnService interface.
The following subsections detail how to use the DN service.

Features and Possible Actions
Like many other services, the DN service can provide your application with
the possible actions associated with features at a certain point in time. The
com.genesyslab.ail.ws.dn.DnAction enumeration lists the DN service’s
actions.
The dn:actionsPossible attribute allows your application to retrieve the list
of available DnAction for a DN at a certain time. DnEvent propagates this

Table 8: PlaceEventReason and Associated Attributes

PlaceEventReason Associated Attribute Attribute Value

DN_ADDED place:dn_added Identifier of the added DN

DN_REMOVED place:dn_removed Identifier of the removed DN

MEDIA_ADDED place:media_added Identifier of the added media
type

MEDIA_REMOVED place:media_removed Identifier of the removed
media type

94 Agent Interaction SDK 7.6

Chapter 6: Place, DNs, and Media Using the DN Service

attribute when the possible DN actions are modified due to DN actions already
performed.
Table 9 on page 94 shows correspondence between DN actions and methods of
the DN service.

The following subsections details how to implement the Forward and Do Not
Disturb features.

Do Not Disturb (DND)

While the Do Not Disturb feature is activated, the DN does not accept calls.
Use the dn:dndStatus attribute value of the DN service to test whether the
DND feature is activated:
• DnStatus.OFF—The DND feature is not activated.
• DnStatus.ON—The DND feature is activated.
• DnStatus.UNSPECIFIED—The switch cannot provide information.
Test the dn:actionsPossible attribute to determine which DND actions are
possible.
The following code snippet shows how to activate and deactivate this feature
for a DN identified by the string myDnId.

// Activating the Do Not Disturb feature for myDnId
myDnService.setDNDOn(myDnId,

null, // tReasons
null); // tExtensions

//.....
// Deactivating the Do Not Disturb feature for myDnId
myDnService.setDNDOff(myDnId,

null, // tReasons
null); // tExtensions

Table 9: DN Actions and Methods

DnAction IDnService
Method

Feature

SET_FORWARD setForward() Activate the Forward to another
number.

CANCEL_FORWARD cancelForward() Cancel the Forward feature.

SET_DND_ON setDNDOn() Activate the Do Not Disturb
feature.

SET_DND_OFF setDNDOff() Deactivate the Do Not Disturb
feature.

Services—Developer’s Guide 95

Chapter 6: Place, DNs, and Media Using the DN Service

Note: TExtensions and TReasons are switch-specific. Refer to your T-Server
documentation for further information. See also “Switch-Specific” on
page 97.

Forward
When the Forward feature is activated, the DN transfers any call received to a
number that is specified when the feature is activated.
Use the dn:forwardStatus attribute value of the DN service to test whether the
feature is activated:
• DnStatus.OFF—The Forward feature is not activated; dn:forwardNumber is

null.
• DnStatus.ON—The Forward feature is activated; dn:forwardNumber contains

the number receiving the forwarded calls.
• DnStatus.UNSPECIFIED—The switch can not provide information.
Test the dn:actionsPossible attribute to determine which Forward actions are
possible.
The following code snippet shows how to activate and deactivate this feature
for a DN identified by the string myDnId.

// Forwarding calls of myDnId to myDestinationNumber
myDnService.setForward(myDnId,

myDestinationNumber,//string number receiving the transfer
 null,// tReasons
 null);// tExtensions
///....
// Cancelling the forward for myDnId
myDnService.cancelForward(myDnId,
 null, // tReasons
 null); //tExtensions

Note: TExtensions and TReasons are switch-specific. Refer to your T-Server
documentation for further information. See also “Switch-Specific” on
page 97.

Events of the DN Service
The DN service provides your application with two types of events, DnEvent
and DnUserEvent, which are detailed below.

96 Agent Interaction SDK 7.6

Chapter 6: Place, DNs, and Media Using the DN Service

DnEvent

The DN service defines DnEvent for common events occurring on DN. To
handle PlaceEvent, two important attributes are propagated:
• dn:dnId—String identifier of the DN involved.
• dn:eventReason—DnEventReason specifying the reason for the DnEvent.
Table 10 lists the existing DnEventReason and the associated attributes of the
IDnService interface to take into consideration.

DnUserEvent

The IDnService interface provides you with a sendUserEvent() method that
enables your application to directly send information to the user registered on a
DN.
The DN is used as a pipe, and the user application registered on the DN
receives a DnUserEvent. The propagated dn.user-data:userData attribute
contains the information in a key-value array.

Table 10: DnEventReason and Associated Attributes

DnEventReason Associated
Attribute

Attribute values

STATUS_CHANGED dn:status The current VoiceMediaStatus
of the DN.

INFO_CHANGED dn:TEventExtensions
dn:TEventReasons

Switch specific–TEvent
information.

DND_ON dn:dndStatus The DND feature has been
turned on

DND_OFF dn:dndStatus The DND feature has been
turned off.

ON_HOOK dn:hookStatus Telephone headset has been
placed on-hook.

OFF_HOOK dn:hookStatus Telephone headset has been
taken off-hook.

FORWARD_SET dn:forwardStatus
dn:forwardNumber

Updated status and number for
the Forward feature.

FORWARD_CANCELED dn:forwardStatus
dn:forwardNumber

Updated status and number for
the Forward feature.

Services—Developer’s Guide 97

Chapter 6: Place, DNs, and Media Using the DN Service

The following code snippet sends a DnUserEvent to the dnId0; the information
sent is contained in the myUserData key-value array.

// Writing information in a KeyValue array
KeyValue[] myUserData = new KeyValue[1];
myUserData[0]=new KeyValue();
myUserData[0].key= "myKeyString";
myUserData[0].value= "my message to send via dnId0";
// Sending the dn user event
myDnService.sendUserEvent(dnId0,myUserData);

Switch-Specific
DNs depend on the underlying switch. Your application might require some
switch-specific features that are detailed below.

Warning! Managing some switch-specific features implies a dependency on
this particular switch.

Workmodes

Agent actions use workmodes to provide more detailed information about
the agent’s current state.

Workmode Types The com.genesyslab.ail.ws.agent.WorkmodeType enumeration lists the
available workmodes. Refer to the Agent Interaction SDK 7.6 Services API
Reference to get this list. For example, the WorkmodeType.MANUAL_IN workmode
indicates that the agent has to validate the action manually on the phone, and
the WorkmodeType.AFTERCALLWORK workmode indicates the agent is still working
on the last call.
Workmodes can be specified in forms that the agent service uses to perform
some of the following agent actions: login, logout, ready, and notready. See
“Forms for Voice Media” on page 81.

Supported
Workmodes

Switches do not always provide all the workmodes defined by the
com.genesyslab.ail.ws.agent.WorkmodeType enumeration. See “Switch
Information” on page 99.
The DN Service offers the dn:workmodesPossible attribute to retrieve the list
of available workmodes for a DN at a certain time. The possible
workmodes in this list take into account the DN status and the switch
capability. During runtime, changes in DN status may affect this list.

Note: Use the dn:workmodesPossible attribute to enable and disable
workmodes, and to refresh your application when a DnEvent occurs.

98 Agent Interaction SDK 7.6

Chapter 6: Place, DNs, and Media Using the DN Service

The following code snippet shows how to read the workmode for the dnId0
DN.

// Retrieving possible workmodes in a DTO for dnId0
DnDTO[] myDnDTOs = myDnService.getDnsDTO(

new string[]{dnId0},
new string[]{"dn:workmodesPossible"});

// Displaying the DTO Content
foreach(DnDTO dto in myDnDTOs)
{

System.Console.WriteLine(" Possible workmodes for "+dto.dnId);
// Reading attributes retrieved in the DTO
foreach(KeyValue pair in dto.data)
{

// Displaying the possible workmodes
if(pair.key == "dn:workmodesPossible")
{

WorkmodeType[] myPossibleWorkmodes =
(WorkmodeType[]) pair.value as WorkmodeType [];

foreach(WorkmodeType type in myPossibleWorkmodes)
{

System.Console.WriteLine((type.ToString());
}

}
}

}

T-Extensions and T-Reasons

T-Extensions and T-Reasons are switch-specific key-value pairs that you can
use to fine-tune your application. Your application can pass T-Extensions and
T-Reasons in arguments to method calls or get them from T-Server Events (if
any).

Methods Call The server-side application maps agent and DN services’ methods that take T-
Extensions and T-Reasons in parameters with the T-Library. For T-Library
users, the mapping of the T-Library features is straightforward, because the
naming convention is similar to T-Library functions.
To determine which T-Extensions and T-Reasons to use, refer to your T-Server
documentation.

T-Server Events The server-side application can propagate T-Events with DnEvent. T-Extensions
and T-Reasons can be optional in T-Events, so the server-side application
copies them in the published dn:TEventExtensions and dn:TEventReasons
attributes of the DN service only if they exist. Refer to your T-Server
documentation for further information.

Services—Developer’s Guide 99

Chapter 6: Place, DNs, and Media Using the DN Service

Switch Information

The dn:switchInfo attribute of the IDnService interface lets your application
retrieve a SwitchInfo object.
The SwitchInfo class provides information about the switch associated with
a DN:
• SwitchInfo.name—The identifier of the switch associated with this DN.
• SwitchInfo.switchType—The switch type.
• SwitchInfo.workmodeCapables—Array of workmode types that this switch

supports.
• SwitchInfo.actionCapables—Array of InteractionVoiceAction that this

switch supports.

Note: InteractionVoiceActions are actions of the voice interaction service
applied to phone calls. See Chapter 8, “Voice Interactions,” page 109.

The XxxCapables attributes list the switch’s supported features. These feature
lists do not change during runtime. For example, if a workmode does not
appear in the SwitchInfo.actionCapables attribute, the workmode is not
supported. Therefore, this workmode will never appear in the list of possible
workmodes and should not be visible for the agent using the DN.

Note: The list of DN’s possible workmodes (dn:workmodesPossible) takes
into consideration the current DN’s status and the DN’s capable
workmodes.

100 Agent Interaction SDK 7.6

Chapter 6: Place, DNs, and Media Using the DN Service

Services—Developer’s Guide 101

Chapter

7 The Interaction Service
The interaction service is defined by the IInteractionService interface
defined in the com.genesyslab.ail.ws.interaction namespace. Its features
are designed to manage characteristics common to all interactions, no matter
their media. This chapter is divided amongst the following topics:

Introduction, page 101
Using IInteractionService, page 103
Handling Interaction DTOs, page 105
Opening a Workbin Interaction, page 106
Attached Data, page 107

Introduction
This section introduces the interaction concepts and the interaction service
covered in this chapter.

What Is an Interaction?
An interaction is the representation of the communication between two persons
or more in the Genesys world. It can represent, for example, a phone call
between an agent and a customer, an agent and an incoming e-mail, or a chat
session between agents and a customer.
An interaction exists:
• From the moment that a contact gets in touch with the agent (a call or an e-

mail is ringing on the agent desktop) or from the moment that the agent
initiates getting in touch with a contact or another agent.

• Till the interaction is done: the agent hangs up (or closes the e-mail) and
marks the interaction as done.

Interactions are associated with a particular medium:

102 Agent Interaction SDK 7.6

Chapter 7: The Interaction Service Introduction

• Voice interactions (or phone calls) are associated with DNs.
• E-mail (or mail) interactions are associated with the EMAIL media.
• Chat interactions are associated with the CHAT media.

What Is the Interaction Service?
Although the underlying media are different, interactions share some common
characteristics and similar data management.
The interaction service is an interface designed to read and write DTOs
containing:
• Common attributes defined in the IInteractionService interface.
• Interaction-specific attributes defined in other interactions interfaces such

as IInteractionVoiceService and IInteractionMailService.
The IInteractionService interface provides dedicated DTO methods using
DTO classes of the com.genesyslab.ail.ws.interaction namespace. For
further information, see Chapter 3, “Data Transfer Object,” page 47.
The following are examples of common interaction attributes defined in the
interaction service:
• interaction:interactionId—the system interaction identifier.
• interaction:contactId—the contact identifier.
• interaction:status—the interaction status defined with the

InteractionStatus enumeration.
• interaction:interactionType—the interaction type defined with the

InteractionType enumeration.
• interaction:eventReason—the InteractionEventReason value published

with interaction events.
• interaction:outboundChainId—if an interaction arrives, and it is in an

outbound context, this attribute is filled with the corresponding outbound
chain ID. See Chapter 14, “The Outbound Service,” on page 211, for
details.

The interaction service does not let you perform any actions on an interaction,
such as making a call or sending an e-mail. You may have noticed, that there is
no existing interaction action enumeration in the
com.genesyslab.ail.ws.interaction namespace. However, the interaction
service has methods for adding, modifying, and deleting attached data of any
existing interaction (see “Attached Data” on page 107).
The interaction service also offers InteractionEvent, that are generic
interaction events used by specialized interaction services such as
IInteractionVoiceService and IInteractionMailService.

Services—Developer’s Guide 103

Chapter 7: The Interaction Service Using IInteractionService

Specific Interaction Services
The Agent Interaction Service API includes other interaction services and their
associated namespaces:
• IInteractionVoiceService (com.genesyslab.ail.ws.interaction.voice)—

this service is dedicated to voice interactions occurring on the DNs of a
Place. This service requests actions on voice interactions.

• IInteractionMailService (com.genesyslab.ail.ws.interaction.mail)—
this service is dedicated to e-mail interactions occurring on the EMAIL
media of a Place. This service requests actions on e-mail interactions.

• IInteractionChatService (com.genesyslab.ail.ws.interaction.chat)—
this service is dedicated to chat interactions occurring on the CHAT media of
a Place. This service requests actions on chat interactions.

These services deal with specialized interaction actions, but to properly use
them, your application must rely on the interaction service for interaction data
handling and integrate InteractionEvent events. The following sections
present details.

Using IInteractionService
The IInteractionService interface is used to manage interactions’ data that
correspond to attributes defined in the other interactions services interfaces.
Your application is likely to use it any time it needs to access and modify
interactions’ data.
Moreover, the IInteractionService interface offers InteractionEvent which
are generic events publishing the following attributes having the event
property:
• interaction:*—IInteractionService attributes
• interaction.*:*—attributes for e-mail, chat, and voice interaction

services.
InteractionEvent events are the most common events received by your
application after the media-specialized interaction services have successfully
performed actions.
To properly deal with interactions and specialized services, your application
has to subscribe to these events. Figure 16 on page 104 illustrates relationships
between services, interactions, and InteractionEvent received by the
IEventService.

104 Agent Interaction SDK 7.6

Chapter 7: The Interaction Service Using IInteractionService

Figure 16: Interactions and Services

Figure 16 shows that the IInteractionService interface manages all data
transactions and that specialized services—e-mail and voice services—are
used to perform dedicated actions on the corresponding interactions.
The IEventService has subscribed to InteractionEvent with TopicsEvent
having a trigger on the agent identifier (or place identifier). The propagated
attributes include some IInteractionService, IInteractionVoiceService, and
IInteractionMailService attributes.
When an InteractionEvent occurs:
• If the Event object retrieved is related to a voice interaction, it propagates

IInteractionService and IInteractionVoiceService attributes.
• If the Event object retrieved is related to an e-mail interaction, it propagates

IInteractionService and IInteractionMailService attributes.

Note: The media-specialized services interfaces may offer other specific
events. For further information, see the Agent Interaction SDK 7.6
Services API Reference.

Agent Desktop Application

InteractionEvent
For
IInteractionVoiceService
attributes=

Interaction:default
Interaction.voice:default

Integrated web
services

GUI

IEventService

IInteraction
MailService

GIS Genesys
Framework

E-mail
Interactions

Voice
Interactions

Subscribed
topics

IInteraction
VoiceService

IInteraction
Service

get/set voice
and e-mail

DTOs

Voice actions

E-mail actions

InteractionEvent
For IInteractionMailService
attributes=

Interaction:default
Interaction.mail:default

Actions
DTOs
Events

Services—Developer’s Guide 105

Chapter 7: The Interaction Service Handling Interaction DTOs

Handling Interaction DTOs
The IInteractionService interface has two general methods to deal with
DTOs:
• IInteractionService.getInteractionsDTO()—This method retrieves the

DTOs of a set of interactions for a set of attributes having the read
property.

• IInteractionService.setInteractionsDTO()—This method uses DTOs to
set the values of a set of interactions for a set of attributes having the write
property.

Note: These methods offer standard DTO handling. For further information,
see Chapter 3, “Data Transfer Object,” page 47.

After your application gets an instance of the IInteractionService interface, it
can use the above methods or specific DTO methods detailed in the following
subsections.

Specific Getting DTO Methods
The IInteractionService interface retrieves attributes of any interaction type
with interactions DTOs according to their associated agents, place identifiers,
or DN identifiers.
• The IInteractionService.getInteractionsDTOFromAgent() method

retrieves DTOs for voice, chat, or e-mail interactions associated with
agents.

• The IInteractionService.getInteractionsDTOFromPlace() method
retrieves DTOs for voice, chat, or e-mail interactions associated with a
place if an agent is logged on this place.

• The IInteractionService.getInteractionsDTOFromDN() method retrieves
DTOs for voice, chat, or e-mail interactions associated with a DN if an
agent is logged on this DN.

Note: You can also use the IInteractionService.getInteractionsDTO()
method to retrieve the DTOs of a set of interactions.

The following code snippet shows how to use
IInteractionService.getInteractionsDTOFromAgent() method to retrieve the
interaction identifiers and status available for Agent0.

106 Agent Interaction SDK 7.6

Chapter 7: The Interaction Service Opening a Workbin Interaction

InteractionAgentDTO[] ixnAgentDTOs=
myInteractionService.getInteractionsDTOFromAgent(

new string[]{“agent0”},
new string[]{ "interaction:interactionId",

"interaction:status"});

foreach(InteractionAgentDTO agentDTO in ixnAgentDTOs)
{

System.Console.WriteLine(“Agent: “+ agentDTO.agentId+"\n");
foreach(InteractionDTO dto in agentDTO.interactionsDTO)
{

System.Console.WriteLine(dto.interactionId+" ");
foreach(KeyValue attributes in dto.data)
{

System.Console.WriteLine(attributes.key+": "
+attributes.value.ToString()+”\n”);

}
}

}

Opening a Workbin Interaction
The IInteractionService interface has two general methods to opens a
workbin interaction:
• IInteractionService.openInteractionForAgentDTO()—This method opens

a workbin interaction for an agent and a set of attributes.
• IInteractionService.openInteractionForPlaceDTO()—This method opens

a workbin interaction for a place and a set of attributes. Once the
interaction is opened, it goes onto the specified place for treatment.

The following code snippet shows how to use
IInteractionService.openInteractionForAgentDTO() method to open a
workbin interaction for Agent0.

InteractionDTO InteractionAttributes =
myInteractionService.openInteractionForAgentDTO(

"agent0", // the agent Id
myInteractionId,// the interaction ID
new string[]{

"interaction:interactionId",
"interaction:status"

} // the set of the interaction’s attributes
);

Services—Developer’s Guide 107

Chapter 7: The Interaction Service Attached Data

Attached Data
Attached Data—also known as User Data—is a set of key-value pairs attached
to an interaction and stored with the interaction in the contact history. Attached
Data can be collected by the Genesys Solution and modified by the agent.
An attached data can be any data useful to your application’s design. However,
it can also include the following specific attached data:
• Interaction attribute values.
• Custom attached data’s values.
The Configuration Layer defines keys and information for these attached data,
available through the IResourceService interface. See “Interaction
Information” on page 245 for further details.

Attached Data DTOs
Attached Data are handled with the following attributes of the
IInteractionService interface:
• interaction:attachedData—This attribute is used to read or write the

attached data of the interaction.

Note: Writing with these DTOs replaces the previous attached data by the
ones written.

• interaction:addAttachedData—This attribute is used to write the added
attached data in the interaction.

• interaction:removeAttachedData—This attribute is used to remove all the
attached data of a set of interactions.

The com.genesyslab.ail.ws.interaction namespace includes the
AttachedData container class to deal with DTOs. An AttachedData object
represents a single key-value pair attached to an interaction.
Use the IInteractionService.setInteractionsDTO() to write DTOs and the
IInteractionService.getInteractionsDTO*() to read them.
In the following code snippet, a new attached data is added to the Interaction0
interaction:

/// Creating a AttachedData
AttachedData myData = new AttachedData();
myData.key = "Key0";
myData.value = "This is the value of Key0";

/// Creating an array of InteractionDTO
InteractionDTO[] ixnDTOs = new InteractionDTO[1];

/// Filling the first DTO

108 Agent Interaction SDK 7.6

Chapter 7: The Interaction Service Attached Data

ixnDTOs[0] = new InteractionDTO();

/// Specifying the concerned Interaction
ixnDTOs[0].interactionId = “Interaction0”;

/// Creating an array of DTOs
ixnDTOs[0].data = new KeyValue[1];
ixnDTOs[0].data[0] = new KeyValue();

/// Giving the DTO content
ixnDTOs[0].data[0].key = "interaction:addAttachedData";
ixnDTOs[0].data[0].value = new AttachedData[]{ myData };

/// Writing the DTOs with the IInteractionService
myInteractionService.setInteractionsDTO(ixnDTOs);

For further information, see Chapter 3, “Data Transfer Object,” page 47.

Attached Data and Event
When the attached data of an interaction are modified, an InteractionEvent is
sent with an InteractionEventReason.INFO_CHANGED reason for the
interaction:eventReason attribute.
The modified attached data are available in the
interaction:modifiedAttachedData attribute.

Services—Developer’s Guide 109

Chapter

8 Voice Interactions
The voice interaction service is the IInteractionVoiceService interface
defined in the com.genesyslab.ail.ws.interaction.voice namespace. To use
this service, your application works with classes and enumerations of this
namespace, and with the classes and interface of the
com.genesyslab.ail.ws.interaction namespace.
This chapter is divided amongst the following topics:

Introduction, page 109
Voice Interaction Essentials, page 110
Making and Answering Voice Calls, page 115
Transferring Voice Calls, page 121
Managing Conference Calls, page 125

Introduction
The voice interaction service is designed around a set of actions for managing
voice interactions. Voice interactions are specific objects representing
telephone calls, that is, interactions using the voice media (DNs). Voice
interaction features may vary, one from another, depending on the capabilities
of the underlying switch.
The voice interaction service manages the following tasks:
• Creating and dialing a call.
• Answering a call.
• Transferring a call.
• Holding and retrieving a call.
• Beginning a conference.
• Activating or deactivating the mute function during a call.

110 Agent Interaction SDK 7.6

Chapter 8: Voice Interactions Voice Interaction Essentials

The voice interaction service only performs actions on voice interactions. The
voice interaction service depends on the following other services:
• The event service to subscribe and receive events.
• The agent service.

Before working with voice interactions, your application first must use
the agent service to log in an agent on a DN.
While the agent is logged on a DN, your application can use the
IInteractionVoiceService interface to perform actions on voice
interactions associated with the DN.

Note: For further information, see Chapter 5, “The Agent Service,”
page 71.

• The interaction service:
To access IInteractionVoiceService attributes, your application uses
the IInteractionService DTO methods.
There is no event associated with the IInteractionVoiceService
interface: its attributes are published in events of type
InteractionEvent which is described in the IInteractionService
interface.

Note: For further information, see Chapter 7, “The Interaction Service,”
page 101.

Voice Interaction Essentials
The IInteractionVoiceService interface exposes methods and pertinent
attributes to let your application manage multiple simultaneous voice
interactions, each identified by a unique interaction ID.
Each voice interaction follows a sequence of states, for example, beginning in
a NEW state, transitioning to a DIALING state, through other states until its state is
finally MARKED_DONE.
For any particular state, the voice interaction service permits use of only a
small subset of its possible actions (available to your application as method
calls). For any one voice interaction, your application may apply only one
action at the same time.
After the voice interaction service successfully applies an action with respect
to a particular voice interaction, the event service receives an
InteractionEvent that carries the interactionId identifying the corresponding
voice interaction along with a variety of attributes reflecting new state and
other data. To receive InteractionEvent events, your application must
subscribe to them.

Services—Developer’s Guide 111

Chapter 8: Voice Interactions Voice Interaction Essentials

For each incoming InteractionEvent event, your application should test
various attributes of the IInteractionVoiceService interface, including
especially the interaction.voice:actionsPossible attribute (to determine
which actions have become possible to apply).
The following sections present the details behind the above general
description.

Voice Attributes
For each voice interaction, the IInteractionVoiceService interface defines a
set of attributes which are characteristic of phonecall data. The following list is
representative (but not exhaustive):
• interaction.voice:ANI—The Automatic Number Identification

parameter associated with a voice interaction.
• interaction.voice:DNIS—The Dialed Number Identification Service

parameter associated with a voice interaction.
• interaction.voice:phoneNumber—The phone number(s) to which this

interaction has been connected.
• interaction.voice:duration—The call duration in seconds.
For each voice interaction, the attributes of the IInteractionService interface
are also available. Your application may often use the following:
• interaction:interactionId—The system interaction identifier, required in

calls to the methods of the voice interaction service.
• interaction:status—The interaction status defined with the

InteractionStatus enumeration.
• interaction:eventReason—The InteractionEventReason value published

when an InteractionEvent event occurs for a voice interaction.
The IInteractionVoiceService has no methods to read these attributes. Your
application must call one of the IInteractionService.getInteractionDTO*()
methods. See “Handling Interaction DTOs” on page 105.
See the Agent Interaction SDK 7.6 Services API Reference for further details.

Voice Actions
The InteractionVoiceAction enumeration defines voice actions of the
IInteractionVoiceService interface. Constants each correspond to one voice
interaction service method. For example, the ANSWER_CALL constant corresponds
to the IInteractionVoiceService.answerCall() method. Each method call
performs an action on one voice interaction. The method call does not apply do
a set of interactions.

112 Agent Interaction SDK 7.6

Chapter 8: Voice Interactions Voice Interaction Essentials

Warning! It is recommended to use callable numbers to access CTI features.
See “DN’s Callable Number” on page 91.

Possible actions for voice interactions can be accessed by reading the value of
the interaction.voice:actionsPossible attribute of the
IInteractionVoiceService.
The IInteractionVoiceService has no methods to read attributes. Your
application must use one of the InteractionService.getInteractionsDTO*()
methods. See “Handling Interaction DTOs” on page 105.

Voice Interaction Status
The current state of a voice interaction is available as the value of the
interaction:status attribute, which is defined in the IInteractionService.
For a voice interaction, possible status values are listed in the
InteractionStatus enumeration of the com.genesyslab.ws.interaction
namespace.
The IInteractionVoiceService has no methods to read attributes. Your
application must use one of the InteractionService.getInteractionsDTO*()
methods. See “Handling Interaction DTOs” on page 105.

Status Change

The status of a voice interaction changes if:
• A successful action is confirmed by an event sent to the server-side

application; for example, the held action has been performed on the call so
the voice interaction status changes to InteractionStatus.HELD.

• A CTI event changed it; for example, if a call is no longer dialing but now
ringing, the voice interaction status changes to
InteractionStatus.RINGING.

Figure 17 shows some transitions between interaction voice statuses.

Services—Developer’s Guide 113

Chapter 8: Voice Interactions Voice Interaction Essentials

Figure 17: Generalized Example of a Voice State Diagram (Incomplete)

Warning! This figure is provided as an informative example. It does not
include all possible statuses and transitions.

Switch-Specific

Some statuses are switch-specific and not reachable for those switches for
which the feature associated with this status is not available.
For example, if the held feature is not available on a particular switch, the
InteractionVoiceAction.HELD action is not available impacting on
InteractionStatus.HELD and InteractionStatus.DIALING_HELD status:
• If InteractionVoiceAction.HELD is unavailable, the

InteractionStatus.HELD and InteractionStatus.DIALING_HELD status are
not reachable.

• Some switches have the InteractionStatus.HELD feature but do not allow
its use during the call dialing, in which case the
InteractionStatus.DIALING_HELD status is not reachable.

As the possible statuses, transitions and event workflow differ from one switch
to another.

Warning! Do not assume any particular transition sequence. You should base
your application design on the status and not on the associated
InteractionEventReason of the InteractionEvent received.

RINGING

NEW

DIALING

TALKING HELD DIALING_
HELD

IDLE

EventReason
RELEASED

or ABANDONED
or DESTINATION_BUSY

EventReason
RELEASED

Or ABANDONED
Or DIVERTED

EventReason
RETRIEVED

EventReason
RETRIEVED

EventReason
HELD

EventReason
ESTABLISHED

EventReason
HELD

EventReason
RELEASED

or ABANDONED

EventReason
ESTABLISHED

114 Agent Interaction SDK 7.6

Chapter 8: Voice Interactions Voice Interaction Essentials

Voice Events
The IInteractionVoiceService has no defined events. All events occurring on
a voice interact ion are propagated in InteractionEvent only. Published
attributes are IInteractionService attributes as well as those
IInteractionVoiceService attributes that have the event property.
Your application must subscribe to a TopicsService defined for the
IInteractionService. This TopicsService has to specify in its TopicsEvents the
particular voice interaction DTOs to retrieve. Moreover, they must include a
trigger on the agent or on the place where the agent is logged in.

Note: For further details on the InteractionEvent mechanism, see “Using
IInteractionService” on page 103.

The following code snippet shows how to receive InteractionEvent occurring
on any interaction belonging to agent0 and how to be sure to have the voice
interaction DTOs propagated for a voice interaction event.

TopicsService[] mytopicsServices = new TopicsService[1] ;

/// Defining a Topic Services
mytopicsServices[0] = new TopicsService() ;
mytopicsServices[0].serviceName = "InteractionService" ;

TopicsEvent[] mytopicsEvents = new TopicsEvent[1] ;
mytopicsEvents[0] = new TopicsEvent() ;

/// the targeted events are InteractionEvent
mytopicsEvents[0].eventName = "InteractionEvent" ;
mytopicsEvents[0].attributes = new String[]{

// interaction commons attributes to retrieve
"interaction:interactionID", "interaction:status",
“interaction:interactionType”,
// the entire set of voice interaction attributes is retrieved
“interaction.voice:*”};

/// The InteractionEvent has to concern agent0 interactions
mytopicsEvents[0].triggers = new Topic[1];
mytopicsEvents[0].triggers[0] = new Topic();
mytopicsEvents[0].triggers[0].key = "AGENT";
mytopicsEvents[0].triggers[0].value = “agent0”;

/// ... Subscribe to the event service

For further information, see Chapter 4, “The Event Service,” page 53.

Services—Developer’s Guide 115

Chapter 8: Voice Interactions Making and Answering Voice Calls

TEvent DTOs
An InteractionEvent event received for a voice interaction may correspond to
an underlying TEvent coming from the T-Server side. The specific content of
these TEvents may be copied in the InteractionEvent.
In this case you can access to T-Event specific attributes (if there are some):
• interaction.voice:TEventExtensions: KeyValue pairs for TExtensions.
• interaction.voice:TEventReasons: the reason for this TEvent.

Note: TEvents attributes are switch-specific. For further information on
TEvent, refer to your T-Server documentation.

Making and Answering Voice Calls
The most commonly used actions of the IInteractionVoiceService are
presented in Table 11.

Your application uses the IInteractionVoiceService features to send requests
to the server-side application to take some actions. After the server-side
application (working with the Genesys framework and possibly other Genesys
solutions) has performed a corresponding action, the event service receives
InteractionEvents if it has subscribed with the correct topics.
An InteractionEvent event propagates status changes for a voice interaction,
identified by the interaction:interactionId attribute. Your application should
test the interaction.voice:actionsPossible attribute to determine which
actions are currently possible to use on this interaction.
The following sections detail commonly used voice interaction actions along
with sequence diagrams showing action sequences.

Warning! Do not use the sequence diagrams to make assumptions of possible
actions. Your application always should use just the
InteractionVoiceAction possible actions provided in DTOs.

Table 11: Standard Features for a Voice Interaction

Action InteractionVoiceAction IInteractionVoiceService

Make a call MAKE_CALL makeCall()

Answer a call ANSWER_CALL answerCall()

Release a call RELEASE_CALL releaseCall()

Mark done a call MARK_DONE markDone()

116 Agent Interaction SDK 7.6

Chapter 8: Voice Interactions Making and Answering Voice Calls

Making a Call
To make a call, your application needs to create a new voice interaction in
order to dial the call.
Figure 18 presents the sequence diagram for creating a new voice interaction
and dialing a call.

Figure 18: Making a Call

In Figure 18, all the InteractionEvent events received by the event service
have a STATUS_CHANGED reason, and their labels indicate the current status of the
associated voice interaction.

Creating a Voice Interaction

IInteractionVoiceService has two available methods for creating a voice
interaction:
• createInteractionFromPlaceDTO()—creates a voice interaction with a

place identifier if:
An agent is logged on the place.
The place has an available DN to create the interaction.

• createInteractionFromDnDTO()—creates a voice interaction with a DN
identifier if an agent is logged on the DN.

Note: To test if a voice interaction can be created for an agent on a DN, use
the agent:dnsActionsPossible attribute of the IAgentService interface

Genesys
Framework

Server-Side
Application

Agent Desktop
Application EventService Voice Interaction

Service

createInteraction() createInteraction()

InteractionEvent, "Call_1", NEW

makeCall("Call1")

InteractionEvent, "Call_1", TALKING

"Call_1", NEW

makeCall("Call1")
Call

InteractionEvent, "Call_1", DIALING
"Call_1", DIALING

Answer

"Call_1", TALKING

Contact

- TALKING between Agent Desktop Application and Contact-

Services—Developer’s Guide 117

Chapter 8: Voice Interactions Making and Answering Voice Calls

to determine if the AgentDnAction.CREATE_INTERACTION action is
possible at this time for this DN.

The following code snippet shows a voice interaction created from a DN:

// Setting attributes to retrieve in InteractionVoiceErrorDTO
String[] atts = new String[]{

"interaction:agentId", //the id of the agent owning
//the interaction

"interaction:status"}; // the status of the interaction
//once created

// Creating the interaction
InteractionVoiceErrorDTO myVoiceErr =

myInteractionVoiceService.createInteractionFromDnDTO(
myDNID, // DN identifier
atts, // attributes from the creation to retrieve in a DTO
null, // destination number
null, // T-Server to use
null, // call type
null, // attached data
null, // reasons defined by the user
null); // tExtensions

Note: If you specify the destination number of a call in the
IInteractionVoiceService.createInteractionFrom*() method
parameters, the call is dialed as soon the voice interaction is created.
If you do not specify a destination number, the method does not take
into account the following parameters: location, call type, attached
data, reasons, and T-Extensions.

The createInteractionFromDnDTO() method returns an
InteractionVoiceErrorDTO object containing:
• If the interaction is created, the InteractionVoiceErrorDTO.interactionDTO

field contains:
The interaction ID.
The values of the attributes specified in the method call.

• If the interaction creation failed, the corresponding error is available in the
InteractionVoiceErrorDTO.voiceError field.

For example, you can choose to retrieve the interaction:agentId attribute at
the time of interaction creation. The following code snippet displays the
content of the retrieved InteractionVoiceErrorDTO object:

string myInteractionId=null;
// If an error occurred, displaying the errors
if(myVoiceErr.voiceError!=null)
{

118 Agent Interaction SDK 7.6

Chapter 8: Voice Interactions Making and Answering Voice Calls

// The creation has failed
System.Console.WriteLine(“Creation failed.\n”);
// Displaying the telephony error type
System.Console.WriteLine(“Telephony Error: “

+myVoiceErr.voiceError.telephonyErrorType.ToString()
+”\n”);

// Displaying the corresponding TServer error
System.Console.WriteLine(“TServer Error: “

+myVoiceErr.voiceError.TServerError +”\n”);
}
else
{

// The creation is successful
System.Console.WriteLine(“Creation OK.\n”);
// Displaying the interaction id
myInteractionId = myVoiceErr.interactionDTO.interactionId;
System.Console.WriteLine(“ID of the created interaction: “

+ myInteractionId+”\n”);
}

Dialing a Call

To dial a call, use the IInteractionVoiceService.makeCall() method and
specify the proper voice interaction identifier (interaction:interactionId) as
shown in the following snippet.

// There is no attribute to specify before the method call
VoiceError err = myInteractionVoiceService.makeCall(

myInteractionId,// voice interaction making the call
destination, // phone number to call
null, // T-Server to use
MakeCallType.REGULAR,
null, // attached data
null, // reasons defined by the use
null); // tExtensions

// If an error occurred, displaying the error
if(err!=null)
{

// The creation has failed
System.Console.WriteLine(“Dial failed.\n”);
// Displaying the telephony error type
System.Console.WriteLine(“Telephony Error: “

+err.telephonyErrorType.ToString()
+”\n”);

// Displaying the corresponding TServer error
System.Console.WriteLine(“TServer Error: “

+err.TServerError +”\n”);
}

Services—Developer’s Guide 119

Chapter 8: Voice Interactions Making and Answering Voice Calls

Answering a Call
Your application is likely to receive phone calls from external or internal
contacts. In such cases, your application receives an InteractionEvent
associated with a voice interaction that has a InteractionStatus.RINGING status
as shown in Figure 19.

Figure 19: Answering a Call

If the interaction.voice:actionsPossible attribute available through that
event includes InteractionVoiceAction.ANSWER_CALL as one of its values, your
application can call the IInteractionService.answerCall() method as
presented in the following code snippet.

// There is no attribute to specify before the method call
VoiceError err = myInteractionVoiceService.answerCall(

myInteractionId,// voice interaction making the call
null, // reasons defined by the user
null); // tExtensions

// If an error occurred, displaying the error
if(err!=null)
{

// The creation has failed
System.Console.WriteLine(“Answer failed.\n”);
// Displaying the telephony error type
System.Console.WriteLine(“Telephony Error: “

+err.telephonyErrorType.ToString()
+”\n”);

// Displaying the corresponding TServer error
System.Console.WriteLine(“TServer Error: “

+err.TServerError +”\n”);

Server-Side
Application

Genesys
Framework

Agent Desktop
Application EventService Voice Interaction

Service

InteractionEvent, "Call_1", RINGING

answerCall("Call1")

InteractionEvent, "Call_1", TALKING

"Call_1", RINGING

answerCall("Call1")

Call to
contact center

"Call_1", TALKING

Contact

- TALKING between Agent Desktop Application and Contact-

120 Agent Interaction SDK 7.6

Chapter 8: Voice Interactions Making and Answering Voice Calls

}

Terminating a Call
To terminate a call, your application must request two actions:
• Release the call—The agent releases or the contact hangs up.
• Mark the call done—The interaction is saved in the contact history and

becomes inactive. The IInteractionService and
IInteractionVoiceService can no longer access this interaction.

Figure 20 shows the actions and InteractionEvent sequence when the agent
desktop application hangs up.

Figure 20: Releasing and Marking Done a Call

If it is the contact that hangs up, the agent desktop application does not have to
release.

Releasing the Call

To release the voice interaction, use the
IInteractionVoiceService.releaseCall() method and specify the
corresponding voice interaction identifier (interaction:interactionId) as
shown in the following code snippet.

VoiceError err = myInteractionVoiceService.releaseCall(
myInteractionId,// voice interaction to release
null, // reasons defined by the use
null); // tExtensions

// If an error occured, displaying the errors
if(err!=null)

Server-Side
Application

Genesys
Framework

Agent Desktop
Application EventService Voice Interaction

Service

releaseCall()
releaseCall()

InteractionEvent, IDLE (released)

markDone()
IDLE (released)

markDone()

Hang up

Contact

- TALKING between Agent Desktop Application and Contact-

InteractionEvent, IDLE (done)
IDLE (done)

Services—Developer’s Guide 121

Chapter 8: Voice Interactions Transferring Voice Calls

{
// The creation has failed
System.Console.WriteLine(“Release failed.\n”);
// Displaying the telephony error type
System.Console.WriteLine(“Telephony Error: “

+err.telephonyErrorType.ToString()
+”\n”);

// Displaying the corresponding TServer error
System.Console.WriteLine(“TServer Error: “

+err.TServerError +”\n”);
}

Marking Done the Call

To mark a voice interaction as done, use the
IInteractionVoiceService.markDone() method and specify the appropriate
voice interaction identifier (interaction:interactionId) as shown in the
following code snippet.

// voice interaction to mark done
myInteractionVoiceService.markDone(myInteractionId);

Transferring Voice Calls
There are three types of transfer for a voice interaction:
• Single-step transfer—This transfers the call directly to the agent who takes

it over. If this type of Transfer is not available, a mute transfer is done
instead.

• Dual-step transfer—The agent can contact with the Agent receiving the
call before completing it.

• Mute transfer—The transfer is initialized then automatically completed.
These transfers may not be available, depending on the switch in charge of the
interaction.
Design your application to test the possible actions provided in the
interaction.voice:actionsPossible attribute to determine which transfers
are available.

Single-Step and Mute Transfers
The single-step or mute transfers are direct transfers (shown in Table 12) of a
voice interaction, and can be performed in one method call.

122 Agent Interaction SDK 7.6

Chapter 8: Voice Interactions Transferring Voice Calls

These transfers are performed in a single method call as shown in the
following code snippet:

VoiceError err = myInteractionVoiceService.singleStepTransfer(
string interactionId,
myDNIdReceivingTheTransfer,
null, // T-Server to use
“the agent reasons for this transfer”,
null, //AttachData
null, // reasons defined by the user
null); // tExtensions

If the transfer—either mute or single-step—succeeds:
• The voice interaction is released and your event service receives an

InteractionEvent with InteractionStatus.IDLE.
• The targeted agent application receives a InteractionEvent for a voice

interaction with InteractionStatus.RINGING. This voice interaction is the
transferred call.

The Dual-Step Transfer
The dual-step transfer, described in Table 13 on page 122 is performed in two
IInteractionVoiceService actions:
• The first agent initiates the transfer by calling the second agent to whom

the call is to be transferred.
• The first agent completes the transfer, its voice interaction is released, and

the call is transferred to the second agent, who is able to talk with the
contact.

Table 12: Direct Transfers

Type of Transfer InteractionVoiceAction IInteractionVoiceService

Single-Step SINGLE_STEP_TRANSFER singleStepTransfer()

Mute MUTE_TRANSFER muteTransfer()

Table 13: Steps of the Dual-Step Transfer

Steps InteractionVoiceAction IInteractionVoiceService

Initiate INIT_TRANSFER initiateTransfer()

Complete COMPLETE_TRANSFER completeTransfer()

Services—Developer’s Guide 123

Chapter 8: Voice Interactions Transferring Voice Calls

Note: To test if the dual-step transfer is available, the
InteractionVoiceAction.INIT_TRANSFER has to be available in the
interaction.voice:actionsPossible DTO of the voice interaction.

Dual-Step InteractionEvent Sequence

Figure 21 shows the sequence diagram of method calls and InteractionEvent
events received during the dual-step transfer.

Figure 21: A Transfer Initiated by the Agent Desktop Application

Genesys
Framework

ContactServer-Side
ApplicationAgent2

- TALKING between Agent Desktop Application and Contact -

Agent Desktop
Application EventService Voice Interaction

Service

initiateTransfer("Call_1")

initiateTransfer("Call_1")

InteractionEvent, "Call_1", HELD

"Call_1",HELD
InteractionEvent, "Call_2", DIALING

"Call_2",DIALING

InteractionEvent "Call_3", RINGING
answerCall("Call_3")

InteractionEvent "Call_3", TALKING

InteractionEvent "Call_2", TALKING
"Call_2",TALKING

completeTransfer("Call_1")
completeTransfer("Call_1")

InteractionEvent,"Call_2", IDLE (released)

"Call_2",IDLE

"Call_2",IDLE

InteractionEvent,"Call_2", IDLE (done)

InteractionEvent, "Call_1", IDLE (released)

InteractionEvent, "Call_1", IDLE (done)
"Call_1",IDLE

"Call_1",IDLE
InteractionEvent "Call_3", INFO_CHANGED

- TALKING between Agent Desktop Application and Agent2 / contact is held -

Contact is placed on
hold

Call2 is the
consultation call to
Agent2

Call3is the
consultation call on
Agent ‘s side .

- TALKING between contact and Agent2 -

124 Agent Interaction SDK 7.6

Chapter 8: Voice Interactions Transferring Voice Calls

Agent1 Side In Figure 21, Agent1 deals with two interactions to perform the transfer:
• Call_1 is the original interaction to be transferred existing between Agent1

and the contact.
• Call_2 is the voice interaction existing between Agent1 and Agent2.
When Agent1 initiates the transfer, Call_1 is held and Call_2 is created so as to
enter Phase 1—Agent1 calling Agent2. The two interactions are released when
Agent1 completes the transfer.

Note: To determine if your application can complete the transfer, test if the
InteractionVoiceAction.COMPLETE_TRANSFER action is available in the
interaction.voice:actionsPossible attribute.

Agent2 Side Call_3 is the interaction originally created between Agent2 and Agent1: this
interaction receives the transfer once it is completed by Agent1. As a result,
Agent2 application receives an InteractionEvent for Call_3:
• It has an InteractionEventReason.INFO_CHANGED reason for the

interaction:eventReason attribute.
• The interaction.voice:parties value has changed.
• The interaction:extensions DTO contain extended information about the

new party added. See the Agent Interaction SDK 7.6 Services API
Reference for further information.

Implementation Example

The following code snippet shows the method implementation for dual-step
transfer corresponding to Figure 21 on page 123.

/// Agent1 initiates the transfer of Call_1 for Agent2
InteractionVoiceErrorDTO err0 =
myInteractionVoiceService.initiateTransferDTO(

“Call_1”,
“DN_Agent2”, // Dn of agent2 who receives the transfer
null, // T-Server to use
“the agent reasons for this transfer”,
null, // attached data
null, // reasons defined by the user
null, // tExtensions
null); // Attributes

//...
/// Agent1 and Agent2 are talking
VoiceError err1 = myInteractionVoiceService.completeTransfer(

“Call_1”,
null, // reasons defined by the user
null); // tExtensions

Services—Developer’s Guide 125

Chapter 8: Voice Interactions Managing Conference Calls

Managing Conference Calls
There are two types of conference voice calls:
• The single-step conference—A single method call performs a conference.
• The dual-step conference—As with dual-step transfers, one agent first

talks to the agent who is going to join the conference, then the first agent
completes the conference.

Single-Step Conference
The single-step conference is available only if the
InteractionVoiceAction.SINGLE_STEP_CONFERENCE is available in the
interaction.voice:actionsPossible attributes corresponding to the voice
interaction.
Figure 22 shows the sequence of method calls and received InteractionEvent
events for the single-step conference.

Figure 22: Single-Step Conference Sequence

As shown in Figure 22, the single-step conference is easy to deal with: the
second agent receives a ringing voice interaction. If the second agent answers
the call, the conference is established.
Your application receives an InteractionEvent event:
• It has an InteractionEventReason.INFO_CHANGED reason for the

interaction:eventReason attribute.
• The interaction.voice:parties value has changed.

ContactServer-Side
Application

Genesys
Framework

Agent Desktop
Application EventService Voice Interaction

Service

singleStepConference("Call_1")

 Agent2
Application

InteractionEvent, "Call_2", RINGING

answerCall("Call2")

InteractionEvent, "Call_2", TALKING

InteractionEvent, "Call_1", TALKING (INFO_CHANGED)

"Call_1", TALKING

- TALKING between Agent Desktop Application and Contact-

singleStepConference("Call_1")

- TALKING between Agent2 and Contact-

126 Agent Interaction SDK 7.6

Chapter 8: Voice Interactions Managing Conference Calls

• The interaction:extensions DTO contains extended information about
the new party added. See the Agent Interaction SDK 7.6 Services API
Reference for further information.

Dual-Step Conference
As with the dual-step transfer, the dual-step conference requires two actions:
• The first agent initiates the conference by calling the second agent to be

included in the conference.
• The first agent completes the conference and the two agents are in

conference with the contact.

Note: To know if the dual-step conference action is possible, the
InteractionVoiceAction.INIT_CONFERENCE has to be available in the
interaction.voice:actionsPossible attribute of the voice
interaction.

Dual-Step InteractionEvent Sequence

Figure 23 shows the sequence diagram showing method calls and
InteractionEvent events received during the dual-step conference.

Table 14: Steps of the Dual-Step Conference

Steps InteractionVoiceAction IInteractionVoiceService

Initiate INIT_CONFERENCE initiateConference()

Complete COMPLETE_CONFERENCE completeConference()

Services—Developer’s Guide 127

Chapter 8: Voice Interactions Managing Conference Calls

Figure 23: Dual-Step Conference

Agent1 Side In Figure 23, Agent1 deals with two interactions to establish the conference:
• Call_1 is the original interaction existing between Agent1 and the contact.
• Call_2 is the voice interaction existing between Agent1 and Agent2 who

can be talking before entering in conference mode.
When Agent1 initiates the conference, Call_1 is held and Call_2 is created so as
to enter Phase 1—Agent1 calling Agent2. When Agent2 answers Call_2, Agent1
and Agent2 are in Phase 2—they are talking.

Genesys
Framework

ContactServer-Side
Application

Agent2
(Application)

- TALKING between Agent Desktop Application and Contact -

Agent Desktop
Application EventService Voice Interaction

Service

initiateConference("Call_1")

initiateConference("Call_1")

InteractionEvent, "Call_1", HELD

"Call_1",HELD

InteractionEvent, "Call_2", DIALING

"Call_2",DIALING

answerCall("Call_3")

InteractionEvent "Call_3", TALKING

InteractionEvent "Call_2", TALKING

completeConference("Call_1")

InteractionEvent,"Call_2", IDLE (released)

"Call_2",IDLE

"Call_2",IDLE
InteractionEvent,"Call_2", IDLE (done)

InteractionEvent, "Call_1", TALKING (retrieved)

InteractionEvent, "Call_1", TALKING (INFO_CHANGED)
"Call_1",TALKING

"Call_1",TALKING

InteractionEvent "Call_3",
TALKING (contact_changed)

"Call_2",TALKING

completeConference("Call_1")

- Contact is on hold, TALKING between Agent Desktop Application and Agent2 -

Contact is placed on
hold.

Call2 is the agent’s
consultation call for
contacting Agent2.

Call3 is the Agent2’s
consultation call.

The agent’s
consultation call is
released.

Contact, Agent 2, and Agent Desktop Application are in conference.

InteractionEvent "Call_3", RINGING

128 Agent Interaction SDK 7.6

Chapter 8: Voice Interactions Managing Conference Calls

When Agent1 completes the conference:
• Call_2 is released.
• A first InteractionEvent for Call_1 occurs: Call_1 is retrieved, with

InteractionStatus.TALKING.

• The new party is added and the conference is established. An
InteractionEvent occurs for Call_1:

It has an InteractionEventReason.INFO_CHANGED reason for the
interaction:eventReason attribute.
The interaction.voice:parties value has changed.
The interaction:extensions attributes contains extended information
about the new party added. See the Agent Interaction SDK 7.6 Services
API Reference for further information.

Note: To determine when your application can complete the conference, test
if the InteractionVoiceAction.COMPLETE_CONFERENCE is available in the
interaction.voice:actionsPossible attributes propagated in
InteractionEvent.

Call_3 is the interaction originally created between Agent2 and Agent1: this
interaction is included in the conference once it is completed by Agent1. As a
result, Agent2 application receives an InteractionEvent for Call_3:
• It has an InteractionEventReason.INFO_CHANGED reason for the

interaction:eventReason attribute.
• The interaction.voice:parties value has changed.
• The interaction:extensions attribute contains extended information about

the new parties added to the interaction. See the Agent Interaction SDK 7.6
Web Services API Reference for further information.

Implementation Example

The following code snippet shows the method implementation for dual-step
conference corresponding with Figure 23 on page 127.

/// Agent1 initiates the transfer of Call_1 for Agent2
InteractionVoiceErrorDTO err0 =
myInteractionVoiceService.initiateConferenceDTO(

“Call_1”,
“DN_Agent2”, // Dn of agent2 who is concerned by the conference
null, // T-Server to use
null, // attached data
null, // reasons defined by the user
null, // tExtensions
null); // Attributes

//...
/// Agent1 and Agent2 are talking

Services—Developer’s Guide 129

Chapter 8: Voice Interactions Managing Conference Calls

VoiceError err1 = myInteractionVoiceService.completeConference(
“Call_1”,
null, // reasons defined by the user
null); // tExtensions

Leaving the Conference
When a party leaves a conference, the voice interaction for that party is
released. See “Releasing the Call” on page 120.
The other parties each receive an InteractionEvent:
• It has an InteractionEventReason.INFO_CHANGED reason for the

interaction:eventReason attribute.
• The interaction.voice:parties value has changed.
• The interaction:extensions attribute contains extended information

about the changed parties. See the Agent Interaction SDK .2 Services API
Reference for further information.

The following code snippet shows how to use the
IInteractionVoiceService.leaveConference() method.

/// Agent1, Agent2 and Contact are in conference
// Agent1 is leaving
VoiceError err = myInteractionVoiceService.leaveConference(

“Call_1”,
null, // reasons defined by the user
null); // tExtensions

130 Agent Interaction SDK 7.6

Chapter 8: Voice Interactions Managing Conference Calls

Services—Developer’s Guide 131

Chapter

9 E-Mail Interactions
The e-mail interaction service is defined by the IInteractionMailService
interface of the com.genesyslab.ail.ws.interaction.mail namespace. To
integrate this service, your application deals with classes and enumerations of
this namespace, and also with the classes and interface of the
com.genesyslab.ail.ws.interaction namespace.
This chapter covers the following topics:

Introduction, page 131
E-Mail Essentials, page 133
Common E-Mail Management, page 139
Collaboration Essentials, page 147
Collaboration Handling, page 151

Introduction
The e-mail interaction service performs actions on e-mail interactions and
enables your application to benefit from collaboration features. E-mail
interactions are specific objects representing e-mails—that is, interactions
using the MediaType.EMAIL media.
The following subsections provide overviews of e-mail handling and
collaboration handling, and identify the services upon which the e-mail service
depends.

Common E-Mail Features
The e-mail service is designed to allow your application to provide standard e-
mail handling features, such as:
• Creating an e-mail.
• Sending an e-mail.

132 Agent Interaction SDK 7.6

Chapter 9: E-Mail Interactions Introduction

• Replying to an e-mail.
• Transferring an e-mail.

Collaboration Features
The collaboration features allow your agent desktop application to send
invitations to other agents, requesting their assistance.
For example, the agent using your desktop application might be writing an
outgoing e-mail replying to a customer’s questions. But, this agent needs more
information to answer a specific point, and therefore, requires collaboration
with other agents.
The agent sends invitations to a set of other agents who might be able to
provide assistance. Those invitations contain the agent’s question and the
problem e-mail. These agents receive invitations; if they have information to
help, they reply to the invitation. The e-mail service collects the replies so that
the initiating agent can complete the e-mail and send it.
The e-mail interaction service provides the following collaboration features:
• For the agent initiating the collaboration:

Creating and sending invitations.
Recalling, or reminding other agents about, invitations.
Reading collaborative answers.

• For the agent receiving an invitation:
Accepting, declining, replying to an invitation.
Sending a collaborative reply.
Saving, closing, or deleting a collaborative reply.

E-Mail Service Dependencies
The e-mail interaction service only deals with actions on e-mail interactions.
When integrating this service, your application has to take into account the
events that can occur due to this service. The e-mail interaction service
depends on the following other services:
• The event service, to subscribe to and receive events.
• The agent service:

To deal with e-mail interactions, your application must log an agent
into an EMAIL media type with the agent service.
While the agent is logged into an EMAIL media type, your application
can use the IInteractionMailService to perform actions on e-mail
interactions.

Note: For further information, see Chapter 5, “The Agent Service,”
page 71.

Services—Developer’s Guide 133

Chapter 9: E-Mail Interactions E-Mail Essentials

• The interaction service:
To access to IInteractionMailService attributes, your application uses
the IInteractionService DTO methods.
Event attributes of the interaction.mail domain are published in
InteractionEvent defined in the IInteractionService interface.

Note: For further information, see Chapter 7, “The Interaction Service,”
page 101.

E-Mail Essentials
The IInteractionMailService requests a single action on a single e-mail
interaction at a time. Your application receives InteractionEvents when events
occur on e-mail interactions.

E-Mail Attributes
The IInteractionMailService has no methods to read attributes. Your
application must call one of the IInteractionService.getInteractionDTO*()
methods. See “Handling Interaction DTOs” on page 105.

Common Interaction Attributes

For each e-mail interaction, the attributes of the IInteractionService interface
are also available. Your application should often use the following attributes:
• interaction:interactionId—The system interaction identifier, required in

calls to the methods of the e-mail interaction service.
• interaction:status—The interaction status, defined with the

InteractionStatus enumeration.
• interaction:eventReason—The InteractionEventReason value published

when an InteractionEvent event occurs for a voice interaction.

Common E-Mail Attributes

Attributes common to all types of e-mail interactions are defined in the
IInteractonMailService interface, and belong to interaction.mail domain.
The following list is representative (but not exhaustive):
• interaction.mail:toAddress is a string containing the e-mail address field

for the e-mail’s receiver.
• interaction.mail:fromAddress is a string containing the sender’s e-mail

address field.
• interaction.mail:messageText is a string containing the text of the e-mail.

134 Agent Interaction SDK 7.6

Chapter 9: E-Mail Interactions E-Mail Essentials

• interaction.mail:ccAddresses is a string containing the e-mail addresses
that are to receive a copy of the e-mail.

The subject of an e-mail is defined in the interaction:subject attribute of
the IInteractionService interface.

Other E-Mail Attributes

The IInteractionMailService interface includes two additional subdomains
dedicated to common e-mail interactions:
• interaction.mail.in—Subdomain dedicated to incoming e-mails.
• interaction.mail.out—Subdomain dedicated to outgoing e-mails.
These attributes are available according to the type of the e-mail interaction
being processed. Those types are detailed in the “E-Mail Types” subsection
below.
See the Agent Interaction SDK 7.6 Services API Reference for further details
about the attributes of the interaction.mail domain and its subdomains.

E-Mail Types
Your application accesses types for e-mail interactions by reading the
interaction:interactionType attribute of the IInteractionService interface.
The types of interactions handled by the e-mail service can be divided into two
categories:
• EMAIL_* for common e-mails interactions.
• COLLABORATION_* for collaborative interactions.
Table 15 presents the types of common e-mail interactions that the e-mail
service handles.

Table 15: Interaction Types for the E-Mail Service

Interactions InteractionType Description

Incoming
E-mails

EMAIL_IN Interactions for e-mails
received by the agent

Outgoing
E-mails

EMAIL_OUT Interactions for e-mails
sent
by the agent

Outgoing Reply
E-mails

EMAIL_OUT_REPLY Interactions for e-mail
replying to incoming
e-mails

Services—Developer’s Guide 135

Chapter 9: E-Mail Interactions E-Mail Essentials

The e-mail interaction types are detailed in the following subsections. See
“Collaboration Interaction Types” on page 148 for further information about
collaboration interactions.

Incoming E-Mails

The e-mail interaction type corresponding to incoming e-mails is
InteractionType.EMAIL_IN. It represents e-mails received by an agent. For this
type of e-mail interaction, common e-mail attributes—interaction.mail:*
such as message, subjects, and addresses—are already filled.
The interaction.mail.in:currentReplyMailoutId attribute is specific to
incoming e-mails, and is filled with an e-mail interaction identifier if there
exists an outgoing e-mail (whether created or sent) replying to this incoming e-
mail.
Use the IInteractionService.getInteractionDTO*() method to read this
attribute value. To deal with incoming e-mails, see “Answering an E-Mail” on
page 143 and “Replying to an E-Mail” on page 145.

Outgoing E-Mails

The e-mail interaction type corresponding to outgoing e-mails is
InteractionType.EMAIL_OUT. It represents e-mails interactions that your
application creates and sends with the IInteractionMailService interface.
For this type of e-mail interaction, most of the writable attributes—such as
message, subject and addresses—are empty when the interaction is created.
Your application should fill them with
IInteractionService.setInteractionDTO() method.
Some specific attributes are defined in the interaction.mail.out subdomain.
interaction. Use also the IInteractionService.getInteractionDTO*() method
to read those attributes.
To deal with outgoing e-mails, see “Sending an E-Mail” on page 140.

Outgoing E-Mails for a Reply

The corresponding e-mail interaction type corresponding to outgoing reply e-
mails is InteractionType.EMAIL_OUT_REPLY. It represents outgoing e-mails
replying to an incoming e-mail. These interactions are created due to a
InteractionMailAction.REPLY action performed with a
IInteractionMailService.reply() call.
The attributes available are those for common outgoing e-mails, that is,
interaction.mail:* and interaction.mail.out:*. For this type of e-mail
interaction, common e-mail attributes—interaction.mail:* (such as subjects
and addresses)—are already filled with information extracted from incoming
e-mails.

136 Agent Interaction SDK 7.6

Chapter 9: E-Mail Interactions E-Mail Essentials

To deal with reply e-mails, see “Replying to an E-Mail” on page 145.

E-Mail Actions
The InteractionMailAction enumeration defines all the available e-mail
actions of the IInteractionMailService interface. Constants each correspond
to one e-mail interaction service method. For example, the ANSWER constant
corresponds to the IInteractionMailService.answer() method.
Your application can access possible actions for e-mail interactions (except for
a collaboration interaction) by reading the value of the
interaction.mail:actionsPossible attribute of the IInteractionMailService
interface.
The IInteractionMailService interface has no methods to read attributes. Your
application must use one of the InteractionService.getInteractionsDTO*()
methods. See “Handling Interaction DTOs” on page 105.

E-Mail Statuses
The status of an e-mail interaction is represented by a common interaction
attribute defined in the IInteractionService as the interaction:status
attribute. Your application cannot read this attribute with an
IInteractionMailService method, so you must use one of the
IInteractionService.getInteractionDTO*() methods. See “Handling
Interaction DTOs” on page 105.
The possible statuses of an e-mail interaction are parts of the
InteractionStatus enumeration of the com.genesyslab.ws.interaction
namespace.
The status of an e-mail interaction changes if:
• A successful action is confirmed by an event to the server-side application;

for example, the e-mail has been sent and the e-mail interaction status
change to InteractionStatus.IDLE.

• A CTI event occurred; for example an error occurred and e-mail
interaction status change to InteractionStatus.IDLE.

Figure 24 shows non-exhaustive transitions that can occur between e-mail
interaction statuses.

Services—Developer’s Guide 137

Chapter 9: E-Mail Interactions E-Mail Essentials

Figure 24: Generalized State Diagram for E-Mail Interactions (Incomplete)

Warning! This figure is provided as an informative example. It is non-
exhaustive: it does not include all the possible transitions.

Figure 24 shows a sequence of e-mail interaction statuses, with
InteractionEventReason values as transitions. The InteractionEventReason
value for a status change is propagated with the interaction:eventReason
attribute in InteractionEvent.

Warning! Do not assume any status sequence in your application design.
Design your application always to update with the possible agent
actions provided and the current interaction status.

E-Mail Interactions Events
The IInteractionMailService works with the InteractionEvent of the
IInteractionService.

Example of transitions between e-mail Interaction Statuses
involving InteractionEventReason

RINGING

TALKING

EventReason
RINGING

EventReason
ESTABLISHED

NEW

IDLE

EventReason
RELEASED

HELD

EventReason
RELEASED

or ABANDONED

EventReason
ESTABLISHED

EventReason
RELEASED

or ABANDONED

EventReason
STATUS_CHANGED

138 Agent Interaction SDK 7.6

Chapter 9: E-Mail Interactions E-Mail Essentials

Most events that occur on e-mail interactions are InteractionEvents. Therefore
for these events, published attributes are IInteractionService and
IInteractionMailService attributes that have the event property.
You have to subscribe to a TopicsService defined for the IInteractionService.
This TopicsService must specify (in its TopicsEvents) the e-mail interaction
DTO to retrieve.

Note: For further details on the InteractionEvent mechanism, see “Using
IInteractionService” on page 103.

The following code snippet shows how to receive InteractionEvent occurring
on any interaction belonging to agent0, and how to ensure the propagation of
e-mail interaction DTOs for an e-mail interaction event.

/// Defining a Topic Services for interaction service
TopicsService[] myTopicsServices = new TopicsService[1] ;
myTopicsServices[0] = new TopicsService() ;
myTopicsServices[0].serviceName = "InteractionService" ;

TopicsEvent[] myTopicsEvents = new TopicsEvent[1] ;
myTopicsEvents[0] = new TopicsEvent() ;

/// the targeted events are InteractionEvent
myTopicsEvents[0].eventName = "InteractionEvent" ;
myTopicsEvents[0].attributes = new String[]{

"interaction:*”,
"interaction.mail:*"};

/// The InteractionEvent concern agent0 interactions
myTopicsEvents[0].triggers = new Topic[1];
myTopicsEvents[0].triggers[0] = new Topic();
myTopicsEvents[0].triggers[0].key = "AGENT";
myTopicsEvents[0].triggers[0].value = “agent0”;

/// The InteractionEvent must concern some EMAIL types interactions
myTopicsEvents[0].filters = new Topic[3];

myTopicsEvents[0].filters[0] = new Topic();
myTopicsEvents[0].filters[0].key = "INTERACTION_TYPE";
myTopicsEvents[0].filters[0].value = "EMAIL_OUT";

myTopicsEvents[0].filters[1] = new Topic();
myTopicsEvents[0].filters[1].key = "INTERACTION_TYPE";
myTopicsEvents[0].filters[1].value = “EMAIL_OUT_REPLY”;

myTopicsEvents[0].filters[2] = new Topic();
myTopicsEvents[0].filters[2].key = "INTERACTION_TYPE";
myTopicsEvents[0].filters[2].value = "EMAIL_IN";

Services—Developer’s Guide 139

Chapter 9: E-Mail Interactions Common E-Mail Management

/// ... Subscribe to the event service

For further information, see Chapter 4, “The Event Service,” page 53.

Common E-Mail Management
The common actions of the IInteractionMailService on e-mail interactions
are presented in Table 16.

Your application uses the IInteractionMailService features to send requests to
the server-side application. Once the Genesys Solution—that is, the server-side
application and the Genesys Framework—has performed the corresponding
action, the event service receives InteractionEvents if the application has
subscribed to the correct topics.
The InteractionEvent propagates the interaction status changes and the new
possible actions corresponding to the e-mail interaction identifier
(interaction:interactionId).

Table 16: Common Features for an E-Mail Interaction

Actions InteractionMail
Action

IInteractionMail
Service

Relevant
InteractionTypes

Send an
e-mail

SEND send() EMAIL_OUT
EMAIL_OUT_REPLY

Answer an
e-mail

ANSWER_CALL answer() EMAIL_IN

Reply to
an
e-mail

REPLY replyDTO() EMAIL_IN

Delete an
e-mail

DELETE delete() EMAIL_OUT
EMAIL_OUT_REPLY
EMAIL_IN

Transfer
an e-mail

TRANSFER transfer() EMAIL_IN

Release an
e-mail

RELEASE_CALL release() EMAIL_OUT
EMAIL_OUT_REPLY
EMAIL_IN

Mark done
an e-mail

MARK_DONE markDone() EMAIL_OUT
EMAIL_OUT_REPLY

140 Agent Interaction SDK 7.6

Chapter 9: E-Mail Interactions Common E-Mail Management

The following sections detail the common e-mail interaction actions and
provide you with sequence diagrams to help you to understand the action
sequences.

Warning! You should not use the sequence diagrams to make assumptions
about actions’ availability. Instead, use the InteractionMailAction
possible actions provided in DTOs.

Sending an E-Mail
The IInteractionMailService interface lets your application send e-mails.
There are two scenarios for sending an e-mail:
• Your application has replied to an incoming e-mail and needs to send the

reply. See “Replying to an E-Mail” on page 145.
• Your application sends a brand new e-mail as detailed in this section.
This section and its subsections detail how to create and send common
outgoing e-mails. The corresponding e-mail interaction type is
InteractionType.EMAIL_OUT.

When your application needs to send an e-mail, it requires a logged-in agent on
an EMAIL media type. Your application can test this condition with the
agent:loggedMedias attribute of the IAgentService interface.
Sending the e-mail requires four steps, as follows:
1. Create an outgoing e-mail with one of the

IInteractionMailService.createMailInteraction*() methods. See
page 141.

2. Fill the outgoing e-mail interaction fields with the
IInteractionService.setInteractionDTO() method. See page 142.

3. Send the outgoing e-mail interaction with the
IInteractionMailService.send() method. See page 140.

Figure 25 shows the sequence of actions, requests, and InteractionEvents
received when sending an outgoing e-mail.

Services—Developer’s Guide 141

Chapter 9: E-Mail Interactions Common E-Mail Management

Figure 25: Sequence Diagram for Sending an E-Mail

In Figure 25, once the outgoing e-mail interaction is created, this interaction
status is InteractionStatus.TALKING as notified in the received
InteractionEvent.
This status lets your application modify the e-mail data—that is, addresses,
text, and so on—with IInteractionMailService attributes that have the write
property. Because the e-mail has just been created, these types of attributes
have null values.
Then, the IInteractionMailService.send() method performs itself a release of
the interaction once the outgoing e-mail is sent.

Note: To use IInteractionMailService methods, update the possible actions
propagated in the received InteractionEvent.

The following subsections detail the method calls for creating and sending an
e-mail.

Creating an Outgoing E-Mail Interaction

IInteractionMailService has two available methods for creating an e-mail
interaction:
• createInteractionFromPlaceDTO() creates an e-mail interaction with a

place identifier if:
An agent is logged on the place.
An agent is logged on the place’s e-mail media type.

Agent Desktop
Application EventService Interaction

MailService
Server-side
application Contact

Genesys
Framework

InteractionEvent, "mail1", TALKING

"mail1", TALKING

createInteractionMail*()

createInteractionMail*()

"mail1", IDLE

Interaction
Service

send("mail1")

send("mail1")

InteractionEvent, "mail1", IDLE

setInteractionsDTOs("mail1")

setInteractionsDTOs("mail1")

142 Agent Interaction SDK 7.6

Chapter 9: E-Mail Interactions Common E-Mail Management

• createInteractionFromAgentDTO() creates an e-mail interaction with an
agent identifier if the agent is logged into an e-mail media type.

Note: Both methods create an outgoing e-mail interaction.

The following code snippet creates an e-mail interaction using the
IInteractionMailService.createInteractionFromAgentDTO() method:

/// Creating the e-mail interaction with the e-mail service
InteractionDTO myEMailDTO =

myInteractionMailService.createInteractionMailAgentDTO(
myAgentId, // identifier of the logged agent
myAgentQueue, // identifier of the agent queue
null); //an array of key attributes to retrieve in the DTO

/// if the creation succeeded, retrieving the interaction id
if(myEMailDTO!=null)
{

string myNewEMailId=myEMailDTO.interactionId;
}

The above code snippet shows that if the interaction is successfully created, its
identifier is available in the InteractionDTO object returned by the method.

Note: Upon the outgoing e-mail creation, its writable attributes have null
values.

Sending the E-Mail Interaction

The following code snippet shows how to send the previously created outgoing
e-mail:

myInteractionMailService.send(
myNewEMailId, // Id of the e-mail interaction to send
myQueue); // The Queue (should not be null)

If the send action is performed, the outgoing e-mail interaction status changes
to IDLE because the send feature has released the e-mail interaction. Your
application receives an InteractionEvent with this new status and with the
updated possible e-mail actions.

Filling an E-Mail Interaction
The e-mail interactions fields that your application might have to fill are
interaction:* and interaction.mail:* attributes with the write property. See
the Agent Interaction SDK 7.6 Services API Reference for further details.

Services—Developer’s Guide 143

Chapter 9: E-Mail Interactions Common E-Mail Management

Filling the e-mail interaction’s fields requires the interaction identifier, an
InteractionDTO object, and an IInteractionService instance. The following
code snippet fills an empty outgoing e-mail identified with myNewEMailId.

/// Creating the DTO to fill with attributes key-values
InteractionDTO myEmailDTO = new InteractionDTO();

// Setting the id of the outgoing e-mail to fill
myEmailDTO.interactionId = myNewEMailId;

// Creating a Key-value array
myEmailDTO.data = new KeyValue[3];

// Setting the message text
myEmailDTO.data[0] = new KeyValue();
myEmailDTO.data[0].key= "interaction.mail:messageText";
myEmailDTO.data[0].value= “Text of the e-mail to send”;

// Setting the e-mail addresses
myEmailDTO.data[1] = new KeyValue();
myEmailDTO.data[1].key= "interaction.mail:toAddresses";
myEmailDTO.data[1].value= myContact@company.com;

//Setting a subject for the e-mail
myEmailDTO.data[2] = new KeyValue();
myEmailDTO.data[2].key= "interaction:subject";
myEmailDTO.data[2].value= “Subject of the e-mail”;

// Writing the DTO with the interaction service
myInteractionService.setInteractionsDTO(

new InteractionDTO[]{ myEmailDTO });

For further detail on InteractionDTO and IInteractionService, see Chapter 7.

Answering an E-Mail
The answer feature of the e-mail interaction service is equivalent to the answer
feature of the voice interaction service. Your application uses it on an incoming
e-mail interaction so as to “accept” the interaction. Once your application has
answered the e-mail interaction, the e-mail interaction is assigned to the
agent’s place.
For example, your application receives an InteractionEvent for an incoming
e-mail interaction with the InteractionStatus.RINGING status. Your application
might then display a dialog box to inform the agent of the new incoming e-
mail. If the agent chooses to answer the e-mail, your application can add the
incoming e-mail to the agent desktop’s mailbox.

144 Agent Interaction SDK 7.6

Chapter 9: E-Mail Interactions Common E-Mail Management

The IInteractionMailService.answer() feature works for incoming e-mail
interactions. The corresponding e-mail interaction type is
InteractionType.EMAIL_IN.

Figure 26 shows the sequence of actions on incoming e-mail interactions, and
the received InteractionEvents.

Figure 26: Sequence Diagram for Answering an E-Mail

Figure 26 shows that an InteractionEvent occurs for an incoming interaction
e-mail with InteractionStatus.RINGING status. Once the
IInteractionMailService has answered, the new interaction status is
Interactionstatus.TALKING, which means that the incoming e-mail belongs to
the logged-in agent.
The following code snippet illustrates the IInteractionMailService.answer()
method call:

myInteractionMailService.answer(
myIncomingMailId,// Id of the incoming e-mail to answer
null); // KeyValue[] reasons

Unlike with a newly created outgoing e-mail, the incoming e-mail interaction
attributes do not have null values. While the incoming e-mail interaction status
is InteractionStatus.TALKING, your application might display pertinent
information about the incoming e-mail—such as, the sender identity, the
subject, and the message itself identified in IInteractionService and
IInteractionMailService attributes.
For further detail about readable attributes of these services, see the Agent
Interaction SDK 7.6 Services API Reference.

Agent Desktop
Application EventService Interaction

MailService
Server-side
application Contact

Genesys
Framework

Send e-mail

InteractionEvent, "mail1", RINGING

"mail1", RINGING
answer("mail1")

answer("mail1")

InteractionEvent, "mail1", TALKING

"mail1", TALKING

Incoming e-mail "mail1"––InteractionStatus.TALKING

Services—Developer’s Guide 145

Chapter 9: E-Mail Interactions Common E-Mail Management

Replying to an E-Mail
Your application can use the IInteractionMailService reply feature only with
e-mail interactions of type InteractionType.MAIL.IN. Moreover, this feature
must be available in the possible actions of an incoming e-mail.
When the IInteractionMailService interface requests a reply, it creates an
outgoing e-mail interaction of type InteractionType.EMAIL_OUT_REPLY, which
your application must fill and send.
If you use the IInteractionMailService.replyDTO() method, replying to an e-
mail involves the following steps:
1. Create an outgoing reply e-mail with the

IInteractionMailService.replyDTO() method.
2. Mark the incoming e-mail interaction as done when you no longer need it.

See page 147.
3. Fill the outgoing reply e-mail interaction fields with the

IInteractionService.setInteractionDTO() method. See page 142.
4. Send the outgoing reply e-mail interaction with the

IInteractionMailService.send() method. See page 140.

Note: If you call the IInteractionMailService.replyExDTO() method and set
the auto-mark-done parameter to true, you do not have to mark the
incoming e-mail interaction as done.

Figure 27 shows the sequence of actions, requests, and InteractionEvents
sequence for a typical reply to an incoming e-mail, that is, by calling the
IInteractionMailService.replyDTO() method.

146 Agent Interaction SDK 7.6

Chapter 9: E-Mail Interactions Common E-Mail Management

Figure 27: Sequence for Replying to an Incoming E-Mail (no auto-mark done)

In Figure 27, mail1 is an incoming e-mail interaction identifier. When the
IInteractionMailService interface has made the reply request, the server-side
application creates an outgoing reply e-mail, mail2, filled with some
information of mail1.
The event service receives an InteractionEvent for the mail2 interaction,
notifying its InteractionStatus.TALKING status. The agent application can
mark mail1 as done and the event service receives the corresponding
InteractionEvent event for the status change.
The agent desktop application can fill the remaining fields of mail2 with the
IInteractionService interface. Once the replied mail2 interaction is sent, the
server-side application releases the mail2 interaction. The event service
receives the corresponding InteractionEvent for the status change.
The following code code snippet shows how to implement the
IInteractionMailService.replyDTO() method to reply to mail1 and retrieve the
corresponding interaction ID.

InteractionDTO myReplyDTO=
myInteractionMailService.replyDTO(“mail1”,

myQueue,// the queue ID

Agent Desktop
Application EventService Interaction

MailService
Server-side
application Contact

Genesys
Framework

InteractionEvent, "mail2", TALKING

"mail2", TALKING

reply("mail1")
reply("mail1")

"mail1", IDLE

Incoming e-mail "mail1"––InteractionStatus.TALKING

Interaction
Service

markDone("mail1")
markDone("mail1")

InteractionEvent, "mail1", IDLE

setInteractionsDTOs("mail2")

setInteractionsDTOs("mail2")
send("mail2")

send("mail2")

"mail2", IDLE

InteractionEvent, "mail2", IDLE

InteractionEvent, "mail2", NEW

"mail2", NEW

Services—Developer’s Guide 147

Chapter 9: E-Mail Interactions Collaboration Essentials

true,// Reply to all
null); // string keys of the attributes to retrieve

// Displaying the ID of the created interaction
System.Console.WriteLine(“Replying Interaction Id: “+

 myReplyDTO.interactionId);

Note: The InteractionDTO object can retrieve attributes that have the read
property.

Marking Done an E-Mail Interaction
Your application should mark done an e-mail interaction when the agent no
longer needs it. For instance, if the agent sent several replies to an e-mail and
decides that this e-mail no longer requests agent processing, he or she marks it
as done.
The following code snippet shows how to mark the previously created
outgoing e-mail as done:

myInteractionMailService.markDone(myNewEMailId);

When the interaction is marked as done, your IInteractionMailService and
IInteractionMailService interfaces can no longer access this interaction or
perform your application’s requests using its identifier.

Collaboration Essentials
A collaboration session involves several types of interactions. A collaboration
interaction is an e-mail interaction that manages additional collaboration data.
The e-mail interaction service includes collaboration attributes to access that
data, which includes collaboration status.
During a collaboration session, your application can use the e-mail service to:
• Manage the collaboration, if the agent is the initiator.
• Participate in a collaboration session.
When an agent initiates the collaboration, he or she sends invitations to the
participants. After a refresh of their applications, the agent can monitor the
collaboration activity, and all the participants can access the corresponding
invitations. When a participant has replied, the corresponding invitation is
fulfilled.
If the agent is a participant, your application only manages interaction events
and uses the e-mail service to perform collaboration actions on the
collaborative interactions.

148 Agent Interaction SDK 7.6

Chapter 9: E-Mail Interactions Collaboration Essentials

The following sections present the details behind this general description.

Collaboration Attributes
Your application can call one of the
IInteractionService.getInteractionDTO*() methods to read the collaboration
attributes. See “Opening a Workbin Interaction” on page 106.

Collaborative
Interaction
Attributes

As the collaborative interactions are e-mail interactions, the following
attributes are available for a collaborative interaction:
• interaction:*—Common interaction attributes.
• interaction.mail.*—Common e-mail attributes.
• interaction.mail.in.collaboration:*—Additional collaborative

attributes for parent invitations.

Outgoing E-Mail
Attributes

An agent initiates a collaboration session when writing an outgoing (reply) e-
mail. Your application can monitor this session with some attributes dedicated
to the collaboration management and defined in the interaction.mail.out
domain:
• interaction.mail.out:invitations—All the invitations sent by the agent

who initiated the collaboration session.
• interaction.mail.out.invitationSentId—The system identifier of an

outgoing e-mail whose invitations were successfully sent to
participants.

Your application can use the following IInteractionMailService DTO
methods to get interaction data:
• getSentInvitationsDTO()—Retrieves the interaction data of each sent

invitation.
• getCollaborativeReplyDTO()—Retrieves the interaction data of a received

reply. See “Retrieving a Collaborative Reply” on page 153.

Collaboration Interaction Types
Your application accesses types for collaborative e-mail interactions using the
interaction:interactionType attribute of the IInteractionService interface.

Services—Developer’s Guide 149

Chapter 9: E-Mail Interactions Collaboration Essentials

Table 17 presents the types of collaborative e-mail interactions that the e-mail
service handles.

Incoming Invitation

The parent can see and manage the invitation interactions of the participants:
• Child invitation (invitation from the child point of view):

Each participant in the collaboration session receives an incoming
child invitation.
This interaction informs the participant of the collaboration request.
For information about managing child invitation, see “Participating in
a Collaboration Session” on page 153.

• Parent invitation (invitation from the parent point of view):
For each invitation sent to a participant, the agent who initiates the
collaboration can access the corresponding interaction.
The agent uses parent invitations to monitor the collaboration and the
participants’replies.
For information about managing parent invitations, see “Managing a
Collaboration Session” on page 151.

Collaborative Reply

The collaborative reply is an outgoing e-mail replying to a child incoming
invitation. As with an outgoing reply e-mail, some fields are filled at the
interaction’s creation—for instance, interaction.mail:to and
interaction.mail:from.

Use a collaborative reply in the same way as an outgoing e-mail interaction.
For further details, see “Participating in a Collaboration Session” on page 153.

Table 17: Types of Collaborative E-Mail Interactions

Interactions InteractionType Description

Inbound
invitation

COLLABORATION_INVIT_IN Interactions for inbound
invitations that the participant
(or child) receives or that the
agent (or parent) sent in a
collaboration..

Reply to
invitation

COLLABORATION_REPLY_OUT Interactions for a
collaborative
reply sent by a participant (or
child).

150 Agent Interaction SDK 7.6

Chapter 9: E-Mail Interactions Collaboration Essentials

Collaboration Status
The CollaborationStatus enumeration lists the possible collaboration
statuses. Only collaborative interactions can have a collaboration status,
available in the interaction.mail:collaborationStatus attribute. This status
is an additional data. The interaction:status attribute is available for any
collaborative interactions.
An application that initiates a collaboration has a specific interest in the
collaboration status of its parent invitations.When a parent invitation takes
on a FULFILLED status, the application can get the system identifier in the
interaction.mail.in.collaboration:collaborativeReply attribute of this
interaction to access the corresponding reply.

Note: Collaboration status changes do not launch additional InteractionEvent
events. There is no notification.

To refresh the collaboration status of a collaborative interaction, your
application must periodically read that status.
Figure 28 shows common transitions existing between collaboration statuses.

Figure 28: Generalized State Diagram for an Incoming Invitation
(Incomplete)

Common transitions between statuses of incoming invitation interactions
that involve calls to methods of the IInteractionMailService

CANCELLED

ACCEPTANCE
_PENDING

ACCEPTED

(parent) Sent invitations

acceptInvitation()

FULFILLED

(parent) recallInvitation()

DECLINED

declineInvitation()

replyInvitationDTO()
+send

Services—Developer’s Guide 151

Chapter 9: E-Mail Interactions Collaboration Handling

Collaboration Handling
The typical IInteractionMailService actions upon e-mail invitations are
presented in Table 18.

Table 18 separately shows actions related to parent versus child invitation
interaction. The InteractionType specified in the table’s last column is the
interaction type of the identifier parameter in the IInteractionMailService
method call.

Managing a Collaboration Session
To request the collaboration of other agents, your application must be working
on an outgoing e-mail interaction, as shown in Table 18. As your application
initiates the collaboration, it becomes the parent of all sent invitations.
The following steps detail the general sequence of actions that your application
is likely to follow:
1. Sending invitations to the participants.

Table 18: Features For Collaboration

Agent Actions IInteractionMail
Service

InteractionType

PARENT Send an invitation sendInvitationTo*() EMAIL_OUT
EMAIL_OUT_REPLY

Remind an invitation remindInvitation() EMAIL_OUT
EMAIL_OUT_REPLY

Recall an invitation recallInvitation() EMAIL_OUT
EMAIL_OUT_REPLY

Retrieve DTOs for sent
invitations.

getSentInvitationsDTO(
)

EMAIL_OUT
EMAIL_OUT_REPLY

Retrieve the DTO for a
collaborative reply
interaction.

getCollaborativeReplyD
TO()

COLLABORATION_INVIT_IN

CHILD Accept an invitation acceptInvitation() COLLABORATION_INVIT_IN

Refuse an invitation declineInvitation() COLLABORATION_INVIT_IN

Reply to an invitation replyInvitationDTO() COLLABORATION_INVIT_IN

Send a collaborative
reply

send() COLLABORATION_REPLY_OUT

152 Agent Interaction SDK 7.6

Chapter 9: E-Mail Interactions Collaboration Handling

2. Recalling, or reminding about, invitations if required.
3. Retrieving a DTO for each collaborative reply sent by a participant.
4. Sending the outgoing e-mail. For details, see “Sending the E-Mail

Interaction” on page 142.

Sending Invitations

Depending on the method called to send invitations, your application activates
a specific mode:
• sendInvitations()—Sends the invitations to the participants in the pull

mode. The child invitations are available in workbins.
• transferInvitations()—Transfers the invitations to the participants in the

push mode. Each participant receives the invitation as an incoming
interaction.

A single call to these methods send all invitations, as shown in the following
code snippet:

Participant[] myParticipants=new Participant[2];
myParticipants[0] = new Participant();
myParticipants[0].name = "agent0";
myParticipants[0].type = ParticipantType.AGENT;
myParticipants[1].name = "agent1";
myParticipants[1].type = ParticipantType.AGENT;
InteractionDTO[] mySentInvitations=

myInteractionMailService.sendInvitations(myInteractionId,
myParticipants,
"Do you have info about that?", //the trouble
"Troubleshooting", //the subject of the collaboration
new string[]{"interaction.*:*"}); //the invitation attributes

 //to return in DTOs.

The method returns an array of interaction DTOs. Each interaction DTO
contains the data of a sent invitation.

Reminding About Invitations

Sometimes, agents who received invitations might forget to reply. Your
application can use the IInteractionMailService.remindInvitation() method
to remind a participant that a collaboration session is still in progress. This
method does not inform all participants—only a single one. Call this method if
the invitation’s collaboration status is: ACCEPTED or ACCEPTANCE_PENDING. It takes
as a parameter the interaction identifier of the parent invitation that
corresponds to one participant.
The following code snippet shows a call to this method:

Services—Developer’s Guide 153

Chapter 9: E-Mail Interactions Collaboration Handling

myInteractionMailService.remindInvitation(
"parentInvitationIdForAgent0",
"myPlaceId"); // place ID of the agent reminding the invitation

Retrieving a Collaborative Reply

When a collaboration participant sends a reply to the inviting agent, your
application propagates the identifier of the collaborative reply in the
interaction.mail.in.collaboration:collaborativeReply attribute.
The following code snippet retrieves a collaborative reply interaction with the
getCollaborativeReplyDTO() method:

InteractionDTO myReplyDTO =
myInteractionMailService.getCollaborativeReplyDTO(

"myReplyID", // interaction ID of the reply
new string[]{"interaction.*:*"}); // attributes to get in DTO

Note: Replying to a collaborative reply is not possible.

Recalling an Invitation

If the initiating agent no longer needs the collaboration session—for example,
he has found the necessary information—he or she can decide to recall some
pending invitations.
In this case, your application uses the
IInteractionMailService.recallInvitation() method to cancel the
invitations. This method does not recall all invitations—only a single one. Call
this method if the invitation’s collaboration status is: ACCEPTED or
ACCEPTANCE_PENDING. It takes as a parameter the interaction identifier of the
parent invitation that corresponds to one participant. If the recall is successfull,
the collaborative status of the invitation changes to CANCELLED.
The following code snippet shows a call to this method:

myInteractionMailService.recallInvitation(
"parentInvitationIdForAgent0",
"myPlaceId"); // place ID of the agent recalling the invitation

Participating in a Collaboration Session
In push mode, when an agent receives an incoming invitation, he or she
receives an e-mail interaction of type COLLABORATION_INVIT_IN which has both
InteractionStatus.RINGING and CollaborationStatus.ACCEPTANCE_PENDING
statuses.

154 Agent Interaction SDK 7.6

Chapter 9: E-Mail Interactions Collaboration Handling

If the agent accepts the invitation, that agent participates in the collaboration
session. To end his or her participation, the agent must reply to the invitation,
as described in the following subsections.

Accepting an Invitation

Once the application has answered the interaction (see “Common E-Mail
Management” on page 139), your application can accept the incoming
invitation to enter the collaboration session, by calling the
IInteractionMailService.acceptInvitation() method, as shown in the
following code snippet.

myInteractionMailService.acceptInvitation(
"myChildInvitationID", //Interaction ID
"myPlaceID");

If the ACCEPT_INVITATION action is successful, the collaboration status of the
the invitation interaction should become CollaborationStatus.ACCEPTED.
For further details about collaboration statuses, see “Collaboration Status”
on page 150.

Replying to an Invitation

Your application can use the IInteractionMailService.replyInvitationDTO()
method to create a collaborative reply interaction of type
COLLABORATION_REPLY_OUT, as shown in the following code snippet.

InteractionDTO myCollaborativeReplyDTO =
myInteractionMailService.replyInvitationDTO(

"myChildInvitationID",// Interaction ID
"myPlaceID",
new string[]{"interaction.**:*"}); /// attributes to retrieve

string myCollaborativeReplyID =
myCollaborativeReplyDTO.interactionId;

The returned InteractionDTO contains the identifier of the created interaction.
Use this identifier to fill the e-mail using the
IInteractionService.setInteractionDTO() method, as detailed in “Filling an
E-Mail Interaction” on page 142.
Once the collaborative reply is filled, your application can send it as an
outgoing e-mail using the IInteractionMailService.send() method, as shown
in the following code snippet:

myInteractionMailService.send(myCollaborativeReplyID, myQueue);
// The Queue (should not be null)

Services—Developer’s Guide 155

Chapter

10 Chat Interactions
The chat interaction service is the IInteractionChatService interface defined
in the com.genesyslab.ail.ws.interaction.chat namespace. To use this
service, your application works with classes and enumerations of this
namespace, and with the classes and interface of the
com.genesyslab.ail.ws.interaction namespace.
This chapter covers the following topics:

Introduction, page 155
Chat Interaction Essentials, page 156
Managing a Chat Session, page 162
Transferring a Chat Interaction, page 166

Introduction
The chat interaction service is designed around a set of actions for managing
chat interactions. A chat interaction is a specific object representing chat
message exchanges, that is, a chat session between an agent and other parties
through a CHAT medium.
The chat interaction service manages the following tasks:
• Start and stop a chat session through a chat interaction.
• Send a message during a chat session.
• Transfer a chat interaction.
The chat interaction service performs actions only on chat interactions. The
chat interaction service depends on the following other services:
• The event service:

Your application can receive events with the event service. Events are
essentials in chat management.

156 Agent Interaction SDK 7.6

Chapter 10: Chat Interactions Chat Interaction Essentials

• The agent service:
Before working with chat interactions, your application must first use
the agent service to log in an agent on a chat medium.
While the agent is logged on a chat medium, your application can use
the IInteractionChatService interface to perform actions on chat
interactions associated with the chat medium.

Note: For further information, see Chapter 5, “The Agent Service,”
page 71.

• The interaction service:
To access IInteractionChatService attributes, your application uses
the IInteractionService DTO methods.
Some chat attributes are published in events of type InteractionEvent
which is described in the IInteractionService interface.

Note: For further information, see Chapter 7, “The Interaction Service,”
page 101.

Chat Interaction Essentials
The IInteractionChatService interface exposes methods and pertinent
attributes to let your application manage multiple chat sessions with a multiple
simultaneous chat interactions, each of which is identified by a unique
interaction ID.
Each chat interaction follows a sequence of states—for example, beginning in
a NEW state, transitioning to a DIALING state, and moving through other states
until its final state is MARKED_DONE.
For any particular state, the chat interaction service permits use of only a small
subset of its possible actions (available to your application as method calls).
For any one chat interaction, your application may apply only one action at the
same time.
During a chat session—handled by a particular chat interaction—, your
application can use the chat service to send chat messages and manage the chat
session.
After the chat interaction service successfully applies an action to a particular
chat interaction, the event service can receive an InteractionEvent that carries
the interactionId identifying the corresponding chat interaction, along with a
variety of attributes reflecting new state (and other data). To receive
InteractionEvent events, your application must subscribe to them.
For each incoming chat message, each chat session update, or each successful
chat action, the event service may receive a ChatEvent event that can propagate
the published chat attribute values in order that your application can take them

Services—Developer’s Guide 157

Chapter 10: Chat Interactions Chat Interaction Essentials

into consideration. To receive ChatEvent events, your application must
subscribe to them.
For each incoming InteractionEvent or ChatEvent event, your application
should test various attributes of the IInteractionChatService interface,
including especially the interaction.chat:actionsPossible attribute (to
determine which actions the application can currently apply).
The following sections present the details behind the above general
description.

Chat Interaction Attributes
The IInteractionChatService has no methods to read chat attributes. Your
application must call one of the IInteractionService.getInteractionDTO*()
methods. See “Opening a Workbin Interaction” on page 106.

Chat Attributes For each chat interaction, the IInteractionChatService interface defines a set
of attributes that are characteristic of a chat session in the interaction:chat
domain. The following list is representative (but not exhaustive):
• interaction.chat:parties—The parties of the session.
• interaction.chat:messages—The list of exchanged messages.
• interaction.chat:messageEvent—Published chat message.
• interaction.chat:duration—The time duration of the chat session in

seconds.
• interaction.chat:actionsPossible—Array of chat actions currently

possible on a session.

Common
Interaction
Attributes

For each chat interaction, the attributes of the IInteractionService interface
are also available. Your application may often use the following:
• interaction:interactionId—The system interaction identifier, required in

calls to the methods of the chat interaction service.
• interaction:status—The interaction status defined with the

InteractionStatus enumeration.
• interaction:eventReason—The InteractionEventReason value published

when an InteractionEvent event occurs for a chat interaction.

Chat Actions
The InteractionChatAction enumeration defines voice actions of the
IInteractionChatService interface. Constants each correspond to one chat
interaction service method. For example, the ANSWER_CALL constant corresponds
to the IInteractionChatService.answerCall() method.

Note: Each method call performs an action on one chat interaction. The
method call does not apply to a set of interactions.

158 Agent Interaction SDK 7.6

Chapter 10: Chat Interactions Chat Interaction Essentials

Possible actions for chat interactions can be accessed by reading the value of
the interaction.chat:actionsPossible attribute of the
IInteractionChatService.
The IInteractionChatService has no methods to read attributes. Your
application must use one of the InteractionService.getInteractionsDTO*()
methods. See “Handling Interaction DTOs” on page 105.
Changes in possible actions can be propagated in both InteractionEvent and
ChatEvent events. See “Chat Interaction Events” on page 159.

Chat Interaction Status
The current state of a chat interaction is available as the value of the
interaction:status attribute, which is defined in the IInteractionService.
For a chat interaction, possible status values are listed in the
InteractionStatus enumeration of the com.genesyslab.ws.interaction
namespace.
The IInteractionChatService has no methods to read attributes. Your
application must use one of the InteractionService.getInteractionsDTO*()
methods. See “Handling Interaction DTOs” on page 105.
The status of a chat interaction may change if a successful action is confirmed
by an event sent to the server-side application. For example, if your application
successfully answers a ringing chat interaction, the status of the chat
interaction changes to InteractionStatus.TALKING. Changes in interaction
status are propagated in InteractionEvent events. See “Chat Interaction
Events” on page 159.
Figure 29 on page 159 shows the possible interaction statuses for a chat
interaction.

Services—Developer’s Guide 159

Chapter 10: Chat Interactions Chat Interaction Essentials

Figure 29: Example of Possible Transitions due to InteractionEventReason

Warning! This figure is provided as an informative example. It does not
include all possible statuses and transitions.

Chat Interaction Events
When changes occur on a chat interaction and involve only the chat
management of a chat interaction, the event service of your application
receives ChatEvent events.
To properly take into account chat events, the published
interaction.chat:eventType attribute value indicates the reason for a chat
event. The ChatEventType enumeration lists the possible reasons for an
occurring ChatEvent event.

RINGING

TALKING

EventReason
RINGING

EventReason
ESTABLISHED

IDLE

EventReason
RELEASED

HELD

EventReason
STATUS_CHANGED

EventReason
STATUS_CHANGED

EventReason
RELEASED

or ABANDONED

160 Agent Interaction SDK 7.6

Chapter 10: Chat Interactions Chat Interaction Essentials

ChatEvent events can propagate any published attribute, that is, any attribute of
the interaction.chat domains that has the event property. The eventType
attribute indicates attributes to test, as listed in Table 19.

When changes occur on a chat interaction, the event service of your
application may also receive InteractionEvent events. Published attributes are
IInteractionService attributes as well as those IInteractionChatService
attributes that have the event property. A modification propagated with an
InteractionEvent may include changes on that chat interaction’s attributes, for
example, interaction.chat:actionsPossible.
Your application must subscribe to the TopicsService objects defined for both
IInteractionService and IInteractionChatService. Those TopicsService
objects have to specify in their TopicsEvents the DTOs to retrieve. Moreover,
they must include a trigger on the agent or on the place where the agent is
logged in.

Note: For further details on the InteractionEvent mechanism, see “Using
IInteractionService” on page 103.

The following code snippet shows how to receive InteractionEvent and
ChatEvent events occurring on any chat interaction belonging to agent0.

/// Defining two TopicsService
TopicsService[] myTopicsServices = new TopicsService[2] ;

/// Defining a Topic Service for the chat service
myTopicsServices[0] = new TopicsService() ;
myTopicsServices[0].serviceName = "ChatService" ;
/// Defining a topic event

Table 19: Chat Event Types and Attributes

ChatEventType Attributes Description

DISCONNECTED interaction.chat:* The chat session is terminated.

ERROR_RECEIVED interaction.chat:* An error occured.

MESSAGE_RECEIVED interaction.chat:
messageEvent

The messageEvent attribute
contain the new incoming chat
message.

USER_JOINED interaction.chat:
partyEvent

The partyEvent attribute contains
the name of a new party who has
joined the session.

USER_LEFT interaction.chat:
partyEvent

The partyEvent attribute contains
the name of a party who has left
the session.

Services—Developer’s Guide 161

Chapter 10: Chat Interactions Chat Interaction Essentials

myTopicsServices[0].topicsEvents = new TopicsEvent[1] ;
myTopicsServices[0].topicsEvents[0] = new TopicsEvent() ;

/// the targeted events are ChatEvents
myTopicsServices[0].topicsEvents[0].eventName =

"ChatEvent" ;
/// all the event attributes values are propagated in event objects
myTopicsServices[0].topicsEvents[0].attributes = new String[]{

"interaction.chat:*"};
/// Triggering ChatEvent for agent0
myTopicsServices[0].topicsEvents[0].triggers = new Topic[1];
myTopicsServices[0].topicsEvents[0].triggers[0] = new Topic();
myTopicsServices[0].topicsEvents[0].triggers[0].key = "AGENT";
myTopicsServices[0].topicsEvents[0].triggers[0].value = "agent0";

/// Defining a Topic Service for the interaction service
myTopicsServices[1] = new TopicsService() ;
myTopicsServices[1].serviceName = "InteractionService" ;

myTopicsServices[1].topicsEvents = new TopicsEvent[1] ;
myTopicsServices[1].topicsEvents[0] = new TopicsEvent() ;

/// the targeted events are InteractionEvent
myTopicsServices[1].topicsEvents[0].eventName = "InteractionEvent" ;

/// in case of a chat interaction, the interaction,
/// and chat attributes values are propagated in the Event object
myTopicsServices[1].topicsEvents[0].attributes = new String[]{

"interaction:*",
"interaction.chat:*"};

/// To receive those events for agent0, your application must
/// trigger events on agent0
myTopicsServices[1].topicsEvents[0].triggers = new Topic[1];
myTopicsServices[1].topicsEvents[0].triggers[0] = new Topic()
myTopicsServices[1].topicsEvents[0].triggers[0].key = "AGENT";
myTopicsServices[1].topicsEvents[0].triggers[0].value = "agent0";

For further information about events, see Chapter 4.

162 Agent Interaction SDK 7.6

Chapter 10: Chat Interactions Managing a Chat Session

Managing a Chat Session
Your application uses the chat service to manage chat interactions. Each chat
interaction corresponds to a chat session.
To deal with chat interactions, your application must log in an agent on a CHAT
medium, and must subscribe to interactions and chat events with the event
service (see page 159). When subscribing to those events, your application
must trigger on the targeted agent or on the place where its agent is logged.
When a ringing chat interaction occurs on the place, your application must
answer the chat interaction to start the chat session. Then your application
receives events for chat incoming messages and can send messages with the
chat interaction service. To leave the session, your application can release the
session and then mark it as done.
Table 20 presents the corresponding actions to perform on a chat interaction.

The following subsections detail these management steps for a chat session.

Answering a Chat Interaction
When a customer requests a chat session, an agent receives a chat interaction
in a RINGING status. If the agent successfully answers this chat interaction, he
starts a chat session between himself and the customer.
Figure 30 presents the corresponding sequence diagram involving the chat and
event services of your application.

Table 20: Management Actions for a Chat Interaction

Action InteractionChatActi
on

IInteractionChatServi
ce Methods

Answer a chat interaction ANSWER_CALL answer()

Release a chat interaction RELEASE_CALL release()

Mark a chat interaction as
done

MARK_DONE markDone()

Services—Developer’s Guide 163

Chapter 10: Chat Interactions Managing a Chat Session

Figure 30: Answering a Chat Interaction

In Figure 30, the InteractionEvent events received by the event service have a
STATUS_CHANGED reason, and their labels indicate the current status of the
associated chat interaction.
Retrieve in the received InteractionEvent event the interaction ID and the
updated possible actions of the chat interaction. Update your application with
the possible chat actions.
If the InteractionChatAction.ANSWER_CALL is available in the
interaction’sinteraction.chat:actionsPossible attribute, call the
IInteractionChatService.answer() method, as shown in the following code
snippet.

myInteractionChatService.answer(myInteractionID);

Getting Parties
A party is identified by his or her nickname during the chat session. The
ChatParty class associates the party’s information with its nickname. Its fields
are the following:
• nickname—A party nickname, used as an identifier during the chat session.
• connected—True, if the party is connected.
• type—A string for the type of party.
• visibility—The chat party’s visibility; a value of the

ChatPartyVisibility enumeration.
The chat interaction service exposes the parties of a chat session in the
interaction.chat:parties attribute of the chat interaction that handles the chat

Agent Desktop
Application EventService Interaction

ChatService
Server-side
application Contact

Genesys
Framework

Request
chat session

InteractionEvent, "chat1", RINGING

"chat1", RINGING
answer("chat1")

answer("chat1")

InteractionEvent, "chat1", TALKING

"chat1", TALKING

Chat session "chat1"––InteractionStatus.TALKING

Open chat session

164 Agent Interaction SDK 7.6

Chapter 10: Chat Interactions Managing a Chat Session

session. This attribute value contains an array of ChatParty objects. For
example, your application can retrieve this attribute value with the
IInteractionService.getInteractionsDTO() method as shown in the following
code snippet.

InteractionDTO[] myChatInteractionDTO =
myInteractionService.getInteractionsDTO(

new string[]{myInteractionId},
new string[]{"interaction.chat:parties"});

// The DTO array contains one DT which contains one attribute
/// Getting the parties:
KeyValue myAttrKeyValue = myChatInteractionDTO[0].data[0];
ChatParty[] myParties = (ChatParty[]) myAttrKeyValue.value;

/// Displaying information about parties
foreach(ChatParty myParty in myParties)
{

string connected = "not connected";
if(myParty.connected)

connected = "connected";
System.Console.WriteLine(myParty.nickname +" is " + connected +

" (visibility="+ myParty.visibility.ToString()+")\n");
}

Sending Chat Messages
A chat message is a simple string to send. To send the message, call the
IInteractionChatService.sendMessage() method as shown in the following
code snippet:

myInteractionChatService.sendMessage(
myInteractionId,//ID of the chat interaction handling the session
"My message is sent to all parties"); // message to send

Conferences
During a chat session, an agent might invite another agent to join, or an agent
or supervisor might want to join. The IInteractionChatService interface offers
two methods for this purpose:
• conferenceAgent()—An agent is invited to join by receiving a RINGING chat

interaction.
• conferencePlace()—A RINGING chat interaction is sent to a place.
If an application handling the target (agent or place) answers the RINGING
interaction, your application event service receives a ChatEvent event
specifying that a user has joined.

Services—Developer’s Guide 165

Chapter 10: Chat Interactions Managing a Chat Session

Your application specifies what is the visibility of the new invited party in the
method call, as shown in the following code snippet.

myInteractionChatService.conferenceAgent(
myInteractionID,// ID of the chat interaction

// handling the session to join
myTargetAgentId, // invited agent
ChatPartyVisibility.ALL, //visibility if the target agent joins
"Need information about defects"); // reason for joining

Releasing a Chat Interaction
To leave a chat session, your application must release the chat interaction with
the IInteractionChatService.release() method. If the call is successful, the
chat interaction’s status changes to InteractionStatus.IDLE, as shown in
Figure 31.

Figure 31: Releasing a Chat Interaction

To release a chat interaction, call the IInteractionChatService.release()
method if the InteractionChatAction.RELEASE_CALL action belongs to the
interaction.chat:actionsPossible attribute of the chat interaction:

myInteractionChatService.release(myInteractionId);

Marking a Chat Interaction as Done
When an agent has finished working with a chat session and has released this
chat session, he can mark an interaction as done, so that the interaction is saved
in the contact’s history.
To mark a chat interaction as done, call the
IInteractionChatService.markDone() method if the

Agent Desktop
Application EventService Interaction

ChatService
Server-side
application Contact

Genesys
Framework

release("chat1")
release("chat1")

InteractionEvent, "chat1", IDLE

"chat1", IDLE

Chat session "chat1"––InteractionStatus.TALKING

Close chat session

166 Agent Interaction SDK 7.6

Chapter 10: Chat Interactions Transferring a Chat Interaction

InteractionChatAction.MARK_DONE action belongs to the
interaction.chat:actionsPossible attribute of the chat interaction:

myInteractionChatService.markDone(myInteractionId);

Transferring a Chat Interaction
Your agent application can transfer a chat interaction to another agent or to
another place using the chat interaction service. These transfers are direct, that
is, in a single step.
If the interaction.chat:actionsPossible attribute of a chat interaction
includes the InteractionChatAction.TRANSFER action, your application can use
one of the chat service transfer methods detailed in the following subsections.

Transferring to an Agent
Your agent application enable the user to enter the employee ID of the agent to
whom the chat interaction should be transferred. In this case, use the
IInteractionChatService.transferAgent() method, as shown in the
following code snippet:

myInteractionChatService.transferAgent(
myInteractionId,
myTargetEmployeeId,
“A message justifying the interaction transfer”);

Transferring to a Place
Your agent application can enable the user to choose a place (having a CHAT
medium) to which to transfer the chat interaction. In this case, use the
IInteractionChatService.transferPlace() method, as shown in the
following code snippet:

myInteractionChatService.transferPlace(
myInteractionId,
myTargetPlaceId,
“A message justifying the interaction transfer”);

Services—Developer’s Guide 167

Chapter

11 The Contact Service
The contact service is the IContactService interface defined in the
com.genesyslab.ail.ws.contact namespace. It handles the management of
contacts. This chapter covers the following topics:

Introduction, page 167
Contact Information, page 168
Retrieving Contact Information, page 175
Searching Contacts, page 178
Managing Contacts, page 184

Introduction
The following sub-sections present the contact service of Agent Interaction
Service API.

What Is a Contact?
A contact is a customer with whom the agent may interact through a medium.
Each contact has an ID which is a unique system reference used in the Genesys
Framework. The Universal Contact Server (UCS) stores the contact data—that
is, names, e-mail addresses, phone numbers, and other information.
This server also stores the history of a contact—that is, processed interactions.
For further details, see “The History Service” on page 235.

What Is the Contact Service?
The contact service is an interface that lets your application access contacts’
data using the contacts’ IDs. Your application can create, retrieve, and modify
a contact’s data set.

168 Agent Interaction SDK 7.6

Chapter 11: The Contact Service Contact Information

The contact service is independent from other services. To use the contact
service, your application does not require specifics such as a logged in agent.
However, your application can use this service together with other services to
fit agents’ needs. The contact is important information, used to deal with
interactions and callback records. The interaction includes two participants, the
agent and the contact.
The following scenarios illustrate uses of the contact service:
• The agent wants to see a contact’s phone numbers. Your application

displays the list of phone numbers. The agent selects the contact’s mobile
phone number and your application offers to launch a call.

• Your application receives an InteractionEvent for a ringing call.
It uses the contact ID to display who is calling the agent.
The contact is unknown: As soon as the agent answers the call, the
application displays a wizard to collect the contact information.

Contact Information
The IContactService interface does not use specific DTO classes to deal with
contacts. It uses a set of ContactXxx classes defined in the
com.genesyslab.ail.ws.contact namespace.
The following subsections detail how the IContactService interface uses these
classes.

Contacts’ Attributes
Most of the time, a contact is an instance of the ContactValue class of the
com.genesyslab.ail.ws.contact namespace. The IContacService interface lets
your application manage ContactValue objects containing the contacts’
information.
The ContactValue class has two attributes:
• contactId—The unique system reference for the contact.
• attributes—An array of ContactAttribute containing the contact’s

attributes.
The contact service’s attributes are characteristic values of a contact. For
example, an attribute may be the contact’s last name, first name, or a set of e-
mail addresses.

Attribute Values

In Figure 32, the class diagram shows how the contact information is
structured.

Services—Developer’s Guide 169

Chapter 11: The Contact Service Contact Information

Figure 32: ContactValue Class Diagram

The ContactAttribute objects define the data of a contact. Each
ContactAttribute contains the existing values for an attribute. The attribute
values are available in the ContactAttribute.values field, which is an array of
ContactAttributeValue. Each ContactAttributeValue object contains a single
attribute value which has a unique system reference available in the
ContactAttributeValue.id field.
For example, if a contact has one or several e-mail addresses, EmailAddress is
considered an attribute. A single ContactAttribute contains its values—that is,
all the contact’s e-mail addresses—and each ContactAttributeValue contains
an e-mail address, as illustrated in Figure 33.

Figure 33: Example of Contact Information

Note: Each contact attribute is associated with a metadata object. See
“MetaData in Other Contact Attribute Classes” on page 171.

+contactId
ContactValue

+attributeMetaDataId
ContactAttribute

+id
+primary
+value
+mimeType
+description

ContactAttributeValue

1

+attributes

1..* 1

+values

1..*

ContactValue
ContactID

Attributes[0]:ContactAttribute

Attributes[1]:ContactAttribute

Attributes[2]:ContactAttribute

values[0]:ContactAttributeValue
value= "john.connor@office.com"

values[1]:ContactAttributeValue
value= "john.connor@home.com"

AttributeMetadataID
(EmailAddress)

AttributeMetadataID (lastname)

AttributeMetadataID (firstnames)

values[0]:ContactAttributeValue
value= "Connor"

values[0]:ContactAttributeValue
value= "john"

170 Agent Interaction SDK 7.6

Chapter 11: The Contact Service Contact Information

Primary Attributes

The primary attribute value of a contact is defined for a contact attribute. It is
one of the attribute values marked as primary.
For example, if a contact has several e-mail addresses, the work e-mail address
might be the primary e-mail attribute. In Figure 33, the primary attribute is
underlined for each type of attribute.
To retrieve primary attributes, see “Retrieving Contact Information” on
page 175.

Note: There is only one primary attribute value per attribute’s type.

MetaData

The Universal Contact Server defines a metadata for each type of attribute. For
example, the last name is a type of contact attribute specified by a metadata.
For the last name attribute, the metadata specifies that the attribute name is
LastName, the type of the attribute value is a string, the display name is Last
name, and so on.
A single metadata is available for each type of attribute; this metadata has a
unique system identifier and a unique name. For example, a single metadata is
available for all the existing last names’ attribute values. The metadata is
independent from the contacts’ attribute values.
The Agent Interaction SDK (Web Services) lets your application access the
metadata information with classes detailed in the following subsections.

ContactAttributeMetadata

Class The ContactAttributeMetadata class defines the attribute metadata. The
following are some of the main ContactAttributeMetaData fields:
• id—The unique system identifier for this metadata.
• name—The unique attribute name.
• active—true if the attribute is active in the Contact Server.
• displayName—The attribute display name.
• predefinedValues—A list of predefined contact attribute values, or null.
• searchable—true if the attribute is searchable. For example, a last name

might be searchable, whereas a title, such as Mr. or Ms, might not be
searchable.

• sortable—true if the attribute can be used to sort the contacts. For
example, a last name might be sortable.

• type—The type of attribute defined by ContactAttributeMetaDataType.
(See below).

Services—Developer’s Guide 171

Chapter 11: The Contact Service Contact Information

Note: To retrieve attributes, the metadata identifier id is required.

Type The ContactAttributeMetaDataType enumeration defines the type for the
values specified by a metadata:
• ContactAttributeMetaDataType.BINARY—Type for binary contact attribute

values.
• ContactAttributeMetaDataType.STRING—Type for string contact attribute

values.
• ContactAttributeMetaDataType.DATE—Type for date contact attribute

values.

MetaData in Other Contact Attribute Classes

Each ContactAttribute object associates an array of ContactAttributeValue
values with a metadata:
• The ContactAttribute.attributeMetaDataId field is the ID of the

available metadata for the set of attribute values.
• For each ContactAttributeValue, the name field points out the name of the

metadata.
Figure 34 presents a ContactAttributeMetaData related to a ContactAttribute
and its array of ContactAttributeValue.

Figure 34: Example of ContactAttributeMetaData and ContactAttribute

Predefined MetaData

Some contact attributes are fixed and the associated metadata are predefined.

ContactAttributeMetadata

id

name="EmailAddress"

displayName=
"E-Mail Address"

type=STRING

active=true

ContactValue

ContactID

Attributes[0]:ContactAttribute

Attributes[1]:ContactAttribute

Attributes[2]:ContactAttribute

values[0]:ContactAttributeValue
value= "john.connor@office.com"

values[1]:ContactAttributeValue
value= "john.connor@home.com"

AttributeMetadataID

172 Agent Interaction SDK 7.6

Chapter 11: The Contact Service Contact Information

The ContactAttributeMetaDataPredefinedType enumerated type lists the
existing predefined attributes handled by the contact service:
• TITLE—Fixed contact attribute for the title.
• FIRSTNAME—Fixed contact attribute for the first name.
• LASTNAME—Fixed contact attribute for last names.
• PHONE_NUMBER—Fixed contact attribute for phone numbers.
• EMAIL_ADDRESS—Fixed contact attribute for e-mail addresses.
The ContactAttributeMetaDataPredefined class associates a
ContactAttributeMetaDataPredefinedType with a ContactAttributeMetaData
object.
Use these objects to get fixed ContactAttributeMetadata without the
name or the identifier of these metadata. See “Getting Predefined MetaData”
on page 176.

Information Update
The com.genesyslab.ail.ws.contact.ContactUpdateType enumeration
corresponds to the types of update that the contact service can perform on the
information of several contacts at the same time.
For each contact to update, your application builds a ContactValue object. The
content of the array of ContactValue is used to update the contacts’ information
in the database according to the type of update. The following sub-sections
detail these update types. For implementation, refer to “Setting Attribute
Values” on page 187.

Attributes Update

When the agent using your application wants to fill in some contact
information or add additional values for a contact attribute, your application
can use the ContactUpdateType.UPDATE_ATTRIBUTE mode. For example, your
application might add new e-mail addresses for a customer, as shown in
Figure 35.

Services—Developer’s Guide 173

Chapter 11: The Contact Service Contact Information

Figure 35: Updating Contact Attribute Values

In Figure 35, the application defines a ContactValue object for the contact John
Connor. This ContactValue instance has an Email Address ContactAttribute
containing two ContactAttributeValues, which define new e-mail addresses.
As a result of the update, the new addresses are added to the database. The
other contact information has not been affected by the update, and the former
e-mail addresses remain.

Overwrite Attributes

When the agent using your application wants to modify the existing values for
a contact attribute, your application can use the
ContactUpdateType.OVERWRITE_ATTRIBUTE mode. For example, if a contact’s e-
mail addresses are obsolete, your application has to replace them with new e-
mail addresses, as shown in Figure 36.

ContactValue

Attributes[0]:ContactAttribute

values[0]:ContactAttributeValue
value= "john.connor@zoo.com"

values[1]:ContactAttributeValue
value="john.connor@geek.com"

AttributeMetadataID
(EmailAddress)

ContactId = 0034a2KY113002J

UPDATE_ATTRIBUTE:
The new attribute values are added to the
Contact information.

In the DB, after overwrite

LastName FirstName EmailAddress

"john.connor@zoo.com"
"jconnor@geek.com"

JohnConnor

ContactID

0034a2KY113002J

In the DB, before overwrite

LastName FirstName EmailAddress
"john.connor@office.com"

"jconnor@home.com"

JohnConnor
ContactID

0034a2KY113002J

"john.connor@office.com"

"jconnor@home.com"

174 Agent Interaction SDK 7.6

Chapter 11: The Contact Service Contact Information

Figure 36: Overwrite of some Contact Attributes

In Figure 36, the application defines a ContactValue object for the contact John
Connor. This ContactValue instance contains an EmailAddress
ContactAttribute containing two ContactAttributeValues which define the
available e-mail addresses. As a result of the update, the available e-mail
addresses replace the former e-mail addresses in the database. The other types
of contact attributes have not been modified by the update. Only the specified
ContactAttribute objects of the ContactValue.attributes array overwrite the
contact attributes in the database.

Overwrite a Contact

When the agent using your application wants to change all the contact
information, your application can use the
ContactUpdateType.OVERWRITE_CONTACT mode. To properly overwrite the
contact, define all the attributes that must remain after the update. Figure 37
shows this type of overwrite with the same ContactValue than in previous
figures (Figure 35 on page 173 and Figure 36 on page 174).

In the DB, before overwrite

LastName FirstName EmailAddress
"john.connor@office.com"

"jconnor@home.com"

JohnConnor

ContactValue

Attributes[0]:ContactAttribute

values[0]:ContactAttributeValue
value= "john.connor@zoo.com"

values[1]:ContactAttributeValue
value= "john.connor@geek.com"

AttributeMetadataID
(EmailAddress)

ContactId = 0034a2KY113002J

ContactID

0034a2KY113002J

OVERWRITE_ATTRIBUTE:
For each contact attribute of the
contact value, the attribute values
overwrite the ones in the database.

In the DB, after overwrite

LastName FirstName EmailAddress

"john.connor@zoo.com"
"jconnor@geek.com"

JohnConnor

ContactID

0034a2KY113002J

Services—Developer’s Guide 175

Chapter 11: The Contact Service Retrieving Contact Information

Figure 37: Overwrite of all the Contact Information

In Figure 37, the application defines a ContactValue object for the contact John
Connor. This ContactValue instance only contains an EmailAddress
ContactAttribute containing two ContactAttributeValues which define the
available e-mail addresses. As a result of the update, the available e-mail
addresses replace the former e-mail addresses in the database and the last name
and first name information is removed (since no ContactAttribute object
defines a new value for them).

Retrieving Contact Information
The IContactService interface uses several other container classes in methods
calls to manage contacts. Table 21 summarizes the relationship between
container classes and methods.

ContactValue

Attributes[0]:ContactAttribute

values[0]:ContactAttributeValue
value= "john.connor@zoo.com"

values[1]:ContactAttributeValue
value= "john.connor@geek.com"

AttributeMetadataID
(EmailAddress)

ContactId = 0034a2KY113002J

OVERWRITE_CONTACT:
The fields of the contact value
overwrite the whole contact
information of the database.

In the DB, before overwrite

LastName FirstName EmailAddress
"john.connor@office.com"

"jconnor@home.com"

JohnConnor
ContactID

0034a2KY113002J

In the DB, after overwrite

LastName FirstName EmailAddress

"john.connor@zoo.com"
"john.connor@geek.com"

nullnull
ContactID

0034a2KY113002J

Table 21: Contacts, Methods, and Containers of the IContactService

IContactService Methods Container classes Description

createContacts() ContactAttributeCreate This method uses the ContactAttribute
of the container to create a new contact.

mergeContacts() ContactMergeForm This method merges the contact pairs of
each container instance.

176 Agent Interaction SDK 7.6

Chapter 11: The Contact Service Retrieving Contact Information

Later sections of this chapter provide details about the operations listed in
Table 21.

Retrieving Contact MetaData
Your application must retrieve the ContactAtributeMetaData objects of the
required attributes. The IDs of these objects are necessary to retrieve the
contact attribute information.
The following subsection provides you with two ways of getting metadata.

Getting Predefined MetaData

Predefined metadata are the metadata of the fixed attributes defined in the
UCS. The IContactService.getContactAttributePredefinedMetaData()
method lets your application retrieve all the existing
ContactAttributePredefinedMetaData objects as shown in the following code
snippet.
/// Retrieving the predefined metadata
ContactAttributePredefinedMetaData[] myPredefMetaData =

myContactService.getContactAttributePredefinedMetaData();

/// Displaying the name of each predefined metadata
foreach(ContactAttributePredefinedMetaData predef

in myPredefMetaData)
{

System.Console.WriteLine(“Predefined Attribute: “
+ predef.predefinedType
+”MetaData name: “
+ predef.metaData.name);

}

Note: Retrieving predefined metadata does not require any metadata name or
identifier.

removeContactAttributes() ContactAttributeRemove This method removes only contact
attribute values specified in the
container.

searchContacts() ContactSearchTemplate This method uses the container to
restrict the contact search.

Table 21: Contacts, Methods, and Containers of the IContactService (Continued)

IContactService Methods Container classes Description

Services—Developer’s Guide 177

Chapter 11: The Contact Service Retrieving Contact Information

Getting MetaData

To retrieve the metadata, the IContactService interface offers the two
following methods:
• getContactAttributeMetaDataByName() retrieves the metadata

corresponding to the names specified in the array passed as parameter.
• getContactAttributeMetaDataById() retrieves the metadata corresponding

to the IDs specified in an array passed as parameter.

Retrieving Contact Values
When your application needs to retrieve contact values, it must specify which
attributes must be retrieved. Therefore, to retrieve contact values, the
IContactService interface needs:
• The list of contact IDs involved in the information retrieval.
• The types of attributes to retrieve for each contact.

Setting a List of Attributes to Retrieve

First, create an array of ContactAttributeRetrieve objects. Each
ContactAttributeRetrieve object sets:
• metaDataId—The ID of the metadata corresponding to a type of attribute to

retrieve.
• primary—If true, only the primary values of this type of contact attribute

are retrieved; otherwise, all the values of this attribute type are retrieved
for each contact. For further information, see “Primary Attributes” on
page 170.

ContactRetrieveAttribute[] toRetrieve =
new ContactRetrieveAttribute[2];

/// For each contact, retrieve the last name of the contact
toRetrieve[0] = new ContactRetrieveAttribute();
toRetrieve[0].primary = true;
toRetrieve[0].attributeMetaDataId = myLastNameMetaData.id;

/// For each contact, retrieve all the e-mail addresses
/// of the contact
toRetrieve[1] = new ContactRetrieveAttribute();
toRetrieve[1].primary = false;
toRetrieve[1].attributeMetaDataId = myEMailAddressMetaData.id;

178 Agent Interaction SDK 7.6

Chapter 11: The Contact Service Searching Contacts

Retrieving the Contacts’ Values

To retrieve the contacts values, use the previously defined array of
ContactAttributeRetrieve objects to call the IContactService.getContacts()
method, as shown in the following code snippet.

/// Retrieving attributes of myContactId
ContactValue[] myContacts =

myContactService.getContacts(new string[]{myContactId},
toRetrieve);

/// Displaying the retrieved values
foreach(ContactValue myContactValue in myContacts)
{

System.Console.WriteLine("**********");
foreach(ContactAttribute myContactAtt in

myContactValue.attributes)
{

/// Displaying the contact attribute values
System.Console.WriteLine("Attribute Values: ");
foreach(ContactAttributeValue myValue in myContactAtt.values)
{

System.Console.WriteLine(myValue.value.ToString()+" ");
}

}
}

Note that the above code snippet displays all the contents of the retrieved
contacts’ values.

Searching Contacts
The contact service includes an advanced search feature for contacts. With the
IContactService interface, your application can search contacts according to
several attributes’ values and their associated metadata IDs.
The following sections detail how to build a contact filter tree—equivalent to a
search request—and how to implement the contact service’s search feature.

Contact Filter Trees
The com.genesyslab.ail.ws.contact namespace contains classes and
enumerations to build filter trees corresponding to search requests that
approximate SQL requests to the UCS. Those filter trees are equivalent to
arithmetic expressions.
Wildcards are autorized in leaves to facilitate the search:
• The * wildcard matches any string of zero or more characters,

Services—Developer’s Guide 179

Chapter 11: The Contact Service Searching Contacts

• The _ wilcard matches one character.
For example, ((LastName=”B*” and FirstName=”A*”) or
(EMailAddress=”ab*@company.com”)) searches for any contact whose first name
begins with an A and whose last name begins with a B, or for any contact
whose e-mail address begins with ab and finishes with @company.com.
To build a filter tree, your application must define filter nodes and filter leaves,
as detailed in the following subsections.

Filter Leaves

A filter leaf contains a terminal expression that defines a search value for a
contact attribute, such as: LastName=”B*”. Your application can create a filter
leaf with an instance of the ContactFilterLeaf class, which associates a
metadata ID with a contact attribute value. The ContactFilterLeaf class
contains the following fields:
• attributeMetaDataId—the metadata ID of a contact attribute.
• operator—a ContactFilterLeafOperator value, which can be EQUAL or

NOT_EQUAL.
• value—an attribute value.
• primary—boolean; if true, the leaf defines a search restricted to the

primary values of a contact attribute.
The following code snippet implements a ContactFilterLeaf object for the
LastName=”B*” expression:

ContactFilterLeaf myLeaf = new ContactFilterLeaf();
myLeaf.attributeMetaDataId = "my LastName Metadata ID";
myLeaf.@operator = ContactFilterLeafOperator.EQUAL;
myLeaf.value = "B*";
myLeaf.primaryOnly = true;

Filter Nodes

A filter node contains a non terminal expression that defines an operation for
several non-terminal (node) or non terminal (leaf) expressions, as in the
following examples:
• a or b or c

• a and b and c

• a or b

• a and b
In the preceding examples, a, b, and c can be other filter nodes or leaves, and
the terms or and and are operators.

180 Agent Interaction SDK 7.6

Chapter 11: The Contact Service Searching Contacts

Your application can create a filter node by creating an instance of the
ContactFilterNode class. This class contains the following files:
• operator—A ContactFilterNodeOperator value which can be AND or OR.
• leaves—An array of ContactFilterLeaf objects affected by the operator.
• nodes—An array of ContactFilterLeaf objects affected by the operator.
Figure 38 presents a filter node containing the following expression:
(LastName=”B*” and FirstName=”A*”) or (EMailAddress=”ab*@company.com”)

Figure 38: An Example of Filter Node

Here is the corresponding code snippet:

/// The lower filter node defines: LastName=”B*” AND FirstName=”A*"
/// Creating a contact filter node
ContactFilterNode myLowerNode = new ContactFilterNode();
myLowerNode.@operator = ContactFilterNodeOperator.AND;

/// This node applies an AND operation to two leaves
myLowerNode.leaves = new ContactFilterLeaf[2];

/// Defining a leaf for LastName=”B*”
myLowerNode.leaves[0] = new ContactFilterLeaf();
myLowerNode.leaves[0].attributeMetaDataId =

"my Last Name Metadata ID";
myLowerNode.leaves[0].@operator = ContactFilterLeafOperator.EQUAL;
myLowerNode.leaves[0].value = "B*";
myLowerNode.leaves[0].primaryOnly = true;

/// Defining a leaf for FirstName=”A*”
myLowerNode.leaves[1] = new ContactFilterLeaf();
myLowerNode.leaves[1].attributeMetaDataId =

"my Fist Name Metadata ID";
myLowerNode.leaves[1].@operator = ContactFilterLeafOperator.EQUAL;
myLowerNode.leaves[1].value = "A*";
myLowerNode.leaves[1].primaryOnly = true;

Leaf
LastName=B*

Node
OR

Leaf
FistName=A*

Node
AND

Leaf
EMailAddress=

ab*@company.com

Services—Developer’s Guide 181

Chapter 11: The Contact Service Searching Contacts

/// The upper filter node defines:
/// myLowerNode OR (EMailAddress=”ab*@company.com”)

/// Creating a contact filter node
ContactFilterNode myUpperNode = new ContactFilterNode();
myUpperNode.@operator = ContactFilterNodeOperator.OR;

/// This node applies an OR operation to a node and a leaf
/// Adding myLowerNode to the nodes of myUpperNode
myUpperNode.nodes = new ContactFilterNode[1];
myUpperNode.nodes[0] = myLowerNode;

/// Defining a leaf for (EMailAddress=”ab*@company.com”)
myUpperNode.leaves = new ContactFilterLeaf[1];
myUpperNode.leaves[0] = new ContactFilterLeaf();
myUpperNode.leaves[0].attributeMetaDataId =

”my EMail Address Metadata ID";
myUpperNode.leaves[0].@operator = ContactFilterLeafOperator.EQUAL;
myUpperNode.leaves[0].value = "ab*@company.com";
myUpperNode.leaves[0].primaryOnly = false;

Filter Root

A filter root is the entry point of a filter tree. Your application can define a
filter tree with the ContactFilterRoot class, which contains the following
fields:
• node—The root ContactFilterLeaf node of a tree.
• leaf—The root and single ContactFilterLeaf leaf of a tree.
Although the class has a node and a leaf field, your application must define the
leaf or the node field, but not both. Figure 39 illustrates this, showing the two
types of possible trees that a ContactFilterRoot instance defines.

182 Agent Interaction SDK 7.6

Chapter 11: The Contact Service Searching Contacts

Figure 39: Filter Roots

In Figure 39, the left tree shows a filter root containing a filter node, and the
right tree shows a filter root containing a filter leaf. Those two trees could not
be merged into a single tree whose root would contains a filter node and a filter
leaf.
The following code snippet shows how to create a ContactFilterRoot object
for the left tree of Figure 39, which corresponds to the example of the previous
code snippet. (See page 179.)

// Creating a contact filter root
ContactFilterRoot myFilterRoot = new ContactFilterRoot();

// Setting its node field with the upper node of the filter tree
myFilterRoot.node = myUpperNode;

Contact Search
To search a contact with the contact service, your application has to:
• Create a filter tree, as detailed in “Contact Filter Trees” on page 178.
• Fill in a contact search template.
• Call the searchContacts() method of the IContactService interface.
A contact search template delimits the contact search result associated with a
filter tree. Your application can set the number of contacts to retrieve, and
which attributes to retrieve, in the search call. This is useful for (as one
example) displaying a contact search by pages, with a limited set of attributes.

Leaf
LastName=B*

Node
OR

Leaf
FistName=A*

Node
AND

Leaf
EMailAddress=

ab*@company.com

Root

Leaf
EMailAddress=

ab*@company.com

Root

Services—Developer’s Guide 183

Chapter 11: The Contact Service Searching Contacts

To fill in a contact search template, your application must create an instance of
the ContactSearchTemplate class, which defines the following fields:
• filter—A contact filter tree defining the search request.
• index—The index of the first ContactValue to retrieve in the list of

matching ContactValue objects.
• length—The length of the list of ContactValue objects returned by the

searchContact() method call.
• retrieveAttributes—The array of contact attributes to retrieve. For

further information, see “Setting a List of Attributes to Retrieve” on
page 177.

• sortAttributes—The array of contact attributes to sort.
The call to the IContactService.searchContacts() method returns an array of
ContactValue objects matching the specifications of the search template that
was passed as a parameter.
The following code snippet implements a simple search for the contact filter
root example on page 182.

/// Defining a contact search template
ContactSearchTemplate mySearchTemplate= new ContactSearchTemplate();
mySearchTemplate.filter = myFilterRoot;

// search of the ten first results
mySearchTemplate.index=0;
mySearchTemplate.length=10;

//Request a search for this template
ContactValue[] myFoundContacts =

myContactService.searchContacts(mySearchTemplate);

Tuning the Contact Search
The definition of this ContactSearchTemplate form is very important because it
determines the processing times of your search requests. There are several
aspects to take into account to fit your application needs and fine-tune your
search requests.

Number of Attributes

The number of attributes used in the filter tree to refine your search impacts the
request’s processing time. The more attributes you set up, the finer your search
is, but the longer the request takes.
Additionally, if you set up a wide search with few attributes or vague values,
that returns a large collection of instances. This increases the processing time
as well, because it impacts the network activity. The problem is similar if you
set up a great number of attributes to be returned with each matching instance:

184 Agent Interaction SDK 7.6

Chapter 11: The Contact Service Managing Contacts

the more instances that match, the more data will slow down the network
activity.

is-searchable

Genesys recommends that your application uses attributes marked as is-
searchable. This ensures calls to the appropriate UCS search algorithms, and
gets responses with good performance.
To set up is-searchable attributes, open the targeted Attribute Value object in
the Contact Attributes list of your Configuration Manager. In the Annex tab of
the attribute object, open settings and set to true the is-searchable option.
In the Agent Interaction Services API, call the isSearchable() method of the
ContactAttributeMetadata instance to determine whether the associated
attribute values are searchable.
If your application searches for any attributes, regardless of whether they are
marked as searchable, this will be time-consuming, and will slow down your
application. In particular, if your application is a server, this is inappropriate,
and detracts from good performances.

SearchPrimaryValueOnly flag

If you set the primaryOnly flag to true by calling the
FilterLeaf.setPrimaryOnly() method, you restrict the search to the attributes’
primary values. The more you search for primary values, the less the SQL
request is being complex, and thus, UCS requires less time to return a result.
Also, for the quickest search, set the SearchPrimaryValueOnly flag to true by
calling the SearchContactTemplate.setSearchPrimaryValueOnly() method. The
search is restricted to attributes’ primary values, regardless of the definition of
FilterLeaf objects (which are part of the filter tree).

Managing Contacts
The IContactService includes features to manage a set of contact data. The
following sections detail the most commonly used features.

Creating a Contact
The IContactService provides you with the createContact() method. For each
contact to create, fill a ContactAttributeCreate object with ContactAttribute
objects (containing, for each type of attribute, the set of corresponding values).

/// Creating a contactAttributeCreate for john connor
ContactAttributeCreate myNewContact = new ContactAttributeCreate();
/// The contact is created with 2 attributes only:

Services—Developer’s Guide 185

Chapter 11: The Contact Service Managing Contacts

/// last name + e-mail addresses
myNewContact.attributes = new ContactAttribute[2];

/// Filling the contact attribute for lastname
myNewContact.attributes[0]=new ContactAttribute();
myNewContact.attributes[0].attributeMetaDataId =

myLastNameMetaData.id;
// Creating a single attribute value for the last name
myNewContact.attributes[0].values = new ContactAttributeValue[1];
myNewContact.attributes[0].values[0] = new ContactAttributeValue();
myNewContact.attributes[0].values[0].value = "Connor";
myNewContact.attributes[0].values[0].primary = true;

/// Filling the contact attribute for the e-mail addresses
myNewContact.attributes[1]=new ContactAttribute();
myNewContact.attributes[1].attributeMetaDataId =

myEMailAddressMetaData.id;
/// Creating two attribute values for the e-mail
myNewContact.attributes[1].values = new ContactAttributeValue[2];
// Creating the attribute value for the primary e-mail address
myNewContact.attributes[1].values[0] = new ContactAttributeValue();
myNewContact.attributes[1].values[0].value =

"John.Connor@company.com";
myNewContact.attributes[1].values[0].primary = true;
// Creating the attribute value for another e-mail address
myNewContact.attributes[1].values[1] = new ContactAttributeValue();
myNewContact.attributes[1].values[1].value = "jconnor@home.com";
myNewContact.attributes[1].values[1].primary = false;

The createContact() method returns an array of ContactResult objects as
shown in the following code snippet.

ContactResult[] myResults =
myContactService.createContacts(

new ContactAttributeCreate[]{myNewContact}, true);

The ContactResult class contains the result of a contact creation:
• contactId—The unique system identifier created for the new contact; null

if not created.
• contactError—The string for the contact error if an error occurred during

the contact creation; otherwise null.
• attributes—The ContactAttribute array of successfully created

attributes; all the ContactAttributeValue.id fields have been created.
• attributesErrors—The array of AttributeErrors containing the metadata

IDs, and the corresponding error for each attribute not created.
The following code snippet displays the returned ContactResult array:

186 Agent Interaction SDK 7.6

Chapter 11: The Contact Service Managing Contacts

/// Displaying the ContactResult array returned
/// in the previous code snippet
foreach (ContactResult myContactResult in myResults)
{

// the contact has not been created
if(myContactResult.contactError != null)
{

System.Console.WriteLine("Error at contact creation: "
+ myContactResult.contactError);

}
/// The contact is created
else
{

// Displaying the retrieved contact id
System.Console.WriteLine("Contact successfully created: "

+ myContactResult.contactId);
// Displaying the created attributes
System.Console.WriteLine("* Attributes successfully

created: ");
foreach(ContactAttribute attribute in

myContactResult.attributes)
{

if(attribute.attributeMetaDataId == myLastNameMetaDataId)
System.Console.WriteLine(" Last name");

else if(attribute.attributeMetaDataId == myEMailMetaDataId)
System.Console.WriteLine(" E-Mail Address");

}
// Displaying which attributes were not created
System.Console.WriteLine("* Attributes with error

at creation: ");
foreach(AttributeError myError in

myContactResult.attributeErrors)
{

if(myError.attribute == myLastNameMetaDataId)
System.Console.WriteLine(" Last name: "+myError.error);

else if(myError.attribute == myEMailMetaDataId)
System.Console.WriteLine(" E-Mail Address:"

+myError.error);
}

}
}

Merging Contacts
If an agent finds out that two contacts are the same person, he or she might
want to merge those contacts to avoid information duplication.
The IContactService interface offers a mergeContact() method that merges
two contacts. The contacts’ identifiers are passed as parameters: the

Services—Developer’s Guide 187

Chapter 11: The Contact Service Managing Contacts

information of the from contact is copied to the To contact. The from contact
identifier disappears, and the remaining contact identifier is the To ID.
Your application can merge several pairs of contacts in a single call to the
IContactService.mergeContact() method. For each pair of contacts to merge,
your application fills in a ContactMergeForm that contains the two contacts’
identifiers.
The following code snippet merges two contacts.

/// Creating an array of merge form
ContactMergeForm[] myMergeForms= new ContactMergeForm[1];

/// Filling a form of the array
myMergeForms[0] = new ContactMergeForm();
myMergeForms[0].contactIdFrom=myContactIdFrom;
myMergeForms[0].contactIdTo=myContactIdTo;

/// Merging each contact pair of the forms
myContactService.mergeContacts(myMergeForms);

Setting Attribute Values
Table 22 summarizes the three ways of updating contact attributes with the
contact service. See also “Information Update” on page 172.

Your application can set attribute values only for a contact that exists in the
UCS. Therefore, your application needs a contact’s identifier in order to
modify that contact’s attributes.
For each contact to update, whatever the type of update, your application must:
1. Create a ContactValue object.
2. Set the ContactValue.contactId field with the contact’s identifier.
3. Create an array of ContactAttribute objects, and for each

ContactAttribute object:
Set the corresponding ContactAttributeMetaData identifier.

Table 22: Updating Contacts

ContactUpdateType Description

UPDATE_ATTRIBUTE Adds new values to contacts attributes

OVERWRITE_ATTRIBUTE Overwrites the attribute values of a contact with new
attribute values.

OVERWRITE_CONTACT Overwrites all the contacts attribute.

188 Agent Interaction SDK 7.6

Chapter 11: The Contact Service Managing Contacts

Fill in the ContactAttribute.values array with
ContactAttributeValues containing the new contact attribute values to
input.

The following code snippet illustrates these steps.

// Creating a ContactValue array having 1 ContactValue
ContactValue[] datas = new ContactValue[1];
// Creating a ContactValue object for myContact
datas[0]=new ContactValue();
datas[0].contactId = myContactId;

// The update consists in adding an email address to the contact
// Creating a Single ContactAttribute
datas[0].attributes = new ContactAttribute[1];
datas[0].attributes[0] = new ContactAttribute();

//Setting the metadata id of the email metadata
datas[0].attributes[0].attributeMetaDataId = myEMailMetaData.id;

//Creating
datas[0].attributes[0].values = new ContactAttributeValue[1];
datas[0].attributes[0].values[0] = new ContactAttributeValue();
datas[0].attributes[0].values[0].value = "contact@new.email.com";
datas[0].attributes[0].values[0].primary = false;

myContactService.setContactAttributes(datas,
ContactUpdateType.UPDATE_ATTRIBUTE, false);

Removing Attribute Values
The IContactService.removeContactAttributes() method uses the
ContactAttributeRemove and ContactAttributeValueRemove container classes.
Each ContactAttributeRemove object contains:
• The ID of the contact involved in the removal of some attribute values.
• An array of ContactAttributeValueRemove objects; each

ContactAttributeValueRemove object contains:
The ID of an attribute value to remove.
The ID of the corresponding attribute metadata.

The following code snippet shows an example of a call to the
removeContactAttributes() method.

///Creating a ContactAttributeRemove object
ContactAttributeRemove toRemove = new ContactAttributeRemove();

// Setting the id of the contact
toRemove.contactId = myContactId;

Services—Developer’s Guide 189

Chapter 11: The Contact Service Managing Contacts

toRemove.attributes = new ContactAttributeValueRemove[1];

// Creating a ContactAttributeValueRemove object to
// remove an e-mail address of the contact
toRemove.attributes[0] = new ContactAttributeValueRemove();

// Setting the metadata id for the e-mail address
toRemove.attributes[0].attributeMetaDataId = myEMailMetaDataId;

// Setting the ID of the e-mail address to remove
toRemove.attributes[0].attributeValueIds =

new string[]{ emailValueIdToRemove };

// Calling the remove method of the contact service.
myContactService.removeContactAttributes(

new ContactAttributeRemove[]{toRemove});

190 Agent Interaction SDK 7.6

Chapter 11: The Contact Service Managing Contacts

Services—Developer’s Guide 191

Chapter

12 The Callback Service
The callback service is the ICallbackService interface defined in the
com.genesyslab.ail.ws.callback namespace. It covers the management of
callback records. This chapter covers the following topics:

Introduction, page 191
Callback Essentials, page 192
Records Management, page 197

Introduction
The callback service is a feature that depends on the Genesys voice callback
server. If your call-center includes a callback server, customers can request a
callback as soon as possible or at a specific calendar time. The voice callback
server records the request and puts it in an appropriate queue.
The callback service deals with the records—customers’ callback requests—
managed by the voice callback server. Each record contains the information
required to call back the customer.
If an available agent using your application is logged in, he cans receive a
callback record event and an interaction event. The agent can accept the record
and process the callback with a voice interaction.
The callback service is designed to let your application perform the following
agent actions on records:
• Accept or reject a record.
• Mark a record as processed when the callback is done.
• Reject or reschedule a record.
• Access a record’s information.

192 Agent Interaction SDK 7.6

Chapter 12: The Callback Service Callback Essentials

The callback service cannot be used independently from:
• The agent service—This service lets your application log an agent in on a

voice media (DN) to process the record.
• The voice interaction service—This service deals with the voice

interactions that process the records.
• The event service—This service required to receive voice and record

events.
The following sections details the callback service.

Callback Essentials
The callback service of your agent application processes callback records from
the point of view of a calling agent. Therefore, it manages callback records as
data attached to a voice interaction.
When an agent gets a callback record from the OCS (Outbound Contact
Server), he also gets a voice interaction to dial the callback. An agent can
either accept or reject a callback record. An agent processes a callback as a
normal phone call with this voice interaction. The management of this voice
interaction does not differ from the management described in Chapter 8,
“Voice Interactions,” on page 109.
The data of a callback record includes the ID of the corresponding voice
interaction. Once the call is terminated, the agent can mark the callback record
as processed.
The management of a callback voice interaction correlates to the management
of its callback outbound record. Your application should use the voice
interaction service to deal with all voice-specific aspects of a callback voice
interaction.
Figure 40 shows how your application should integrate the callback service to
handle records.

Services—Developer’s Guide 193

Chapter 12: The Callback Service Callback Essentials

Figure 40: Callback Integration Example

1. Login an agent on a voice media.
2. Record and interaction events for a callback to process.
3. The logged-in agent accepts the record.
4. Receiving a record event for the record status change.
5. Actions on the voice interaction to process the callback.
6. Receiving record and interaction events due to 5.
7. Marking the record as processed when call is IDLE.
8. Receiving record event due to 7.

Figure 40 shows the general callback service handling in an application that
lets an agent accept and process records. The ICallbackService interface
exposes methods and pertinent attributes that your application uses to manage
record’s callback data, such as marking a call as processed or rescheduling a
call.
The IInteractionVoiceService interface manages actions that are restricted to
a voice interaction used to process a callback record (for example, dialing a
call, releasing a call, or marking a call as done). For any particular state of an
callback treatment, the callback service permits use of only a small subset of
its possible actions (available to your application as method calls).
Actions of the callback and voice interaction services may modify these states.
The event service receives both InteractionEvent and CallbackRecordEvent
events that carry identifiers along with a variety of attributes reflecting new
state and other data. To receive those events, your application must subscribe
to them.
For each CallbackRecordEvent incoming event, as well as for InteractionEvent
event, your application should test various attributes of the ICallbackService
interface.

Agent Desktop Application

InteractionEvent

Integrated web
services

GUI

IEventService

IAgentService

GIS Genesys
Framework

Callback
records

Voice
Interactions

Subscribed
topics

ICallback
Service

IInteraction
VoiceService

3,7

1

CallbackRecordEvent

2,6

2, 4, 6, 8

Actions
DTOs
Events

 5
linked

2,4,6,8

2,6

194 Agent Interaction SDK 7.6

Chapter 12: The Callback Service Callback Essentials

The following sections present the details behind the above general description
of the callback service. For voice management, see Chapter 8.

Record Attributes
The callback.record domain of the the ICallbackService interface defines a
callback record’s characteristic data. The following list of data attributes is
representative (but not exhaustive):
• Attributes for informative purposes:

callback.record:contactInfo—Contact information needed to
perform a callback (for example, a contact phone number).
callback.record:customFields—Collected data useful to an agent
calling the customer back.
callback.record:scheduleDateTime—Date and time scheduled for
processing a callback record (in the format: mmddyyyyhhmm).

• Attributes for management purposes:
callback.record:recordId—Unique system ID of a record.
callback.record:interactionId—Unique system identifier of an
interaction used to process a callback record.
callback.record:reason—Current reason for the callback record’s
status.
callback.record:actionsPossible—Possible callback actions that can
be performed on a callback record.

Depending on attribute properties, your application can read the attributes
of this domain with the ICallbackService.getRecordsDTO() method, and can
modify them with the ICallbackService.setRecordsDTO() method. From the
agent’s point of view, a callback record does not exist independently from a
voice interaction. Therefore, your application can use either a callback record
ID or an interaction ID to access and manage records’ attribute values with
those get and set methods. This choice is specified with a boolean parameter in
those methods’calls.
The ICallbackService.getRecordsDTO() and
ICallbackService.setRecordsDTO() methods use RecordDTO objects. The
RecordDTO class associates a record ID with a key-value list of attributes. For
further information, see “DTOs Handling” on page 49.

Record Actions
The RecordAction enumeration defines callback actions on records.
Constants each correspond to one ICallbackService.*Record() method. For
example, the RESCHEDULE constant corresponds to the
ICallbackService.rescheduleRecord() method. The actions apply to all
records.

Services—Developer’s Guide 195

Chapter 12: The Callback Service Callback Essentials

From an agent’s point of view, a record does not exist independently from a
voice interaction. Therefore, your application can use either an interaction ID
or a record ID to perform callback record actions. This choice is specified with
a boolean parameter in those methods’calls.
To determine which callback record actions are possible at a certain time, read
the callback.record:actionsPossible attribute of the ICallbackService
interface.When changes occur on possible actions, this attribute is published in
CallbackRecordEvent events only. See “Record Events” on page 195.

Record Status
The RecordStatus enumeration lists the possible statuses for a callback record.
The purpose of a callback record status is to determine if a certain callback
record is previewed, opened, processed, or closed. Your application can
display this status. Changes are propagated in a CallbackRecordEvent.

Record Events
When changes occur on a callback record, the event service of your application
can receive CallbackRecordEvent events for the agent handling the callback.
CallbackRecordEvent events can propagate any published attribute, that is,
attributes of the callback.record domain that have the event property. To
properly take into account callback events, the published
callback.record:eventReason attribute value indicates the reason for an event.
The RecordReason enumeration lists the possible reasons for an occurring
CallbackRecordEvent event. Most of the time, it points out a status change as
presented in Table 23.

Table 23: Record Event Reasons

RecordReason Attributes Description

CANCELLED callback.record:status
callback.record:possibleActions

Record canceled.

PROCESSED callback.record:status
callback.record:possibleActions

Record processed.

RESCHEDULED callback.record:estimatedWaitTimedate
callback.record:estimatedWaitTime

Record rescheduled.

REJECTED callback.record:status
callback.record:possibleActions

Record rejected.

UNKNOWN callback.record:* Unknown event.

196 Agent Interaction SDK 7.6

Chapter 12: The Callback Service Callback Essentials

The following code snippet subscribes to both CallbackRecordEvent and
InteractionEvent.

/// Defining two TopicsService
TopicsService[] myTopicsServices = new TopicsService[2] ;

/// Defining a Topic Service for the callback service
myTopicsServices[0] = new TopicsService() ;
myTopicsServices[0].serviceName = "CallbackService" ;
/// Defining a topic event
myTopicsServices[0].topicsEvents = new TopicsEvent[1] ;
myTopicsServices[0].topicsEvents[0] = new TopicsEvent() ;

/// the targeted events are CallbackRecordEvent
myTopicsServices[0].topicsEvents[0].eventName =

"CallbackRecordEvent" ;
/// all the event attributes values are propagated in event objects
myTopicsServices[0].topicsEvents[0].attributes = new String[]{

"callback.record:*"};

/// Triggering CallbackRecordEvent for agent0
myTopicsServices[0].topicsEvents[0].triggers = new Topic[1];
myTopicsServices[0].topicsEvents[0].triggers[0] = new Topic();
myTopicsServices[0].topicsEvents[0].triggers[0].key = "AGENT";
myTopicsServices[0].topicsEvents[0].triggers[0].value = "agent0";

/// Defining a Topic Service for the interaction service
myTopicsServices[1] = new TopicsService() ;
myTopicsServices[1].serviceName = "InteractionService" ;

myTopicsServices[1].topicsEvents = new TopicsEvent[1] ;
myTopicsServices[1].topicsEvents[0] = new TopicsEvent() ;

/// the targeted events are InteractionEvent
myTopicsServices[1].topicsEvents[0].eventName = "InteractionEvent" ;

/// in case of a voice interaction, the interaction, and
/// voice interaction attributes values are propagated in the
/// Event object
myTopicsServices[1].topicsEvents[0].attributes = new String[]{

"interaction:*",
"interaction.voice:*"};

/// Triggering CallbackRecordEvent for agent0
myTopicsServices[1].topicsEvents[0].triggers = new Topic[1];
myTopicsServices[1].topicsEvents[0].triggers[0] = new Topic();
myTopicsServices[1].topicsEvents[0].triggers[0].key = "AGENT";
myTopicsServices[1].topicsEvents[0].triggers[0].value = "agent0";

Services—Developer’s Guide 197

Chapter 12: The Callback Service Records Management

For further information about events, see Chapter 4, “The Event Service,” on
page 53.

Records Management
Table 24 presents actions of the callback service which provides your
application with callback management.

When an agent has to process a callback, your event service receives both an
InteractionEvent and a CallbackRecordEvent event. An agent can either accept
or reject processing of the callback.
If the agent has accepted a callback, your application uses the
IInteractionVoiceService features to process the phone call, and uses the
ICallbackService to manage the corresponding callback record.
A CallbackRecordEvent event propagates status changes for a callback record,
which is identified by the callback.record:recordId attribute. Your
application should test the callback.record:actionsPossible attribute to
determine which actions are currently possible on this record.
The following sections detail the corresponding calls to methods of the
callback service.

Accepting a Record
To accept a callback record, call the ICallbackService.acceptRecord() method.
Your application can process the callback action with either the callback record
ID or the companion voice interaction ID (represented by the
callback.record:interactionId attribute).

Table 24: Callback Record Actions and Methods

RecordAction ICallbackService
Method

Description

ACCEPT acceptRecord() Agree to process a callback
record.

CANCEL cancelRecord() Cancel a callback record.

REJECT rejectRecord() Reject a callback record

RESCHEDULE rescheduleRecord() Reschedule a callback record.

PROCESSED processedRecord() Mark a callback record as
processed.

198 Agent Interaction SDK 7.6

Chapter 12: The Callback Service Records Management

Once the agent using your application has accepted the record, your
application can provide him or her with management of the corresponding
voice interaction.
The following code snippet shows a callback record accepted by its record ID
for the agent0:

myCallbackService.acceptRecord(
“agent0”,

 false, // the call is not performed with the Interaction ID
myRecordId); // Id of the callback record accepted by agent0

Rejecting a Record
When an agent does not want to process a record, he or she can reject the
record, so that the callback record returns in a queue and another agent
processes the callback record.
Use the ICallbackService.rejectRecord() method to reject the record, as
shown in the following code snippet:

myCallbackService.rejectRecord(
“agent0”,

 false, // the call is not performed with the Interaction ID
myRecordId); // Id of the callback record accepted by agent0

Canceling a Record
When an agent cancels a callback record, the callback record is removed from
the queue and will not be processed further.
Use the ICallbackService.cancelRecord() method to cancel the record, as
shown in the following code snippet:

myCallbackService.cancelRecord(
“agent0”,

 false, // the call is not performed with the Interaction ID
myRecordId); // Id of the callback record accepted by agent0

Rescheduling a Record
A customer might ask an agent to reschedule the call. Once the callback is
rescheduled, it takes its place in the appropriate queue. A new companion
voice interaction is created according to the scheduled date and time.
Use the ICallbackService.rescheduleRecord() method to reschedule the
record, as shown in the following code snippet:

myCallbackService.rescheduleRecord(
“agent0”,

Services—Developer’s Guide 199

Chapter 12: The Callback Service Records Management

 false, // the call is not performed with the Interaction ID
myRecordId, // ID of the callback record accepted by agent0.
myDate);// long date in second, UTC

Marking a Record as Processed
When a callback record has been processed, an agent must mark the record as
processed.
Use the ICallbackService.processedRecord() method to mark the record as
processed, as shown in the following code snippet:

myCallbackService.processedRecord(
“agent0”,

 false, // the call is not performed with the Interaction ID
myRecordId); // ID of the callback record accepted by agent0.

200 Agent Interaction SDK 7.6

Chapter 12: The Callback Service Records Management

Services—Developer’s Guide 201

Chapter

13 The SRL Service
The SRL (Standard Response Library) service provides standard responses to
help agents process interactions. This chapter describes the SRL service in the
following sections:

Introduction, page 201
Using Standard Responses and Categories, page 203
Getting Standard Responses, page 207
Managing Favorites, page 207

Introduction
The Agent Interaction Service API includes access to a self-learning
categorization system to help agents by providing responses when they process
an interaction.
The Standard Response Library (SRL) system it self-learning: it “teaches”
itself with new incoming messages, according to agents’ feedback. For further
information about the SRL, refer to Genesys Multi-Channel Routing
documentation, which includes information about Universal Contact Server.
The following subsections detail how the SRL service interacts with the
Standard Response Library database.

Standard and Suggested Responses
A standard response is a prewritten response stored in the Standard
Response Library database. An agent may choose to reply to a customer with
a response from the Standard Response Library. A standard response may have
tags in its body that your application can automatically replace with contacts’
data.

202 Agent Interaction SDK 7.6

Chapter 13: The SRL Service Introduction

When an agent processes an interaction, your application can display a tree
of standard responses or the ones contained in the interaction’s suggested
categories (if any).
The system selects this suggested categories according to categorization
criteria. For details, see “What Is a Category?” below.
Your application can insert standard responses as replies into any e-mail or
chat message, or can display them so that an agent can read them to the
contact during a voice interaction.

What Is a Category?
A category is a group of standard responses and categories that are available
for similar interactions. For example, a company might define a Defect
category, which contains standard responses to provide when customers report
a product defect. In this Defect category, this company might define a category
for each product. Each category defines a set of more-specific responses for the
product’s identified defects.
Your application can display categories as trees, allowing the agent to select a
category and a standard response with that category. Your application can also
propose an interaction’s suggested category. For instance, if an e-mail
interaction has suggested categories, they are available in the
interaction.mail:suggestedCategories attribute.
An agent can accept or reject the system’s choice of a selected category, in
order to provide feedback to the Standard Response Library’s self-learning
system.

What Is the SRL Service?
The SRL service provides your application with access to categories and
standard responses stored in the Standard Response Library database. This
service can be used independently from other Agent Interaction SDK (Web
Services).
This chapter’s remaining sections cover the SRL service’s main features:
• Using interfaces to standard responses and categories.
• Providing feedback to the self-learning system.
• Getting standard responses and categories.
• Adding categories to an agent’s favorites.

Services—Developer’s Guide 203

Chapter 13: The SRL Service Using Standard Responses and Categories

Using Standard Responses and Categories
Your application can use the ISRLService interface to access standard
responses when an agent processes an interaction. Your application can use the
information retrieved by the SRL service to display categories, and standard
responses, in trees.

Using Standard Response
A Standard Response is prewritten message text that your application can
insert in an outgoing e-mail or chat interaction, or that your application can
display for a voice interaction. This prewritten message includes variables that
correspond to contact information, and also additional data such as
attachments. The SRL service can replace the SRL variables with the
appropriate contact information.
For each standard response, the SRL service exposes information in the srl
domain:
• srl:srlReference—ID of a standard response; used to access a standard

response information.
• srl:name—The name of a response.
• srl:body—Message text containing a response and contact variables.
• srl:agentDesktopUsageType—An SRLUsageType enumerated value, which

indicates how to use this response.
• srl:isActive—true if this response is active in the Configuration Layer.
• srl:hasAttachement—true if a response has attachments.
• srl:attachments—Attachments to a response.
Your application might have to get this information to display a standard
response, or to add it into an interaction. The ISRLService interface provides
some getStandardResponse*DTO() methods to retrieve standard response
information in StandardResponseDTO objects.
The StandardResponseDTO class associates a standard response ID with a
key-value array corresponding to srl:* attributes. For further information,
see Chapter 3, “Data Transfer Object,” page 47.

Category Information
In the SRL database, a category is composed of:
• Its own data, such as the category name, ID, language and type.
• A set of standard responses that belong to the category.
• An array of its child category IDs.

204 Agent Interaction SDK 7.6

Chapter 13: The SRL Service Using Standard Responses and Categories

Figure 41: Category in the SRL Database

Category in the SRL Service

For each category, the ISRLService interface defines a set of attributes in the
srl-category domain. The following srl-category attributes characterize a
category (this is a non-exhaustive list):
• srl-category:categoryId—system ID of a category.
• srl-category:name—name of a category.
• srl-category:type—type of a category.
Your application can retrieve the corresponding key-value pairs in
SRLCategoryDTO objects. Each SRLCategoryDTO instance contains the
information for a single category:
• categoryId—ID of the relevant category.
• data—The key-value array, containing the srl-category data for the

relevant category.
• srlsDTO—An array of DTO, containing the standard responses for the

relevant category.

Category

name="Defect"

Category

name="Furniture
Defect"

Category

name="Electrical
Domestic Defect"

Standard Response 1

Standard Response 2

Standard Response 3

contains

Child categories
type=EMAIL

categoryId

categoryId1categoryId2

categoryId1

categoryId2

type=EMAILtype=EMAIL

Standard Response 4

Standard Response 5

contains

Services—Developer’s Guide 205

Chapter 13: The SRL Service Using Standard Responses and Categories

Child Categories

The srl-category:childCategories attribute contains a category’s child
categories in an array. This array, in turn, contains key-value arrays containing
the attributes retrieved for the category’s child categories.
The standard responses of the child categories are not retrieved. For details, see
“Getting Category DTO” on page 206.

Feedback and Interaction Services

Your application can use the ISRLService interface to display category
information when an agent is working with interactions. For each
interaction, the self-learning system can suggest categories.
The IInteractionService interface exposes the following attributes to provide
access to the suggested categories:
• interaction:categoryId—ID of the current category assigned to an

interaction by the self-learning system, or assigned manually by an agent.
• interaction.*:addSuggestedCategories—Adds or updates the suggested

categories for this e-mail.
• interaction.*:suggestedCategories—An array containing the IDs of the

suggested categories.
• interaction.*:isCategoryApproved—A boolean, whose value is 1 if an

agent approves the category identified by the attribute value for an
interaction or 0, if he or she disapproves. When your application writes a
value for this attribute, it provides an agent’s feedback to the self-learning
system.

When an agent chooses a response in a category, he or she should be able to
validate his or her choice for the self-learning system. For that, he or she has to
assign the interaction:categoryId and interaction.*:isCategoryApproved
attributes, see Table 25.

Table 25: Category and Feedback

Feedback categoryId isCategory
Approved

addSuggested
Categories

The agent uses the
standard response of a
suggested category.

Suggested category’s ID. true none

206 Agent Interaction SDK 7.6

Chapter 13: The SRL Service Getting Categories and Standard Responses

Getting Categories and Standard
Responses

The following subsections detail how to get information from the SRL service.

Getting Category DTO
Your application can get categories’ data using the getCategorieDTO() method.
This method returns an array of SRLCategoryDTO objects. Your application can
specify a set of category identifiers in parameters or can retrieve all the root
categories of the SRL, as shown in the following code snippet.

SRLCategoryDTO[] myRootCategories =
mySRLService.getCategoriesDTO(

null,//To return the data of all the root categories
new string[]{ // attributes to return for each category

"srl-category:categoryId",
"srl-category:name",
"srl-category:childCategories",
"srl-category:description"},

new string[]{"srl:*"}); // attributes for each Standard
// Response of the category

If your application requests the srl-category:childCategories attribute for
each category, then the attributes specified in parameters are also retrieved for
the child categories—including the srl-category:childCategories attribute.

Note: The standard responses of the child categories are not retrieved.

There is no
satisfactory category
in the suggested
categories.

ID of the suggested category
that has the best relevancy.

false none

The agent uses the
standard response of a
non-suggested
category.

ID of the satisfactory
category.

true SuggestedCategory
object that contains the
category’s ID and a null
relevancy.

Table 25: Category and Feedback (Continued)

Feedback categoryId isCategory
Approved

addSuggested
Categories

Services—Developer’s Guide 207

Chapter 13: The SRL Service Managing Favorites

Getting Standard Responses
Your application can retrieve the standard responses in different ways:
• When retrieving categories, the categories’ standard responses are included

in SRLCategoryDTO.srlsDTO field.
• Your application can retrieve the srl data for a set of standard response IDs

with the getStandardResponsesDTO() method.
• Your application can retrieve the srl data for all standard responses of a

particular category with the getStandardResponsesByCategoryDTO()
method.

The following code snippet shows how to get the name and the description of
the standard response.

StandardResponseDTO[] myResponses =
mySRLService.getStandardResponsesDTO(new string[]{"SR01"}, new
string[]{"srl:name","srl:description"});

Using the getStandardResponseBody() Method
As presented in the previous sections, the body text of a standard response may
include some code that can be replaced with contact data (for example, the
name of the contact). Your application can use the getStandardResponseBody()
method for this purpose, as shown in the following code snippet.

string myFilledBodyText =
mySRLService.getStandardResponseBody("SR01", //ID of the response

"agent0", // ID of the agent requesting the body text
"myInteractionId"); // ID of the processed interaction

System.Console.WriteLine(myFilledBodyText);

Managing Favorites
Your application can use the SRL service to manage a list of an agent’s favorite
responses. The SRL service can retrieve those favorites, add new favorites, or
remove some favorites, as detailed in the following subsections.

Getting the Favorite Standard Responses
Your application can get the favorite standard responses of a set of agents,
using the getStandardResponsesFavoritesDTO() method. This method retrieves
all the requested attributes about the favorite standard responses for each
specified agent.

208 Agent Interaction SDK 7.6

Chapter 13: The SRL Service Managing Favorites

The following code snippet shows how to retrieve the favorites of the agent
agent0.

//Retrieving the favorites of agent
SRLUsernameDTO[] myAgentFavoritesDTO =

mySRLService.getStandardResponsesFavoritesDTO(
new string[]{"agent0"}, // List of agents
new string[]{"srl:*"}); // List of attributes to get

// for each response

if(myAgentFavoritesDTO[0].username == "agent0")
{

StandardResponseDTO[] myFavoriteResponsesDTO =
myAgentFavoritesDTO[0].srlDTO;

/// displaying agent's favorite responses
/// ...

}

Note: The user name of an agent is his or her agent ID.

Adding Standard Responses to Favorites
Your application can add new favorite standard responses using the
ISRLService.addSRLFavorites() method.
To add new favorite standard responses for an agent, your application must
first fill SRLform objects, as shown in the following code snippet:

/// Creating an SRL form
SRLForm mySRLForm = new SRLForm();
// Each SRLForm is used to add a response to
// the favorites of an agent
mySRLForm.username = "agent0";
mySRLForm.standardResponseId = "SR01";
// Adding SR01 to the favorites of agent0
SRLFormResult[] mySRLFormResults=

mySRLService.addSRLFavorites(new SRLForm[]{mySRLForm});

// Displaying the result for each standard response
// that the service tried to add to the favorites of an agent.
foreach(SRLFormResult myFormResult in mySRLFormResults)
{

if(myFormResult.done == true) {
System.Console.WriteLine(

myFormResult.SRLForm.standardResponseId
+" has been added to the favorites of "
+ myFormResult.SRLForm.username+"\n");

}
}

Services—Developer’s Guide 209

Chapter 13: The SRL Service Managing Favorites

Removing Standard Responses from Favorites
Your application can remove favorite standard responses using the
ISRLService.removeSRLFavorites() method.
To remove standard responses from the favorites, your application must first
fill SRLform objects, as shown in the following code snippet:

/// Creating an SRL form
SRLForm mySRLForm = new SRLForm();
// Each SRLForm is used to remove a response from the favorites
// of an agent
mySRLForm.username = "agent0";
mySRLForm.standardResponseId = "SR01";

// Removing SR01 from the favorites of agent0
SRLFormResult[] mySRLFormResults=

mySRLService.removeSRLFavorites(new SRLForm[]{mySRLForm});

//Displaying the result for each standard response
//that the service tried to remove from the favorites of an agent.
foreach(SRLFormResult myFormResult in mySRLFormResults)
{

if(myFormResult.done == true)
{

System.Console.WriteLine(
myFormResult.SRLForm.standardResponseId
+" has been removed from the favorites of "
+myFormResult.SRLForm.username+"\n");

}
}

210 Agent Interaction SDK 7.6

Chapter 13: The SRL Service Managing Favorites

Services—Developer’s Guide 211

Chapter

14 The Outbound Service
The outbound service is the IExtendedOutboundService interface defined in the
com.genesyslab.ail.ws.outbound namespace. It covers the management of
outbound campaigns.
The IExtendedOutboundService replaces the deprecated IOutboundService.

Note: You must still use the IOutboundService if your Agent Interaction
Service Configuration Layer enable-chain-75api option (in the
outbound section) is set to false.

For detailed information on the IOutboundService, see the 7.2 version of this
Developer’s Guide.
This chapter includes the following topics:

Introduction, page 211
Outbound Campaigns, page 213
Outbound Chains and Records, page 217
Outbound Campaign in Preview Mode, page 220
Outbound Campaign in Predictive Mode, page 222

Introduction
The following subsections provide an overview of the outbound service and its
constituent campaigns, outbound chains, records, and interactions.

Outbound Campaigns
An outbound campaign is a flexible master plan that organizes calling lists for
generating calls to customers, handling customer data, and managing call
results.

212 Agent Interaction SDK 7.6

Chapter 14: The Outbound Service Introduction

The Outbound Contact Server (OCS) manages outbound campaigns and
automates outbound call dialing. For further information, refer to the
Outbound Contact 7.6 documentation.

Outbound Records
An outbound record is an element of a calling list for an outbound campaign. It
contains the information required to enable an agent to call a contact—for
example, a phone number, the contact name, and how to process the record
(type and status).
Chained records are multiple records for the same contact in a calling list.
These occur when a contact has several available phone numbers. Each record
of the chain can have different time boundaries, as well as different values
stored in its business data field.

Outbound Chains
Each outbound chain instance contains customer outbound data, provided as a
collection of outbound record objects. For example, in the context of a voice
outbound call, each record of the chain contains a phone number associated
with the customer to be called. If the call with a given record fails, the agent
can get a chained record to attempt a new call for this customer.
Regardles of the campaign mode, your application can receive events for new
or modified outbound chains that the agent should process. To determine
which outbound chain is associated with an interaction, check the
interaction:outboundChainId attribute.

The Outbound Service
The outbound service interfaces with outbound campaigns and lists of records.
Your application should use this service to let an agent participate in an
outbound campaign by processing the records of a calling list.

Features Your application can use the outbound service to:
• Stay informed about a campaign’s progress once the campaign is started.
• Modify a campaign:

Add new records to a campaign.
Change the campaign dialing mode (if possible).

• Process an agent’s outbound voice interactions of an agent:
Dial a record.
Stay informed about an outbound call’s progress.
Change the active record for an outbound voice interaction.
Cancel, mark as Do Not Call, or reject a record or a chain of records.

Services—Developer’s Guide 213

Chapter 14: The Outbound Service Outbound Campaigns

Mandatory
Services

Your application cannot use the outbound service independently from the
following services:
• The agent service:

Before dialing calls, your application first must use the agent service to
log in an agent on a DN.

Note: For further information, see Chapter 5, “The Agent Service,”
page 71.

• The voice interaction service:
While the agent is logged on a DN, your application can use the
IInteractionVoiceService interface to process the calls corresponding
to records.

Note: For further information, see Chapter 8, “Voice Interactions,”
page 109.

• The interaction service:
To access the attributes of your voice interactions, your application
uses the IInteractionService DTO methods.
All the voice interaction attributes are published in events of type
InteractionEvent. This type is described in the IInteractionService
interface. Outbound chain information is accessible from this service.

Note: For further information, see Chapter 7, “The Interaction Service,”
page 101.

Outbound Campaigns
An agent who participates in an active or running outbound campaign, should
be informed of those campaigns’ characteristics and also of campaign changes
when they occur.
The IExtendedOutboundService interface lets your application access campaign
information, as detailed in the following.

Campaign Attributes
For each outbound campaign, the IExtendedOutboundService interface defines
a set of attributes in the outbound.campaign domain. Your application can use
these attributes for information purposes:
• outbound.campaign:name—The name of the outbound campaign.

214 Agent Interaction SDK 7.6

Chapter 14: The Outbound Service Outbound Campaigns

• outbound.campaign:description—The description of the outbound
campaign; for example, its purpose.

• outbound.campaign:mode—The current mode of the campaign.
For each campaign, your application uses the following attributes for
management:
• outbound.campaign:campaignId—The system ID of the campaign.
• outbound.campaign:state—The status of the campaign.
• outbound.campaign:eventType—When present, this event indicates the type

of campaign.
• outbound.campaign:actionsPossible—The possible actions that the agent

can perform on the campaign at a certain point in time.
The following sections detail how to use these attributes.
Use the IExtendedOutboundService.getCampaignsDTO() method to read
attributes having the read property. A call to this method returns an array of
CampaignDTO objects. The CampaignDTO class is a container that associates a
campaign ID with a key-value list. For further information about DTO, see
Chapter 3.
The IExtendedOutboundService interface has no writable campaign attributes.
An agent using your application cannot change the campaign attribute values.
However, actions and external events can modify the attribute values. Changes
are propagated in events. See “Campaign Events” on page 216.

Campaign Dialing Modes
The campaign dialing modes determine how an agent, or a group of agents,
participates in an outbound campaign. Table 26 presents the possible dialing
modes of an outbound campaign.

Table 26: Campaign Dialing Modes

CampaignMode Description

PREVIEW In this dialing mode, an agent requests one or
several records from the OCS, previews the
record(s), and decides to process one of them.

PUSH_PREVIEW

(also called PROACTIVE)
In this mode, the agent receives the record,
and does not need to request it in order to
preview it.

PROGRESSIVE The OCS dials a record in the list as soon as
an agent is available.

Services—Developer’s Guide 215

Chapter 14: The Outbound Service Outbound Campaigns

Note: In a mode that is not ENGAGED_, the contact may be online before the
agent. For further information, refer to the Outbound Contact 7.6
documentation.

Campaign Actions
The CampaignAction enumeration lists the possible actions that your agent
application can perform on a campaign using certain
IExtendedOutboundService methods. CampaignAction usually pertains to
campaigns in preview dialing mode.
Test the outbound.campaign:actionsPossible attribute of the
IExtendedOutboundService interface to determine which actions are possible at
a certain point in time. When possible actions on a campaign change, a
CampaignOutboundEvent event may propagate the new value of the
outbound.campaign:actionsPossible attribute for this campaign. See
“Campaign Events” on page 216.

Campaign Status
The current status of a campaign is available as the value of the interface’s
outbound.campaign:state attribute. The CampaignStatus enumeration lists the
possible status values of an outbound campaign. For further information, refer
to the Agent Interaction SDK 7.6 Services API Reference.
The status of an outbound campaign can change due to the OCS management
of campaigns. Status changes are propagated with CampaignOutboundEvent
events. See “Campaign Events” on page 216.

ENGAGED_PROGRESSIVE The OCS creates a voice interaction to dial a
record in the list when an agent is available
and engaged.

PREDICTIVE The OCS predicts agent availability and dials
a record. Your agent application gets a dialing
voice interaction and an outbound chain for
this record.

ENGAGED_PREDICTIVE The OCS predicts when an agent is available
and engaged, and creates a voice interaction to
dial a record in the list.

UNKNOWN Unknown campaign mode.

Table 26: Campaign Dialing Modes (Continued)

CampaignMode Description

216 Agent Interaction SDK 7.6

Chapter 14: The Outbound Service Outbound Campaigns

Campaign Events
When changes occur on an outbound campaign, the event service of your
application can receive CampaignOutboundEvent events only for agents who take
part in the outbound campaign.
To properly take into account those events, your application must subscribe to
them with the event service and must retrieve at least the following published
attributes:
• outbound.campaign:campaignId—Determines which campaign is related to

the event.
• outbound.campaign:eventType—When present, this event indicates the type

of campaign.
• outbound.campaign:actionsPossible—Updated possible actions for the

related campaign.
The published outbound.campaign:eventType attribute points out which value
changes are propagated in an CampaignOutboundEvent event. The
CampaignEventType enumeration lists the possible values of this attribute.
Table 27 shows which published attributes to read according to the
CampaignEventType value.

For further information about events and subscribing, see Chapter 4, “The
Event Service,” on page 53.

Outbound Chain Events
When changes occur on an outbound chain, the event service of your
application can receive OutboundChainEvent events only for agents who take
part in the outbound campaign. To properly take into account those events,

Table 27: CampaignEventType and Published Attribute

Campaign-EventType Associated Attribute Description

CAMPAIGN_ADDED outbound.campaign:* A campaign was added in the outbound
service.

CAMPAIGN_REMOVED outbound.campaign:* A campaign was removed from the
outbound service.

CAMPAIGN_MODE_CHANGED outbound.campaign:mode The mode of a campaign has changed.

CAMPAIGN_STATE_CHANGED outbound.campaign:state The status of a campaign has
changed.

UNKNOWN outbound.campaign:* Unknown type of event on an outbound
campaign.

Services—Developer’s Guide 217

Chapter 14: The Outbound Service Outbound Chains and Records

your application must subscribe to them with the event service, and must
retrieve at least the published attributes listed in Table 28.

Outbound Chains and Records
The “Introduction” on page 211 and “Outbound Campaigns” on page 213
sections introduced you to the design of the outbound feature and noted that
outbound data does not interfere with interaction management. Now, to handle
campaign information and outbound records, you need to add some code and
make certain modifications to your agent application.
These changes you need to make require that you address two main issues:
• Subscribe to the correct events.
• Identify if a given interaction has outbound information.

Table 28: Outbound Chain Events

Attribute Description

outbound.chain:activeRecordId The active record of the chain.

outbound.chain:recordIds The list of outbound record identifiers
in this chain. The number of records
can change during the life cycle of the
interaction. The interaction has one
record at initialization (the initial
record), and at least one record after
calling requestChainedRecords.

outbound.chain:eventType The type of the event.a

a. This event is only received if you subscribe to the outbound interaction event.

outbound.chain:outboundChainId The interaction identifier.a

outbound.chain:reason The reason.a

outbound.chain:campaignMode The campaign mode related to this
outbound chain.a

outbound.chain:interactionIds The interaction identifers related to this
chain.

218 Agent Interaction SDK 7.6

Chapter 14: The Outbound Service Outbound Chains and Records

Subscribe to Outbound and Chain Events
In order to get notified of changes to active outbound campaigns and chains,
you need to subscribe to CampaignOutboundEvents and OutboundChainEvents.
Use the following code snippets as guidelines for how to subscribe:

/// Creating topic objects for the outbound service
TopicsService [] topicServices = new TopicsService[1];
topicServices[0] = new TopicsService();
topicServices[0].serviceName = "IExtendedOutboundService";
topicServices[0].topicsEvents = new TopicsEvent[2];
topicServices[0].topicsEvents[0] = new TopicsEvent();

// Creating a topic event for campaign outbound events
topicServices[0].topicsEvents[0].eventName = "CampaignOutboundEvent";
topicServices[0].topicsEvents[0].attributes =
new String[]{"outbound.campaign:*"};
topicServices[0].topicsEvents[0].triggers = new Topic[1];
topicServices[0].topicsEvents[0].triggers[0] = new Topic();
topicServices[0].topicsEvents[0].triggers[0].key = "PLACE";
topicServices[0].topicsEvents[0].triggers[0].value = mPlaceId;
topicServices[0].topicsEvents[1] = new TopicsEvent();

// Creating a topic event for outbound chain events
topicServices[0].topicsEvents[1].eventName = "OutboundChainEvent";
topicServices[0].topicsEvents[1].attributes =
new String[]{"outbound.chain:*"};
topicServices[0].topicsEvents[1].triggers = new Topic[1];
topicServices[0].topicsEvents[1].triggers[0] = new Topic();
topicServices[0].topicsEvents[1].triggers[0].key = "PLACE";
topicServices[0].topicsEvents[1].triggers[0].value = mPlaceId;

Check Interactions for Outbound Information
When an interaction arrives at your agent application while an outbound
campaign is active, depending on the mode of the campaign, you may need to
check to see if interactions with NEW and DIALING status are associated with
outbound information. If that is the case, add the following code to your
application so that it handles the appropriate InteractionEvents for such
outbound interactions:

InteractionDTO[] myInteractionDTO =
myInteractionService.getInteractionsDTO(
new string[]{myInteractionId},
new string[]{"interaction.outboundChainId"});
KeyValue myAttrKeyValue = myInteractionDTO[0].data[0];
String myOutboundChainId = (String) myAttrKeyValue.value;

Services—Developer’s Guide 219

Chapter 14: The Outbound Service Outbound Chains and Records

Outbound Attributes
The IExtendedOutboundService interface exposes two types of attributes used
to process an outbound record, one type each, respectively, in the
outbound.chain and outbound.record domains.

Outbound Chain Attributes

The outbound.chain domain defines a subset of outbound data for an outbound
chain. See “Outbound Chain Events” on page 216 for details. These outbound
chain attributes make the links between interactions and outbound records.

Record Attributes

For each outbound record, the outbound.record attributes define a set of data
characteristics related to an outbound record. Table 29 and Table 30 list
representative (but non exhaustive) record attributes. The first list contains
information attributes and the second, attributes for management purposes.

Table 29: Record Attributes for Information (Selected)

Attribute Description

outbound.record:callingListName The name of the calling list to which a
record belongs.

outbound.record:phone The phone number to dial to process a
record.

outbound.record:campaignId The ID of the campaign to which a
record belongs; this ID can be used to
retrieve information about the
corresponding campaign. See
“Outbound Campaigns” on page 213
for details.

outbound.record:outboundChainId The OutboundChain to which this
record belongs, or null.

Table 30: Record Attributes for Management (Selected)

Attribute Description

outbound.record:recordId The ID of a record.

outbound.record:status The status of a record.

220 Agent Interaction SDK 7.6

Chapter 14: The Outbound Service Outbound Campaign in Preview Mode

From the agent point of view, a record does not exist independent of an
outbound voice interaction. So your application needs an interaction ID to
access a given record’s attribute values.
Using the attribute properties, your application can read the attributes of the
domain with the IExtendedOutboundService.getRecordsDTO() method. It can
then write those attributes with the
IExtendedOutboundService.setRecordsDTO() method. These methods use
OutboundRecordDTO objects. The OutboundRecordDTO class associates a record
ID with a key-value list of attributes. For further information, see “Handling
Interaction DTOs” on page 105.

Note: When your application has set new values for a record with the
IExtendedOutboundService.setRecordsDTO() method, your application
must call the IExtendedOutboundService.updateRecord() method to
commit all modifications in the OCS.

Outbound Actions
The IExtendedOutboundService interfaces provide you with outbound methods
that the agent calls to perform outbound actions. These include cancel, do not
call, and reschedule. Such actions are independent from the interaction used
to process the outbound record or the outbound chain. They manage record
information on the Outbound Server.

Outbound Campaign in Preview Mode
In preview and predictive dialing modes, an agent may have to use the
START_PREVIEW_MODE, GET_PREVIEW_RECORD, and STOP_PREVIEW_MODE actions
according to the options set in the OCS and Configuration Layer. For further
details, refer to the Outbound Contact 7.6 Reference Manual.
When an agent explicitly initiates preview mode with the outbound service, he
or she notifies the OCS that he or she is ready to participate in a specific
campaign.
In this specific mode, an agent requests one or several records from the OCS,
previews each record, and decides whether or not to dial a call. For an agent to
stop preview mode with the outbound service, he must notify the OCS that he

outbound.record:actionsPossible The possible actions on a record.

outbound.record:callResult The call result of a record.

Table 30: Record Attributes for Management (Selected)

Attribute Description

Services—Developer’s Guide 221

Chapter 14: The Outbound Service Outbound Campaign in Preview Mode

no longer is participating in the specified campaign. The
IExtendedOutboundService interface provides your application with three
methods to work with preview mode. See Table 31 on page 221.

Note: If your campaign mode is push preview, your application does not need
to request the preview record.

The following code snippet shows how to use the startPreviewMode(),
getPreviewRecordDTO(), and stopPreviewMode() methods:

/// agent0 is ready to participate in a campaign identified by
/// myCampaignID
myOutboundService.startPreviewMode(“agent0”,myCampaignID);
///...
///Retrieving a preview record for agent0
OutboundRecordDTO myRecordDTO =
myOutboundService.getPreviewRecordDTO("agent0", myCampaignId,
new string[]{"outbound.record:*"}); /// all record attributes
/// Displaying the DTO content
foreach(KeyValue myPair in myRecordDTO.data)
{
System.Console.WriteLine("Key="+ myPair.key
+" value="+myPair.value.ToString());
}
/// agent0 no longer participates in a campaign identified by
/// myCampaignID.
myOutboundService.stopPreviewMode(“agent0”,myCampaignID);

Then, if a record is available, you get two events:
• OutboundChainEvent

• InteractionEvent

Table 31: Outbound Service Methods for Preview Mode

Method Description

startPreviewMode() An agent is ready to start participating in a
campaign.

getPreviewRecordDTO() An agent retrieves a preview record from a
campaign, and this method returns the record
data in a DTO. Your application receives an
interaction event for the outbound voice
interaction associated with this outbound record.

stopPreviewMode() An agent stops participating in a campaign.

222 Agent Interaction SDK 7.6

Chapter 14: The Outbound Service Outbound Campaign in Predictive Mode

Use the OutboundChainEvent event to inform the user that a new outbound
record should be processed.
The corresponding InteractionEvent references an interaction object with
the status NEW. Use this interaction to retrieve the outbound chain that contains
the preview record. To get this record, get the outbound.chain:activeRecordId
attribute using OutboundChainDTO, as follows:

myOutbondChainDTO = myOutboundService.getOutboundChainDTO(myPlaceId, myOutboundChainId,
new string[]{"outbound.chain:activeRecordId"}
);

Then, use the Interaction instance as you normally would to process the
outbound record. Get outbound record data to fill in Interaction data and the
parameters for your methods. After that, you need to create an interaction to
process a voice call and use the record data to dial the call.
If you deal with multimedia interactions, multimedia information is available
in the record’s custom fields (outbound.record:customFields). When the
interaction is processed, you mark the corresponding outbound chain as
processed:

myOutboundService.markChainProcessed(myPlaceId,myOutboundChainId);

Outbound Campaign in Predictive Mode
Handling a predictive outbound interaction is simpler than handling a preview
outbound interaction. The setup is the same, but you do not have to request
records since Outbound Server is in charge of distributing records. Refer to
outbound documentation for further details. For a predictive outbound
campaign, your application just waits for RINGING interactions and outbound
chains.

Active Campaigns
To determine if your agent is to participate in a predictive outbound campaign,
test whether the outbound.campaign:mode is PREDICTIVE. To do this, get
information in CampaignOutboundEvent events.

Handling a Predictive Outbound Interaction
If your agent is to participate in a predictive campaign, your application should
get interactions in DIALING or TALKING status, which you process as usual. For
further details, see Chapter 7, “The Interaction Service,” on page 101, and
other interaction-handling chapters.

Services—Developer’s Guide 223

Chapter 14: The Outbound Service Outbound Campaign in Predictive Mode

When your application gets these predictive interactions through interaction
events, identify the outbound data. Each received outbound interaction is
associated with an outbound chain that contains the record. Use this data to fill
in interaction data. To get this record, get the outbound.chain:activeRecordId
attribute using OutboundChainDTO:

myOutbondChainDTO = myOutboundService.getOutboundChainDTO(myPlaceId, myOutboundChainId,
new string[]{"outbound.chain:activeRecordId"});

When the agent has processed the outbound record, he or she must specify the
processing result using the IExtendedOutboundService.setRecordDTO method.
When the interaction is processed, you mark the corresponding outbound chain
as processed:

myOutboundService.markChainProcessed(myPlaceId,myOutboundChainId);

To determine whether the agent must get a record or wait for a new interaction,
refer to Outbound Solution Documentation.

224 Agent Interaction SDK 7.6

Chapter 14: The Outbound Service Outbound Campaign in Predictive Mode

Services—Developer’s Guide 225

Chapter

15 Expert Contact
The expert contact service is the IExpertService interface defined in the
com.genesyslab.ail.ws.expert namespace. It covers the management of expert
contact features. This chapter includes the following topics:

Introduction, page 225
Expert Contact Essentials, page 228
Using Expert Contact Features, page 232

Introduction
The Expert Contact service supports features for an application that lets expert
users, who are not part of an enterprise’s Contact Center, provide their
expertise to Contact Center agents or customers.
This section defines what an expert, an expert contact application, and the
expert service are.

What is an Expert?
Contact Center agents, in the course of responding to customers, sometimes
need information beyond their training and benefit from contacting with
people with special expertise.
But typically, such experts are not part of the Contact Center CTI
infrastructure: their telephones connect to a switch that does not have a T-
Server and Framework support. In such cases, experts’ interactions with
Contact Center agents (or their customers) are not tracked, and neither the
agents nor the experts can benefit from information the Genesys Solutions can
provide.

226 Agent Interaction SDK 7.6

Chapter 15: Expert Contact Introduction

What is an Expert Contact Application?
In a site without a CTI link, the expert receives phone calls directly from a
public network without involvement of any Genesys platform components.
Therefore such calls are not automatically monitored or controlled. For
example, there is no way to detect the state of the expert's telephone (Ready,
OnCall, and so on).
The purpose of an Expert Contact application is to provide a means for an
expert to reflect call state and perhaps to present information from the Genesys
Framework components to the expert. But there is no T-Server for the switch
for the expert’s telephone.
A Genesys CTI-Less T-Server works without monitoring a switch yet provides
a connection to the expert’s desktop application and to a T-Server in the
Contact Center. A CTI-Less T-Server provides a virtual CTI environment to
track the expert’s telephone states, send messages to other Genesys server
components, handle data for current interactions, and coordinate voice and data
delivery to the expert’s desktop application.
In the case that an expert receives a call transferred from a Genesys supported
contact center, the Genesys platform components communicate with the CTI-
Less T-Server, which signals the expert’s desktop application of an incoming
phone call. The application presents an indication to the expert, who may
choose to accept or reject the phone call.
If the expert accepts the phone call, the desktop application can present
available information, including contact history if there is a connection to a
Genesys Contact Server.
As the phone call progresses, the expert must use the application to reflect
progress. The application passes the expert's activity to the CTI-Less T-Server,
which in turn passes the data to the Contact Center Framework components.
The application must be able to process events from the CTI-Less T-Server.

What Is the Expert Contact Service?
The expert contact service interfaces with expert contexts (or expert contact
data). Expert contexts are associated with voice interactions and pass expert
activities on these interactions.

Features Your application can use the expert contact service to:
• Access the expert context associated with a call—that is, a voice

interaction.
• Pass expert activity:

Specify whether the expert is on call.
Update the expert status on a call.
Manage preview requests for outbound campaigns.

• Re-route calls.

Services—Developer’s Guide 227

Chapter 15: Expert Contact Introduction

Required Services Your application cannot use the expert contact service independently from the
following services:
• The agent service:

Before dialing calls, your application first must use the agent service to
log in an agent on a CTI-Less DN.

Note: For further information, see Chapter 5, “The Agent Service,”
page 71.

• The voice interaction service:
While the agent is logged on a CTI-Less DN, your application can use
the IInteractionVoiceService interface to pass the expert's activity.

Note: For further information, see Chapter 8, “Voice Interactions,”
page 109.

• The interaction service:
To access the attributes of your voice interactions, your application
uses the IInteractionService DTO methods.
All the voice interaction attributes are published in events of type
InteractionEvent. This type is described in the IInteractionService
interface.
For further information, see Chapter 7, “The Interaction Service,”
page 101.

• The event service—This service is required to receive agent, voice, and
expert events.

Note: For further information, see Chapter 4, “The Event Service,” page 53.

Configuration An Expert Contact desktop application built on the Web Services must connect
via the GIS to the CTI-Less T-Server and also a Configuration Layer that has
information about the CTI-Less T-Server, person information for the expert,
and so on.

Note: See the Genesys Expert Contact Solution 7.6 Deployment Guide for
instructions on how to configure an Genesys Expert Contact
application in Configuration Layer.

228 Agent Interaction SDK 7.6

Chapter 15: Expert Contact Expert Contact Essentials

Expert Contact Essentials
Your agent application uses the expert contact service to manage expert contact
information as an expert context attached to a voice interaction.
When an expert contact application creates or gets a voice interaction, it uses
the expert contact service to get the associated expert context and manage
particular expert actions. The voice interaction management does not differ
from the management described in Chapter 8 on page 109. The particularity is
that actions on voice interactions are passing expert agent actions to the CTI-
Less T-Server.
The expert context of a voice interaction includes the expert context status and
possible expert actions. Your expert application concurrently uses the voice
interaction service and the expert contact service to pass his or her activity.
Figure 42 shows how to integrate the expert contact service to handle expert
contexts.

Figure 42: Expert Contact Service Integration Example

1. Subscribing to TopicsEvent for integrated services, including the expert and
interaction services.

2. Requesting an agent login with the agent service login action.
3. Creating a voice interaction to pass a new dialed call.
4. Receiving an expert event for a new expert context, and an interaction event

for the created interaction.
5. Managing both the expert context and the voice interaction.
6. Receiving expert and interaction events due to 5.

Figure 42 shows the general expert contact service handling in an application
that lets an expert pass the creation of a new call. The IExpertService interface

Agent Desktop Application

InteractionEvent

Integrated web
services

GUI

IEventService

IAgentService

GIS Genesys
Framework

Expert
context

Voice
Interactions

Subscribed
topics

IExpertService

IInteraction
VoiceService

5

2

ExpertEvent

4,6

4,6

Actions
DTOs
Events

3,5
linked

4,6

4,6

 1

Services—Developer’s Guide 229

Chapter 15: Expert Contact Expert Contact Essentials

exposes methods and pertinent attributes that your application uses to manage
the expert context of voice interactions, such as re-routing a call or updating
the expert context status.
The IInteractionVoiceService interface passes the expert actions restricted to
voice interaction management, such as for example, answering a call, releasing
a call, and marking a call as done.
For any particular state of an expert context, the expert contact service permits
the use of only a small subset of its possible actions (available to your
application as method calls).
Actions of the voice interaction and expert contact services may modify these
states. The event service receives both InteractionEvent and ExpertEvent
events that carry identifiers, along with a variety of attributes reflecting new
state and other data. To receive those events, your application must subscribe
to them.
For each ExpertEvent event, as well as for InteractionEvent events, your
application should test various attributes of the IExpertService interface.
The following sections present the details behind the above general description
of the expert contact service. For voice management, see Chapter 8 on
page 109.

Expert Context Attributes
The expert domain defines the expert context of a voice interaction. The
following list is representative (but not exhaustive):
• interactionId—The voice interaction associated with this expert context.
• customerNumber—The customer number.
• status—The status of this expert context.
• reason—The reason for the status of this expert context.
An expert context does not exist independently from a voice interaction.
Therefore, your application requires an interaction ID to access context
attribute values.
Your application can read the attributes of this domain with the
IExpertService.getExpertContextDTO() method. This method retrieves an
ExpertContextDTO object that contains the context associated with a voice
interaction.

Note: If no expert context exists for a voice interaction ID, your application
gets a error.expert.ExpertContextNotFound exception. Your
application can use it to determine whether it handles a voice
interaction for an expert or not.

230 Agent Interaction SDK 7.6

Chapter 15: Expert Contact Expert Contact Essentials

The ExpertContextDTO class associates an interaction ID with a key-value
list of expert attributes. For further information, see “DTOs Handling” on
page 49.

Expert Context Actions
The ExpertContextAction enumeration defines expert actions on voice
interactions and expert contexts. Constants each correspond to one
IExpertService method. For example, the REJECT constant corresponds to the
IExpertService.reject() method.
When using these actions, your application can modify the expert context and
data of a voice interaction (depending on the action). For further details, See
“Using Expert Contact Features” on page 232.
To determine which expert actions are possible at a certain point in time, read
the expert:actionsPossible attribute of the IExpertService interface.
When changes occur on possible actions, this attribute can be published in an
ExpertEvent event, depending on your subscription to the event service. See
“Expert Events” below.

Expert Context Status
The ExpertContextStatus enumeration lists the possible statuses for an expert
context. Since the expert phone is CTI-Less, the purpose of this status is to
identify and tracks the expert context progress. For example, when the expert
context status is ExpertContextStatus.PREVIEW, the expert previews the call;
when the status is ExpertContextStatus.IN_PROGRESS, the expert processes the
call; and so on.
The ExpertContextStatus.STATUS_REQUEST value corresponds to the status
request feature. This status indicates that the expert must update his or her
status at the CTI-Less T-Server’s request. See “Managing Status Request” on
page 233 for further details.
To determine what the expert contact status is at a certain point in time, read
the expert:status attribute of the IExpertService interface. When changes
occur on the expert context status, this attribute can be published in an
ExpertEvent event, depending on your subscription to the event service. See
“Expert Events” below.

Expert Events
When changes occur on an expert context, the event service of your expert
application can receive ExpertEvent events. This occurs, for instance, when
possible actions or expert context status change. Use expert events to update
your expert application.

Services—Developer’s Guide 231

Chapter 15: Expert Contact Expert Contact Essentials

ExpertEvent events can propagate any published attribute, that is, attributes of
the expert domain that have the event property. To properly take into account
expert events, the published expert:eventReason attribute value indicates the
reason for an event. The ExpertContextReason enumeration lists the possible
reasons for an occurring ExpertEvent event. Refer to the Agent Interaction
SDK 7.6 Services API Reference for further details.
The following code snippet subscribes to both ExpertEvent and
InteractionEvent.

/// Defining two TopicsService
TopicsService[] myTopicsServices = new TopicsService[2] ;

/// Defining a Topic Service for the callback service
myTopicsServices[0] = new TopicsService() ;
myTopicsServices[0].serviceName = "ExpertService" ;
/// Defining a topic event
myTopicsServices[0].topicsEvents = new TopicsEvent[1] ;
myTopicsServices[0].topicsEvents[0] = new TopicsEvent() ;

/// The targeted events are ExpertEvent
myTopicsServices[0].topicsEvents[0].eventName =

"ExpertEvent" ;
/// All the event attributes values are propagated in Event objects
myTopicsServices[0].topicsEvents[0].attributes =

new String[]{"expert:*"};

/// Triggering ExpertEvent for agent0
myTopicsServices[0].topicsEvents[0].triggers = new Topic[1];
myTopicsServices[0].topicsEvents[0].triggers[0] = new Topic();
myTopicsServices[0].topicsEvents[0].triggers[0].key = "AGENT";
myTopicsServices[0].topicsEvents[0].triggers[0].value = "agent0";

/// Defining a Topic Service for the interaction service
myTopicsServices[1] = new TopicsService() ;
myTopicsServices[1].serviceName = "InteractionService" ;

myTopicsServices[1].topicsEvents = new TopicsEvent[1] ;
myTopicsServices[1].topicsEvents[0] = new TopicsEvent() ;

/// The targeted events are InteractionEvent
myTopicsServices[1].topicsEvents[0].eventName = "InteractionEvent" ;

/// In case of a voice interaction, the interaction, and
/// voice interaction attributes values are propagated in the
/// Event object
myTopicsServices[1].topicsEvents[0].attributes = new String[]{

"interaction:*",
"interaction.voice:*"};

/// Triggering CallbackRecordEvent for agent0

232 Agent Interaction SDK 7.6

Chapter 15: Expert Contact Using Expert Contact Features

myTopicsServices[1].topicsEvents[0].triggers = new Topic[1];
myTopicsServices[1].topicsEvents[0].triggers[0] = new Topic();
myTopicsServices[1].topicsEvents[0].triggers[0].key = "AGENT";
myTopicsServices[1].topicsEvents[0].triggers[0].value = "agent0";

For further information about events, see Chapter 4.

Using Expert Contact Features
Table 32 presents actions of the expert contact service which provides your
application with management of expert features.

The following subsections detail the actions that Table 32 presents. It also
introduces the Easy New Call and Auto Mark Done features that depend on your
configuration settings.

Managing On Call
The expert can receive direct calls on his or her CTI-Less phone. The expert
has to notify these calls to the CTI-Less T-Server. To notify the call, the expert
application calls the IExpertService.onCall() method as shown in the
following code snippet:

// Passing the ID of a CTI-Less DN in argument
myExpertService.onCall(myDNID);

The onCall() method sends a message to the CTI-less T-Server to send a new
interaction to the specified CTI-Less DN. It also creates an expert context for

Table 32: Expert Context Actions and Methods

RecordAction IExpertService
Method

Description

(none) onCall() Creates an interaction and the
associated expert context.

ACCEPT accept() Accept to process a preview call.

REJECT reject() Reject a callback record

CONFIRM_STATUS confirmStatus() Confirms the expert context status.

REJECT_STATUS rejectStatus() Confirms that the expert is not
handling an interaction anymore.

REROUTE reroute() Reroutes an interaction.

Services—Developer’s Guide 233

Chapter 15: Expert Contact Using Expert Contact Features

the voice interaction. Your application receives InteractionEvent and
ExpertEvent events.
Then, the expert uses the voice interaction to notify his or her actions on the
call. For instance, when the expert answers manually the call, he uses your
application to perform an ANSWER_CALL action on the voice interaction.
To pass the expert voice-specific activity, see Chapter 8 on page 109.

Managing Preview Calls
The CTI-Less T-Server can send a call to the expert. In this case, your
application gets a new interaction and a context for the preview call. It receives
an InteractionEvent event and an ExpertEvent event. The InteractionEvent
event propagates the NEW interaction status and the ExpertEvent event
propagates the ExpertStatus.PREVIEW context status. This happens for example
when an expert participates in an outbound campaign.
The expert can either accept or reject the call. Use the accept() and reject()
method of the IExpertService interface in this purpose.
In the following code snippet, the expert application accepts to process the call.

myExpertService.accept(myInteractionID);

A call to the accept() method sends the call on the expert phone. Then, the
expert uses the voice interaction to notify his or her actions on the call. To pass
the expert voice-specific activity, see Chapter 8 on page 109.

Managing Status Request
Your application can receive status requests from the CTI-Less T-Server. In
this case, your application gets an ExpertEvent event propagating the
ExpertStatus.STATUS_REQUEST of the expert context associated with a voice
interaction. This periodically happens when the CTI-Less T-Server requests the
expert to notify his or her voice interaction’s status.
The expert can choose between the ExpertContextAction.CONFIRM_STATUS or
ExpertContextAction.REJECT_STATUS actions.
A call to the IExpertService.confirmStatus() method indicates the expert is
still on call. A call to the IExpertService.rejectStatus() method indicates
that the expert has terminated the call.
In the following code snippet, the expert application notifies that the expert no
longer processes the call.

myExpertService.rejectStatus(myInteractionID);

234 Agent Interaction SDK 7.6

Chapter 15: Expert Contact Using Expert Contact Features

Note: When the expert makes an ExpertContextAction.REJECT_STATUS action,
the voice interaction is automatically released.

Managing Re-Route
Depending on your configuration settings, the expert is able to re-route calls.
See the Interaction SDK 7.6 GIS Deployment Guide for further details.
If you properly set kworker routing options, your application can use the
IExpertService.reroute() method to notify the CTI-Less T-Server of the voice
interaction re-routing.

Easy New Call and Auto Mark Done
When the expert makes a phone call, he or she first creates, then dials a voice
interaction on his or her CTI-Less DN using your expert application. Your
application processes the voice interaction creation as for a standard one.
Depending on your configuration settings, your application can benefit from
the Easy New Call feature. This feature changes the voice interaction status to
TALKING at interaction creation on CTI-Less DNs. The interaction creation is
less time-consuming for the expert.
To activate the Easy New Call feature, set the easy-newcall option to true. See
the Interaction SDK 7.6 GIS Deployment Guide for further details.
When the expert hangs up a call, he or she should release and mark the voice
interaction as done. Depending on your configuration settings, your application
can benefit from the Auto Mark Done feature. This feature automatically marks
as done released interactions for CTI-Less DNs.
To activate the Auto Mark Done feature, set the auto-markdone option to true.
See the Interaction SDK 7.6 GIS Deployment Guide for further details.

Services—Developer’s Guide 235

Chapter

16 Additional Services
This chapter presents services that provide additional information to
complement other services, or to assist you in monitoring your application. For
instance, the history service complements the contact service because it
provides contacts’ histories. The workflow service enables an agent to use
workbins to put or pull interactions. The system service determines whether or
not your application is correctly connected to the servers that provide
interactions, contacts, and other resources.
This chapter covers the following topics:

The History Service, page 235
The Workflow Service, page 237
The System Service, page 241
The Resource Service, page 243
The Monitor Service, page 247

The History Service
The Universal Contact Server (UCS) stores contacts’ data, including the
contact history. The history service gives access to a set of contact histories
managed by the UCS. For each contact, its history contains a set of interactions
involving the contact. Within the history service, your application can retrieve
data about those interactions.
The history service is the IHistoryService interface defined in the
com.genesyslab.ail.ws.history namespace. To use this service, your
application works with classes and enumerations of this namespace.

236 Agent Interaction SDK 7.6

Chapter 16: Additional Services The History Service

History Information
A Contact’s history information consists of interactions and is organized into
history items. Each history item contains the history information of one
interaction associated with a contact.
The history domain of the IHistoryService interface lists the accessible data
of a history item:
• history:interactionId—ID of the interaction involved.
• history:dateCreated—Creation date of the interaction.
• history:interactionType—Type of the interaction.
• history:sender—Initiator of the interaction.
• history:subject—Subject of the interaction.
Your application can retrieve a history item in a HistoryItemDTO instance. The
HistoryItemDTO class associates a contact with the key-value array data that
contains history attribute keys and values describing an interaction of within
the contact history. For further details, see “Getting History Information” on
page 236.
The history.additional domain provides a set of additional interaction
attributes. These attributes are dynamic and depend on the Configuration
Layer. To get the attribute keys of this domain, retrieve the metadata name of
these attributes with the IResourceService methods. For further details, see
“Interaction Attributes” on page 245.
Your application can use metadata names as attribute keys when retrieving
history DTOs, as, in this example: history.additional:<metadata.name>
(where <metadata.name> is the string corresponding to a metadata name).

Getting History Information
To retrieve a contact’s HistoryItemDTO, your application must first create and
fill an InteractionSearchTemplate instance, and then call the
IHistoryService.getHistoryDTO() method.
An interaction search template delimits the retrieved interaction history items.
Your application can set the index and numbers of history items, and can
specify which attributes to retrieve in the DTO result. These features are useful
to (for example) display the interaction data of a contact history by pages with
a limited set of attributes.
The following code snippet retrieves the first 10 interactions of a contact
history.

///Filling the template
InteractionSearchTemplate mySearchTemplate = new
InteractionSearchTemplate();
mySearchTemplate.index = 0;
mySearchTemplate.length = 10;

Services—Developer’s Guide 237

Chapter 16: Additional Services The Workflow Service

/// Retrieving the history item DTOs for the ten first contacts
HistoryItemDTO[] myItems =

myHistoryService.getHistoryDTO("my contact ID",
mySearchTemplate, true,
new string[]{"history:*"}); // Each DTO contains all the

// historic attribute values.

/// Displaying the retrieved historic data
foreach(HistoryItemDTO item in myItems)
{

System.Console.WriteLine("-- History item --\n");
foreach(KeyValue myPair in item.data)
{

System.Console.WriteLine("Key: "+myPair.key
+ " Value: "+ myPair.value.ToString()+"\n");

}
}

The Workflow Service
The workflow service provides your application with workbins. From an
agent’s point of view, a workbin is a sort of interaction directory from which
your application can pull, or into which it can put, interactions.
To define workbins more precisely: a queue contains interactions, and a view
filters a queue’s interactions according to a set of criteria. A workbin filters a
view’s interactions according to a further set of criteria. Figure 43 on page 238
shows an example of a view and workbins defined for a queue.

238 Agent Interaction SDK 7.6

Chapter 16: Additional Services The Workflow Service

Figure 43: Example for Workbins, Views, and Queues

Figure 43 shows a queue containing e-mail interactions. For this queue, View0
lets your application see only e-mail interactions that are no older than a week.
In this view, two workbins coexist: one for draft e-mail interactions, and one
for pending e-mail interactions. The workflow service can use those filters to
retrieve a set of interactions organized in workbins for a particular place.
Here, the workflow service retrieves interactions no older than a week and
available for place0. E-Mail1 and E-Mail2 are not retrieved as they should not
be treated in place0.
Use the Configuration Layer to define views and workbins. For further details,
refer to your Configuration Layer Documentation.
The workflow service is the IWorkflowService interface defined in the
com.genesyslab.ail.ws.workflow namespace. To use this service, your
application works with classes and enumerations of this namespace.
Use the workflow service to:
• Display workbins and their filtered interactions.
• Enable an agent to put an interaction in a workbin.

E-Mail0 E-Mail1 E-Mail2 E-Mail3

View0

E-Mail4

Workbin Draft Workbin Pending

age<1week

- type EMAIL_OUT*
- subject not empty
- body not empty

- type EMAIL_OUT*
- body empty

Retrieving Workbins for place0

Workbin Draft

Workbin Pending

E-Mail0

E-Mail3

E-Mail4

Workbins for place0

Workflow Service

Services—Developer’s Guide 239

Chapter 16: Additional Services The Workflow Service

Handling a Workbin Interaction
By default, all interactions contained in a workbin are in the IDLE state. To
handle a workbin’s interaction, you must pull it using
IInteractionService.openInteractionForAgentDTO() or
IInteractionService.openInteractionForPlaceDTO() methods from the
IInteractionService interface. For more details, see Chapter 7 on page 106.

Workbin Information
Workbin information is composed of a set of attributes and their content in
terms of interactions.

Workbin Attributes The workflow service defines a workbin’s information in the workbin domain.
The following list is not exhaustive:
• workbin:id—The system identifier of a workbin; used to retrieve all

information about a workbin.
• workbin:viewId—The system identifier of the view that contains a

workbin.
• workbin:placeId—The system identifier of the place that contains a

queue’s views.
• workbin:type—A workbin’s type.
• workbin:reason—A string to display when an event occurs on the content

of a workbin.

Workbin DTO Your application can retrieve a workbin’s attributes and content—with respect
to a particular place or agent—using a WorkbinDTO instance. The WorkbinDTO
class has the following attributes:
• workbinId—System ID of a workbin.
• data—Key-value list of workbin attributes.
• worbinInteractionsDTO—Array of DTOs; each DTO contains the

information for an interaction of the workbin.

Workbin Interaction Information
The level of information provided for a workbin interaction depends on the
type of interaction. The workflow service provides more data for multimedia
interactions—that is, CHAT*, COLLABORATION*, or EMAIL* interactions.
The workflow service includes two domains of attributes for interactions:
• workbin-interaction—Attributes summarizing an interaction.

interactionId—System ID of an interaction.
interactionType—Type of interaction.
subject—Subject of an interaction.

240 Agent Interaction SDK 7.6

Chapter 16: Additional Services The Workflow Service

• workbin-interaction.multimedia—Additional information specific to an
multimedia interaction. The following list of attributes is not exhaustive:

from—Sender field of an interaction.
to—Receiver field of an interaction.
contactId—System ID of a contact in the UCS. For further
information, see Chapter 11, “The Contact Service,” page 167.

To get information about workbin interactions, use one of the getWorkbins*()
methods of the IWorkflowService interfaces.

Getting Information
Table 33 presents the methods of the IWorkflowService interface, which
accesses workbin information.

For example, the following code snippet uses the
IWorkflowService.getWorkbinsDTO() method to retrieve information from all
the workbins defined for a view for place0. For each workbin, it displays
the DTO content, including workbin interaction DTOs.

///Getting Workbin DTO for place0
WorkbinDTO[] myWorkbinsDTO =

myWorkflowService.getWorkbinsDTO("place0",
null, /// all workbins are retrieved
new string[]{"workbin:*"},///with all info for each workbin
new string[]{"workbin-interaction:*",///with all info for each

"workbin-interaction.multimedia:*"}); /// contained ixn

///Displaying each Workbin DTO content
foreach(WorkbinDTO myDTO in myWorkbinsDTO)

Table 33: Methods to Get Workbin Information

IWorkflowService Methods Description

getQueues() Gets simple containers for queues
information.

getWorkbinsDTO() Gets workbin DTOs for a particular
place or agent (including workbin
information and workbin interactions
DTO).

getWorkbinsContentDTO() Gets only the interactions contained in
a workbin for a particular place or
agent.

getWorkbinsContentForAllDTO() Gets all interactions contained in a
workbin (regardless of agent or place).

Services—Developer’s Guide 241

Chapter 16: Additional Services The System Service

{
/// Displaying workbin ID:
System.Console.WriteLine("Workbin: "+myDTO.workbinName+"\n");

/// Displaying workbin data: (workbin domain)
foreach(KeyValue myWorkbinPair in myDTO.data)
{

System.Console.WriteLine("key: "+myWorkbinPair.key+
" value:"+myWorkbinPair.value.ToString()+"\n");

}

/// Displaying DTO content for each workbin interactions
foreach(WorkbinInteractionDTO myWorkbinIxn

in myDTO.workbinInteractionsDTO)
{

/// Displaying interaction ID:
System.Console.WriteLine("Ixn Id: "

+myWorkbinIxn.workbinInteractionId+"\n");

/// Displaying data of current interaction:
/// (workbin-interaction.*:* domain)
foreach(KeyValue myWorkbinIxnPair in myWorkbinIxn.data)
{

System.Console.WriteLine("key: "+myWorkbinIxnPair.key
+" value:"+myWorkbinIxnPair.value.ToString()+"\n");

}
}

}

The System Service
The system service is the ISystemService interface of the
com.genesyslab.ail.ws.system namespace. This service informs your
application of the state of the Genesys servers connected to your client
application. This service includes:
• Methods to retrieve information about the currently connected servers.
• Events to inform your application of real-time changes about the connected

servers, using SystemEvent.
For further information about the Genesys servers, refer to your Genesys
documentation.

Server Information
System service attributes provide your application with information about the
connected servers that perform services requests. Your application can either
retrieve these attributes with the ISystemService interface methods, or
propagate them in SystemEvent.

242 Agent Interaction SDK 7.6

Chapter 16: Additional Services The System Service

The following are the ISystemService interface’s:
• system.server-info:name—A string for the AIL Framework service

name.
• system.server-info:host—A string for the name of the host where the

service should run.
• system.server-info:port—A string for the port on which the service

should run.
• system.server-info:status—The ServerStatus value.
• system.server-info:type—The ServerType value.
• system.server-info:switch—The Switch object associated with this server

(if the type is a telephony type); else null.

Server Type

Each server is associated with a service, and this association is provided in the
system.server-info:type attribute. The ServerType enumeration lets your
application with which server the application is connected through the server-
side application. The following table comments the existing ServerType values.

Server Status

Combined with the server type attribute, the server status attribute lets your
application determine whether a service is available or not. The service
associated with the server is enabled if the system.server-info:status
attribute’s value is ServerStatus.ON.

Table 34: Server and Services

ServerType Description

CHAT The server manages the chat service.

TELEPHONY The server manages connections to voice media.

CONFIGURATION The Configuration Layer server manages the
configuration.

DATABASE The server is the Universal Contact Server.

STATISTIC The server manages the statistics service.

AIL The server manages the server-side application connected
to the Genesys Framework. Your client application
interacts with this server.

IS The server is the Interaction Server which manages voice,
e-mail, and chat interactions.

Services—Developer’s Guide 243

Chapter 16: Additional Services The Resource Service

For other ServerStatus values, refer to the Agent Interaction SDK 7.6 Services
API Reference.

Retrieving Server Information
To retrieve servers’ information, use the getServersDescriptionDTO()
method of the ISystemService interface. This method takes a list of attribute
keys as its parameter, and retrieves an array that contains information for all
available servers. Each ServerDescriptionDTO object of the array contains the
key-value pairs that corresponds to the key list.
The ServerDescriptionDTO class associates the server name with the server’s
information. This class has the following attributes:
• name—The server name.
• data—A key-value array containing the attribute values.
The following code snippet shows how to call the getServersDescriptionDTO()
method, and how to then display the contents of the DTO objects retrieved for
the available servers.

/// Retrieving the DTOs
ServerDescriptionDTO[] myServerDescriptionDTOs =

mySystemService.getServersDescriptionDTO(new string[]{"*"});

/// Displaying the content of each DTO
foreach(ServerDescriptionDTO description in myServerDescriptionDTOs)
{

System.Console.WriteLine(description.name+”: “);
// Displaying name and value for each attribute
foreach(KeyValue pair in description.data)
{

System.Console.WriteLine(pair.key
 +” - “+pair.value.ToString());

}
}

System Events
The SystemEvent event of the ISystemService interface occurs when a value of
one of this interface’s published attributes has changed. (The published
attributes are all ISystemService attributes.)
For further information, see Chapter 4, “The Event Service,” page 53.

The Resource Service
The resource service provides access to configuration data defined in the
Configuration Layer. For example, your application can use the resource

244 Agent Interaction SDK 7.6

Chapter 16: Additional Services The Resource Service

service to retrieve action codes, DN information, and interaction attribute
metadata.
The resource service is the IResourceService interface defined in the
com.genesyslab.ail.ws.resource namespace. To use this service, your
application works with classes and enumerations of this namespace.

Resource Information
Two domains are defined to provide your application with resource
information:
• resource.dn—DN summary data.
• resource.common—Common data.
The following subsections describe those domains.

DN Summary

Your application can use the resource service to get information about the DNs
of a switch without registering those DNs. This information corresponds to DN
summaries and is defined in the resource.dn domain.
Retrieve this information with the IResourceService.getDnSummariesDTO()
method.The information is returned in a DnSummaryDTO object. This class
associates the DN identifier with this DN’s DTO data.

Common Information

Your application can retrieve two types of common information defined in the
resource.common domain:
• resource.common:actionCodes—The codes that can be used to specify a

reason in calls to the agent service methods. All action codes are defined in
the ActionCodeType enumeration.

• resource.common:incomingAddresses—The call center’s e-mail addresses.
Use the IResourceService.getCommonsDTO() method to retrieve the
corresponding attributes as key-value pairs.

Enumerators

Use enumerators to get the key-value pairs of attributes defined in the
Configuration Layer. The Enumerator class describes an enumerator and
contains its associated values:
• defaultValue—The default value of this enumerator, if any.
• description—The enumerator’s description.
• enumeratorId—The name of this enumerator.

Services—Developer’s Guide 245

Chapter 16: Additional Services The Resource Service

• type—The type of this enumerator; null if no type is defined.
• values—The values of this enumerator. Each value of an enumerator is an

EnumeratorValue instance.
Use the IResourceService.getCommonsDTO() method to retrieve the enumerators
defined in the Configuration Layer.

Interaction Information
The Configuration Layer defines interaction attributes and interaction custom
properties in the Business Attributes section. Your application can get the
corresponding metadata objects using the resource service and access the
corresponding values in the attached data of an interaction using the metadata
name as an attached data key. See “Attached Data” on page 107.

Interaction Attributes

Values The InteractionAttributeValue class characterizes the information in an
interaction attribute’s value:
• id—The system ID of the interaction attribute’s value.
• name—The name of the corresponding interaction attribute’s metadata.
• value—The value of the interaction attribute.
• description—The description of the interaction attribute’s value.
• default—True if the interaction attribute value’s is a default value.
• type—The type of interaction attribute.

Metadata Each interaction attribute value has a type that specifies the corresponding
interaction attribute. This type resides in a InteractionAttributeMetaData
instance, as shown in Figure 44.

Figure 44: Interaction Attribute Value and Metadata

The InteractionAttributeMetaData class’ main fields are the following:
• id—The unique system identifier for this metadata.

InteractionAttributeValue InteractionAttributeMetaData

name="language"

value="English"

name="language"

ID

displayName=
"Language"

type = STRING

246 Agent Interaction SDK 7.6

Chapter 16: Additional Services The Resource Service

• name—The unique attribute name.
• active—True if the attribute is active in the Contact Server.
• displayName—The attribute display name.
• predefinedValues—A list of predefined contact attribute values, or null.
• sortable—True, if the attribute can be used to sort the contacts. For

example, a last name may be sortable.
• type—Type of the corresponding attribute values defined in the

InteractionAttributeMetaDataType enumeration
Your application can retrieve interaction attributes’ metadata using the
following IResourceService methods:
• getInteractionAttributeMetaDataById()—To retrieve metadata with their

IDs.
• getInteractionAttributeMetaDataByName()—To retrieve metadata with

their names.
Then, to get interaction attribute values, use the metadata name as the key
when retrieving history.additional data with the history service. See “History
Information” on page 236.

Custom Attached Data

The Interaction Custom Properties in the Configuration Layer correspond to
the CustomAttachedData objects that your application can retrieve using the
IResourceService.getCustomAttachedDataByXxx() method.
The CustomAttachedData class describes a metadata for a custom property. This
class includes method to get the corresponding name, display name, and
description of a custom property. It also provides the predefined values for the
custom attached data (if any).
Call the CustomAttachedData.getName() method to get the name of a custom
property and use it as a key to access or modify the corresponding value in an
interaction’s attached data map. See “Attached Data” on page 107.

Getting Resource Information
The following code snippet shows how to get and display some common
information.

///Getting Common DTOs
KeyValue[] myCommonDTOs = myResourceService.getCommonsDTO(new
string[]{"resource.common:*"});

///Displaying the common DTOs
foreach(KeyValue myCommonDTO in myCommonDTOs)
{

/// If action codes, displaying them

Services—Developer’s Guide 247

Chapter 16: Additional Services The Monitor Service

if(myCommonDTO.key == "resource.common:actionCodes")
{

ActionCode[] myActionCodes = (ActionCode[]) myCommonDTO.value;
System.Console.WriteLine(

"Configuration Layer: agent actions codes");
foreach(ActionCode myCode in myActionCodes)
{

System.Console.WriteLine(myCode.ToString());
}

}
/// If e-mail addresses, displaying them
else if(myCommonDTO.key == "resource.common:incomingAddresses")
{

System.Console.WriteLine(
"Configuration Layer: Call Center addresses");

string[] myCallCenterAddresses = (string[]) myCommonDTO.value;
foreach(string myAddress in myCallCenterAddresses)
{

System.Console.WriteLine(myAddress.ToString());
}

}

The Monitor Service
The MonitorService interface provides monitoring features for agent status.
With this service, you can subscribe to an agent and get real-time information
about that agent’s status (which is available in the AgentCurrentState category
from Stat Server).

Monitor Information
MonitorService information consists of a set of current-state data:
• monitor-status:agent—The current status of an agent and all his or her

media.
• monitor-status:media—The current status of a media associated with an

agent.

Getting Monitor Information
To access monitor information, you can either subscribe to StatusEvent
(details on events are in Chapter 4, “The Event Service,” on page 53), or you
can use the PeekStatus method. The two snippets that follow correspond to
these two options, respectively.

248 Agent Interaction SDK 7.6

Chapter 16: Additional Services The Monitor Service

Subscribing to StatusEvent

/// Creating topic objects for the monitor service
TopicsService [] topicServices = new TopicsService[1];
topicServices[0] = new TopicsService();
topicServices[0].serviceName = "MonitorService";
topicServices[0].topicsEvents = new TopicsEvent[1];
topicServices[0].topicsEvents[0] = new TopicsEvent();

// Creating a topic event for status events
topicServices[0].topicsEvents[0].eventName = "StatusEvent";
topicServices[0].topicsEvents[0].attributes =
new String[]{"monitor-status:agent","monitor-status:media"};
topicServices[0].topicsEvents[0].triggers = new Topic[1];
topicServices[0].topicsEvents[0].triggers[0] = new Topic();
topicServices[0].topicsEvents[0].triggers[0].key = "STATUS";
topicServices[0].topicsEvents[0].triggers[0].value = mValue;

//objectType:objectid:notificationMode:notificationValue

Values

• objectType—type of the object (PERSON or QUEUE).
• objectId—identifier of the object.
• notificationMode—CHANGED_BASED or TIME_BASED.
• notificationValue—the value of the notification.

CHANGED_BASED—an event will be sent only if the value changes by
more than this notificationValue.
TIME_BASED—an event is sent every notificationValue seconds.

Note: If the parameter contains a “:” (colon) character, escape it with a
“\” (slash) character (for example, Agent:100 becomes
Agent\:100).

Example

Here is an example of the full parameter string you might use:

PERSON:Agent10:CHANGED_BASED:10
topicServices[0].topicsEvents[0].filters = null;

Using the PeekStatus Method

//Retrieving an Agent status:
MonitorEventStatus myMonitorEventStatus = myMonitorService.peekStatus(PERSON,

myAgentId)

Services—Developer’s Guide 249

Chapter 16: Additional Services The Monitor Service

//Display this agent's status data:
System.Console.WriteLine(myMonitorEventStatus.agentStatus.userName+":

"+myMonitorEventStatus.agentStatus.agentStatus.ToString());

//and all his media statuses
foreach(MonitorEventMediaStatus mediaStatus in

myMonitorEventStatus.agentStatus.mediaStatuses)
{
System.Console.WriteLine(mediaStatus.name+": "+mediaStatus.mediaStatus.ToString());

}

250 Agent Interaction SDK 7.6

Chapter 16: Additional Services The Monitor Service

Services—Developer’s Guide 251

Chapter

17 Best Coding Practices
This chapter is for developers who are familiar with the Agent Interaction
Services. It reviews the rules you would otherwise find throughout this book
for developing a high-performance application on top of the Agent Interaction
Services.
The information available in this chapter is divided in the following topics:

Introduction, page 251
Avoid Wildcards, page 251
Tips for Events Processing, page 252
Tips for DTOs, page 253
Tips for High Availability, page 255

Introduction
When you develop an agent application on the Agent Interaction SDK Services
API, observing a few basic rules will help optimize your application's
performance in your production environment.
The Agent Interaction Services API is not a traditional API, and its service
complexity is hidden behind the service interfaces. For instance, as detailed
later in this chapter, calling the get methods reduces the code complexity but
increases the network traffic.
This chapter is intended to help you make a few checks and corrections to your
applications before you start testing them in production environments.

Avoid Wildcards
Although the Agent Interaction Services API includes wildcards to deal with
with DTOs (see page 52) or events (see page 61), they should be used for your
application’s development only.

252 Agent Interaction SDK 7.6

Chapter 17: Best Coding Practices Tips for Events Processing

The * Wildcard In a production-like environment, the * wildcard should be avoided if you want
fast application responses. This wildcard is likely to disturb the network traffic
and slow down your application’s performance, (since it usually retrieves wide
data sets).

The default
Wildcard

If you get more attributes than you need with the default wildcard, or, on the
contrary, if the default wildcard does not retrieve enough attributes, you
should instead specify the exact list of attributes that you need.
Note that the default wilcard can be use in production-like environment. The
related attributes should not cause any performance issue.

No Wildcards Get exactly what you need, neither more, nor less, so that your application can
work without significantly increasing network activity.
Achieve the best performance for your application by removing all wildcards
from your code before you start load-testing it.

Avoid This:

// Creating a topic event for voice media events
TopicsEvent voiceMediaTopicsEvent = new TopicsEvent();
voiceMediaTopicsEvent.eventName = "VoiceMediaEvent";
voiceMediaTopicsEvent.attributes = new String[]
{
 "agent:*"
};

Do This:

// Creating a topic event for voice media events
TopicsEvent voiceMediaTopicsEvent = new TopicsEvent();
voiceMediaTopicsEvent.eventName = "VoiceMediaEvent";
voiceMediaTopicsEvent.attributes = new String[]
{
 "agent:voiceMediaInfo",
 "agent:dnActionsPossible"
};

Tips for Events Processing

A Single Subscriber
You need a single subscriber per client application. That is, a single instance of
SubscriberResult for your application at runtime. Once it is created, you
should use this reference for all your event subscriptions and un-subscriptions.
For details about how you get this instance, see “Subscribing to the Events of a
Service” on page 62.

Services—Developer’s Guide 253

Chapter 17: Best Coding Practices Tips for DTOs

About Subscriptions
When you subscribe to a set of events (see page 59), it is important to register
for the minimum number of attributes, because this data travels through the
network each time that an event reports a modification. Given this, you should
also design your application to modify subscriptions, asking for additional
attributes only when needed.

About Notification
As a general guideline, to make sure that notification works fine:
• Do not perform extensive event processing in the methods related to the

notification.
• Avoid calls to service methods during notification processing; these calls

retrieve data through the network and slow down event publishing, and
may even block it.

If you want to perform an extended treatment, or a treatment for making calls
to services methods, be sure that your application implements this code in a
separate thread.

Tips for DTOs

Guidelines
Each time you call a XxxService.getXxxDTO() or XxxService.setXxxDTO()
method, your application makes a server request. As a result, data travels
through the network. Even if your application repeats an identical call to a
XxxService.getXxxDTO() method, the request is repeated and, again, data
travels through the network.
The Agent Interaction Services API does not cache data on the client’s side,
and it does not keep any reference either. So, when you develop your
application, you should take into account the cost of each server request.
For instance, if your application uses some agent data in an information panel,
do not request agent DTOs each time that the user displays the panel. You are
better off keeping a local variable and updating data with agent events.
You can also create a cache locally to save the network bandwidth. For
instance, contact data does not often change, so your application could retrieve
contact data at startup.

254 Agent Interaction SDK 7.6

Chapter 17: Best Coding Practices Tips for DTOs

Additional Details
You may notice that some DTOs, methods, or attributes retrieve wide
collections of objects or heavy data (such as binaries and attachments). When
using items from Table 35, it is critical that you understand that their improper
use can lead to significant increases in network traffic.

Tips • When your application calls methods that retrieve wide collections of
items (SRL, history, workflow, interactions), you can reduce network
activity with pagination. For instance, when your application gets
HistoryItems, set up a positive value for the length field of the
InteractionSearchTemplate that you pass as an argument of the
IHistory.getHistoryDTO() method.

• When your application retrieves interactions lists, it should specify
attribute names for ShortAttachment values instead of Attachment. Each
ShortAttachment instance describes an Attachment and provides enough
information to be useful for the user at first glance.Your application should
request attachments only when the user explicitly asks for them.

Additional
Information About

Workbins

The IWorkbinService methods collect wide sets of interaction data, so use
special care with attributes passed in as arguments. In particular, the
getWorkbinsContentForAllDTO() method retrieves workbins for all agents and
is very dangerous in regards to the number of interactions concerned and the
list of attributes your application can ask for each of them.

Table 35: Critical Areas

Service Methods, DTOs, or Attributes

IHistoryService IHistoryService.getHistoryDTO()

ISRLService StandardResponseDTO

srl:attachments

IWorkflowService workbin-interaction:attachedData

IWorkflowService.getWorkbinsContentForAl
lDTO()

IInteraction interaction:attachedData

interaction:contentBinary

IInteractionMailService interaction.mail:attachments

interaction.mail:mimeMessage

interaction.mail:structuredText

Services—Developer’s Guide 255

Chapter 17: Best Coding Practices Tips for High Availability

Tips for High Availability
The Agent Interaction Services offer high availability embedded in the
Genesys Integration Server. High availability is not your responsability, but
you should take into account the following guidelines during the
implementation of your application.

Voice Interactions in Specific Service Status
For voice interactions, NEW and RELEASED statuses are specific to the Agent
Interaction Services. Interactions in these statuses do not exist in the T-Servers.
So, after a switchover, it is impossible to recover them from the T-Servers and
they are lost.
The following tips should help you avoid losing interactions.

Interactions in NEW Status

Interactions are assigned the NEW status when MakeCall is invoked in two steps,
the first step being the interaction creation, the second being the dialing step.
The solution is to use the one-step MakeCall in which the destination directory
number (destDn) is provided:

InteractionVoiceErrorDTO err =
interactionVoiceService.createInteractionFromDnDTO(

sourceDn , null , destDn ,null ,
MakeCallType.REGULAR , attachedData , null , null);

Interactions in RELEASE Status

Interactions are assigned the RELEASED status when T-Server releases them. At
this point they still exist in the Agent Interaction Services to allow agents to
add data and comments. These modifications are saved in the UCS database
when your application calls the InteractionVoiceService.markDone() method.
In case of switchover, these interactions are lost and cannot be saved. To avoid
losing comments, they should be saved before the call is released and your
application should mark done the interaction as soon that the RELEASED event is
received: interactionVoiceService.markDone(interactionId);

E-Mail and Open Media Interactions
In case of switchover, the outgoing e-mail and open media interactions are no
longer associated with the agent’s Place. Thus, your application needs to call

256 Agent Interaction SDK 7.6

Chapter 17: Best Coding Practices Tips for High Availability

the InteractionService.openInteractionForPlaceDTO() method in order to
retrieve these interactions and make them available for the agent.

Update Status
Your application should subscribe for the event sent to the event service. If
your application’s subscriber changes its GIS node, this event’s attribute
subscriber:isSubscriberChangeNode is set to true.
In this case, your application should retrieve data to update the status of agents,
places and medias, and interactions as shown in the following code snippet.

if (event.serviceName.Equals("EventService")) {
bool isSubscriberChangeNode = false;
foreach(KeyValue attribute in event.attributes) {

if (attribute.key.equals("subscriber:isSubscriberChangeNode")) {
isSubscriberChangeNode = true;

}
}
if (isSubscriberChangeNode) {

// open a window to signal the event to the agent
// update voice interactions
InteractionPlaceDTO[] interactions =

interactionService.getInteractionsDTOFromPlace(
new String[] { placeId }, new String[] {"default"});

for (int i=0; interactions!= null && i < interactions.Length; i++) {
InteractionPlaceDTO ia = interactions[i];
for (int j=0; j < ia.interactionsDTO.Length; j++) {

InteractionDTO item = ia.interactionsDTO[j];
for (int k=0; k< item.data.Length; k++) {

String key = item.data[k].key;
Object obj = item.data[k].value;
...

}
}

}

// update agent status
PersonDTO[] persons = agentService.getPersonsDTO(

new String[] { "smith" }, // agentId
new String[] {"agent:loggedDns", "agent:loggedMedias"});

for (int i=0; persons!= null && i < persons.Length; i++) {
PersonDTO personDTO = persons[i];
if (personDTO.data.Length > 0) {

for (int j=0; j< personDTO.data.Length; j++) {
String key = personDTO.data[j].key;
if (key.Equals("agent:loggedDns")) {

VoiceMediaInfo[] voiceMediaInfos =
(VoiceMediaInfo[])personDTO.data[j].value;

for (int k=0; k< voiceMediaInfos.Length; k++) {

Services—Developer’s Guide 257

Chapter 17: Best Coding Practices Tips for High Availability

VoiceMediaInfo voiceMediaInfo = voiceMediaInfos[k];
String dnId = voiceMediaInfo.dnId;
VoiceMediaStatus voiceMediaStatus = voiceMediaInfo.status; //

NOT_READY READY ...
// update status

}
}
if (key.Equals("agent:loggedMedias")) {

MediaInfo[] mediaInfos = (MediaInfo[])personDTO.data[j].value;
for (int k=0; k< mediaInfos.Length; k++) {

MediaInfo mediaInfo = mediaInfos[k];
String mediaName = mediaInfo.name;
MediaStatus mediaStatus = mediaInfo.status; // NOT_READY READY ...
// update status

}
}

258 Agent Interaction SDK 7.6

Chapter 17: Best Coding Practices Tips for High Availability

Services—Developer’s Guide 259

Chapter

18 The Agent Status Example
This chapter details the implementation of the agent status example, an agent
application based on services, which is available on the documentation CD in
the sdk_exmpl_services-agent.zip file.
This example is developed in C#. It is a GUI form that monitors the status of
an agent on a place and allows agent actions on this place, such as login, logout
and so on. This chapter discusses the example’s architecture and the integration
of the Agent Interaction Services into this GUI application.
This chapter includes the following topics:

Introduction, page 259
Agent Status Architecture, page 263
Agent Status Classes, page 264
Managing Agent Status Data, page 267
Handling Events, page 276

Introduction
The agent status example is a .NET Framework windows form application
based on the Agent Interaction SDK (Web Services). It provides you with a C#
example for integrating the services into a GUI application.
This example is an agent application for managing an agent’s place:
• It displays the agent status on the media and DNs of his or her place.
• It performs agent actions—login, logout, ready, and not ready—on media

and DNs of an agent’s place.
• It refreshes in response to events propagated from the integrated services.
To understand what are the agent’s place, DNs, and media, see “Understanding
Place, DNs, and Media” on page 87.

260 Agent Interaction SDK 7.6

Chapter 18: The Agent Status Example Introduction

In order to get and update DNs and media information, this example integrates
the services presented in Table 36.

Agent Status Short Description
Agent Status GUI

Description
The agent status example is a System.Windows.Forms.Form instance that
includes the following System.Windows.Forms components:
• A DataGrid object to display the information about the agent’s place.
• Buttons to perform agent actions on the place (such as login, logout, ready,

and not ready).
• A RichTextBox to display some traces.
• A MenuBar object with MenuItem objects to:

Switch agents and monitor a new agent place.
Switch event modes (push or pull, see “Getting Events” on page 65).

For further details on System.Windows.Forms component, refer to Microsoft
.NET Framework help.
Figure 45 on page 261 is a screenshot of the agent status application at
runtime, when an agent is logged in on his or her place.

Table 36: Integrated Services

Service Name Integration Purpose Further Details

ServiceFactory Connects and creates the services used
in this example.

Chapter 2.

IAgentService Manages the agent actions on the
place (such as login, logout, ready,
and not ready) and accesses agent
data.

Chapter 5.

IPlaceService Retrieves information about the place. Chapter 6.

IEventService Subscribes to and gets events. Chapter 4.

Services—Developer’s Guide 261

Chapter 18: The Agent Status Example Introduction

Figure 45: The Agent Status Example at Runtime

In Figure 45, the user has clicked the Login button and logged in on the place.
The application refreshed the DataGrid and buttons with the new agent status
and the possible agent actions on the place.

Agent Status
Architecture

Overview

The agent status example separates the GUI classes from the classes that
integrate the services, as shown in Figure 46.

Figure 46: Agent Status Architecture Overview

To refresh or get information, GUI classes interface with the classes that
integrate the services.
This architecture makes it easier to concurrently manage GUI and services
complexity.

DataGrid

Buttons

MenuBar

RichTextBox

.Net Server

AgentForm Example

GUI
Genesys Framework

Integrated Services

262 Agent Interaction SDK 7.6

Chapter 18: The Agent Status Example Introduction

AgentStatusExample Project
Project Structure Unzip the contents of the sdk_exmpl_ixn_services-agent.zip archive to get the

AgentStatusExample directory, which contains two directory structures:
• The AgentStatusExample directory contains the MS Visual Studio project

files:
AgentStatusExample.csproj—The Agent Status Example project file.
AgentStatusForm.cs—The source file for the application form.
LoginForm.cs—A dialog box source file.
Global.cs—The source file for the classes integrating the Agent
Interaction SDK Services.

• The ExternalDependencies directory contains all the references you need.
To implement this example, copy the following files (available on the
product CD) into this directory:

 ail-configuration.xml—The XML configuration file.
 The .NET proxy AilLibrary.dll available on the product CD.

Before You Start 1. Set the properties of the ail-configuration.xml file.
Refer to Chapter 2, “About the Examples,” on page 27 for instructions on
what to modify.

2. Open the AgentStatusExample project in Visual Studio .NET.
3. Set the ExternalDependencies directory as your working directory:

Select Project > AgentStatusExample Properties.
Select Configuration Properties.
Select Debugging: In the Start Options section, assign your
ExternalDependencies directory to the Working Directory option. This
ensures that the running application takes into account the correct
ail-configuration.xml file.

4. Make sure that all references point to the ExternalDependencies directory.
5. If your Genesys Interface Server integrates an AIL version prior to

7.0.104.00, uncomment the specified code in the
AgentStatusForm.UpdateButtons() method of the AgentStatusForm.cs file.

You can now build and start the application.

Services—Developer’s Guide 263

Chapter 18: The Agent Status Example Agent Status Architecture

Agent Status Architecture
The architecture of the agent status example integrates the services in classes
separated from the GUI part of the application.
Figure 47 presents the main components of this example.

Figure 47: The Agent Status Example Component Diagram

Service
Components

Two classes deal with the Agent Interaction Service API:
• The Connection class:

Manages the connection with the GIS through the ServiceFactory
component
Creates the services.
Includes facilities to hide DTO complexity .

Note: See Chapter 3, “Data Transfer Object,” page 47 for further
information about DTOs.

• The Agent class uses the services created with a Connection instance to:
Retrieve agent and place information for a particular agent.
Manage DNs and media events (including subscription) on this agent.
Perform agent actions on this agent’s place.

GUI Component The AgentStatusForm class is a System.Windows.Forms.Form class that handles
the runtime form presented in Figure 45 on page 261. This class interfaces with
the Agent class to monitor an agent’s place.

Agent Example

AgentStatusForm

Agent

Connection

IEventService

IAgentService

Service Factory

IPlaceService

264 Agent Interaction SDK 7.6

Chapter 18: The Agent Status Example Agent Status Classes

Agent Status Classes
Figure 48 presents all the classes of the agent status example, with all the
relationships existing between classes and the Agent Interaction SDK (Web
Services).

Figure 48: Class Diagram of the Agent Status Example

Classes of Figure 48 are available in the following project files of the agent
status example:
• AgentStatusForm.cs—The source file for the AgentStatusForm class.
• LoginForm.cs—The source file for the LoginForm class.
• Global.cs—The source file for the Agent and Connection classes.
The following subsections present details about these classes.

Class Connection
The Connection class manages the connection to the GIS and creates the
services used in this application example.

Connection
Attributes

The Connection attributes include the factory and services as public members:
• mServiceFactory—An instance of the factory handling a connection.

+ Connection()
+ GetValue()
+ GetStringValue()
+ Disconnect()

Connection

+ Load()
+ RegisterEvent()
+ ProcessEvents()
+ SetNotification()
+ UnregisterEvent()
+ HandleEvent()
+ Login()
+ Logout
+ Ready()
+ NotReady()

+ mAgentID
+ mPlace
+ mQueue
+ mAgentLogin
+ mAgentPassword
+ mMediaInfo
+ mMediaActionsPossible
+ mVoiceMediaInfo
+ mDnsActionsPossible
+ listen
- mSubscriberId
- mEventsStack
- mNotification

Agent

+ Start()
+ UpdateStatuses()
+ UpdateButtons()
+ SetPullMode()
+ SetPushMode()
+ GetEvents()
+ notifyEvents()

AgentStatusForm

+ LoginForm()
+ buttonOK_Click()
+ buttonCancel_Click()

+ agentID
+ place
+ queue
+ loginID
+ password

LoginForm

ServiceFactory

IEventService

IPlaceService

INotifyService

IAgentService

Services—Developer’s Guide 265

Chapter 18: The Agent Status Example Agent Status Classes

• mAgentService—An instance of the agent service.
• mPlaceService—An instance of the place service.
• mEventService—An instance of the event service.

Connection
Methods

The Connection methods are the following:
• Connect()— The constructor; creates the factory and the services.
• Disconnect()—Releases the factory.
• GetValue/GetStringValue()—Methods for getting the value of an attribute

available in a DTO.

Class Agent
The Agent class gathers and updates agent data, that is, information about the
media and DNs of a place associated with an agent.

Agent Attributes To access and manage agent and place information, the Agent class uses a
connection instance—mConnection—for accessing services.
Table 37 divides the other Agent attributes into three categories.

The Agent class uses agent properties to:
• Fill in parameters in services method calls.

Table 37: Agent Attributes

Attribute
Type

Attributes Description

Agent property mAgentId

mAgentLogin

mQueue

mPlace

mAgentPassword

These attributes define which agent
and place the instance monitors.
When the application example
creates an Agent instance, it first
sets these properties.

Agent data
(for GUI
purposes)

mMediaInfo

mMediaActionsPossible

mVoiceMediaInfo

mDnsActionsPossible

Information collected through the
services.
These attributes are arrays of agent
status, and agent possible actions,
for the agent’s DNs and media.
The Agent class updates this
information to keep it consistent.

Event
management

mEventsStack

mSubscriberId

mNotification

listen

These attributes are for event
management purposes.

266 Agent Interaction SDK 7.6

Chapter 18: The Agent Status Example Agent Status Classes

When initializing the Agent data. See the source code of the
Agent.Load() method.
When performing agent actions. See “Managing Agent Actions on
DNs and Media” on page 275.

• Subscribe to and get media and voice media events with the event service
See “Subscribing to Events” on page 276.

Agent Methods The Agent class includes methods for:
• Initializing—Load() initializes the agent data corresponding to the agent

properties.
• Managing agent actions—Login(), Logout(), Ready(), and NotReady().
• Managing events:

RegisterEvent() to subscribe to events corresponding to the agent
properties.
UnregisterEvent() to unsubscribe from events.
HandleEvent() to update with event data.
HasEvent/ProcessEvents() to manage the event pull mode.

Class AgentStatusForm
The AgentStatusForm class is a System.Windows.Forms.Form class that handles
the form presented in Figure 45 on page 261. This form uses a grid to display
the DNs and media of a place associated with an agent, and provides the user
with agent actions on the place, such as login, logout, ready, and not ready.
This class sets the agent properties of its mAgent attribute—an Agent instance—
and then uses mAgent to monitor the agent and to access his or her agent data.
To update the GUI components of this form and implement user actions, the
AgentStatusForm class contains methods that use its mAgent attribute.
Table 38 on page 266 presents these methods.

Table 38: AgentStatusForm Methods Using the mAgent Attribute

Methods Description

AgentStatusForm()

Start()
Initializes the form with agent data.

UpdateStatuses() Displays information about the agent’s status on this
place, using:
mAgent.mMediaInfo

mAgent.mVoiceMediaInfo

UpdateButtons() Enables and/or disables buttons and menu items, using:
mAgent.mMediaActionsPossible

mAgent.mDnsActionsPossible

Services—Developer’s Guide 267

Chapter 18: The Agent Status Example Managing Agent Status Data

Class LoginForm
The LoginForm class is a dialog box used to input the agent properties. The
following attributes correspond to the Agent class properties:

agentID
place
queue
loginID
password

The AgentStatusForm class creates a LoginForm object when the application
starts or when the user selects the agent menu to modify agent properties. See
“Setting Agent Properties” on page 268.

Managing Agent Status Data
This section details the implementation of following actions in the agent status
example:
• “Connecting to the GIS Server” on page 268.
• “Setting Agent Properties” on page 268.
• “Updating Statuses in the Datagrid” on page 273.
• “Updating Buttons in the Form” on page 274.
• “Managing Agent Actions on DNs and Media” on page 275.

buttonLogin_click()

buttonLogout_click()

buttonReady_click()

buttonNotReady_click
()

Handlers to implement agent actions on the media and
DNs of the agent’s place.

menuItemPull_click()

SetPullMode()

GetEvent()

Handlers and methods that switch to the pull event
mode and manage events.

menuItemPush_click()

SetPushMode()

notifyEvent()

Handlers and methods that switch to the push event
mode and manage the notified events.

Table 38: AgentStatusForm Methods Using the mAgent Attribute

Methods Description

268 Agent Interaction SDK 7.6

Chapter 18: The Agent Status Example Managing Agent Status Data

Connecting to the GIS Server
To connect to the .NET Server, the AgentStatusForm() constructor creates an
Agent instance and a Connection instance, as shown in the following code
snippet:

/// Creating Agent and Connection objects for this status form
mAgent = new Agent();
mAgent.mConnection = new Connection();

The Connection() constructor of the Connection class creates a factory that
instantiates the connection to the .NET Server:

mServiceFactory =
ServiceFactory.createServiceFactory(null, null, null);

Because the call to ServiceFactory.createFactory() does not specify
parameters, the factory takes into account the default values set in the
ail-configuration.xml to connect.
Once the mServiceFactory factory is created, the Connection() constructor
creates the services that the Agent instance uses.

mEventService =
mServiceFactory.createService(typeof(IEventService), null) as
IEventService;

mAgentService =
mServiceFactory.createService(typeof(IAgentService), null) as
IAgentService;

mPlaceService =
mServiceFactory.createService(typeof(IPlaceService), null) as
IPlaceService;

When the AgentStatusForm.mAgent.mConnection attribute is instantiated,
AgentStatusForm can use its mAgent attribute to get data through the services.

Setting Agent Properties
The AgentStatusForm instance needs agent properties to determine which
agent’s place to monitor.
The user inputs these properties when:
• The application has successfully connected to the GIS at startup.
• The user clicks on the Agent menu to switch agents and/or places.
In both cases, the application updates to make the displayed information
consistent with the entered properties.

Services—Developer’s Guide 269

Chapter 18: The Agent Status Example Managing Agent Status Data

To get these properties and then update, the AgentStatusForm instance calls the
AgentStatusForm.Start() method in the constructor at startup, and again in the
menuItemEditAgent_Click() handler when the user clicks on the Agent menu.
Figure 49 shows the sequence diagram for the AgentStatusForm.Start()
method called in the event push mode.

Figure 49: Getting Agent Properties and Data

The AgentStatusForm.Start() method follows this scenario:
1. Collecting the agent properties with a LoginForm dialog box.
2. Getting the required agent data through its mAgent instance of the Agent

class.
3. Updating the GUI components of the form using the agent data, that is, the

attribute values of the mAgent instance. See “Updating Statuses in the
Datagrid” on page 273 and “Updating Buttons in the Form” on page 274.

4. Activating an event mode to listen to events on the monitored agent. For
details on event management, see “Handling Events” on page 276.

The following subsections discuss steps 1 and 2.

agent :AgentStatusForm :LoginForm :Agent :IPlaceService:IAgentService

new LoginForm()

Start()

buttonOKClick()

Load()

getPersonsDTO()

getPlaceDTO()

UpdateStatuses()

UpdateButtons()

SetPullMode()

270 Agent Interaction SDK 7.6

Chapter 18: The Agent Status Example Managing Agent Status Data

Getting Agent Properties

To get agent properties in the AgentStatusForm.Start() method, the
AgentStatusForm instance creates and opens a LoginForm to fill in its mAgent
properties, as shown in the following code snippet:

/// Getting new Agent properties
LoginForm editAgent = new

LoginForm(mAgent.mAgentId,mAgent.mPlace,mAgent.mQueue,
mAgent.mAgentLogin,mAgent.mAgentPassword);

/// If the dialog box result is OK, the application assigns
// the input to Agent attributes
if(editAgent.ShowDialog() == DialogResult.OK)
{

mAgent.mAgentId = editAgent.agentID;
mAgent.mPlace = editAgent.place;
mAgent.mAgentPassword = editAgent.password;
mAgent.mQueue = editAgent.queue;
mAgent.mAgentLogin = editAgent.loginID;
editAgent.Dispose();

//Updating with the (new) agent properties
//...

}

For further information about the LoginForm dialog box, see “Class
LoginForm” on page 267.

Getting Agent Data for New Agent Properties

To access agent data, that is, agent statuses and possible actions on media and
DNs of the place, AgentStatusForm has to update its mAgent attribute. The
Start() method calls the Agent.Load() method, as shown in the following code
snippet.

mAgent.Load();

To take into account the (new) agent properties and (re)initialize attributes, the
Agent.Load() method retrieves attributes for agent and place services in DTOs,
as shown here.

// Getting the DTO for the agent.
PersonDTO [] agentDTO =

mConnection.mAgentService.getPersonsDTO(new string[]
{ mAgentId }, new string [] { "agent:dnsActionsPossible",

"agent:mediasActionsPossible","agent:availableMedias" });

//If the agent exists

Services—Developer’s Guide 271

Chapter 18: The Agent Status Example Managing Agent Status Data

if(agentDTO != null && agentDTO.Length == 1)
{

PersonDTO mAgentDTO = agentDTO[0];

// Getting the DTO for the agent's place.
PlaceDTO[] placeDTO =

mConnection.mPlaceService.getPlacesDTO(
new string[] { mPlace },
new string[] { "place:dns","place:medias" });

if(placeDTO != null && placeDTO.Length == 1)
{

PlaceDTO mPlaceDTO = placeDTO[0];
// ... Analyzing DTOs’ content

}
}

With agent and place DTOs, the method can fill in the following agent data:
• mAgent.mMediaInfo
• mAgent.mMediaActionsPossible

• mAgent.mVoiceMediaInfo

• mAgent.mDnsActionsPossible

Getting
Information
About DNs

To determine whether the agent has DNs in his or her place, the Agent.Load()
method tests the place:dns attribute of the place service.
If the agent’s place includes voice, this attribute value is not null, and
associated possible actions are available in the agent:dnsActionsPossible
attribute, as shown here:

// Getting the DNs for the agent's place.
object o = Connection.GetValue(mPlaceDTO.data, "place:dns");
if(o != null)
{

mVoiceMediaInfo = (VoiceMediaInfo[])o;

// Getting the possible agent actions on these DNs.
o = Connection.GetValue(agentDTO[0].data,

"agent:dnsActionsPossible");
if(o != null)

mDnActionsPossible = (DnActionsPossible[])o;
}

Getting
Information

About Media

If the agent is already logged in on one (or more) media of the place, the media
are available in the Interaction Server. The place service can access the agent
media and provides a value for the place:medias attribute, as shown in the
following code snippet.

o = Connection.GetValue(mPlaceDTO.data, "place:medias");
// if the agent is logged in, media exist in the interaction server
if(o != null)

272 Agent Interaction SDK 7.6

Chapter 18: The Agent Status Example Managing Agent Status Data

{
mMediaInfo = (MediaInfo[])o;
if(mMediaInfo.Length != 0)
{

// Getting the possible agent actions on these DNs.
o = Connection.GetValue(mAgentDTO.data,

"agent:mediasActionsPossible");
if(o != null)
{

mMediaActionsPossible = (MediaActionsPossible[])o;
}

}
} else {

/// Media info is not available in the place service
//...

}

Media are not static in the place. If the agent is not logged in on the media of
the place, the place service cannot access those in the Interaction Server, and it
provides a null value for the place:medias attribute.
To determine whether the agent has media for this place, test the
agent:availableMedias attribute and get agent available media names, as
shown in this agent status example.
If the place:medias attribute value is null, the Agent.Load() method uses the
available media names to create the MediaInfo and MediaActionsPossible
arrays, as shown here:

o = Connection.GetValue(mAgentDTO.data,
"agent:availableMedias");string[] mediaNames = ((string[])o);
mMediaInfo = new MediaInfo[mediaNames.Length];
mMediaActionsPossible =

new MediaActionsPossible[mediaNames.Length];

int i=0;
foreach(string mediaName in mediaNames)
{

mMediaInfo[i] = new MediaInfo();
mMediaInfo[i].name = mediaName;
mMediaInfo[i].status = MediaStatus.LOGGED_OUT;
mMediaActionsPossible[i] = new MediaActionsPossible();

if(mediaName == "chat")
{

mMediaInfo[i].type = MediaType.CHAT;
mMediaActionsPossible[i].mediaType = MediaType.CHAT;

} else if (mediaName == "email")
{

mMediaInfo[i].type = MediaType.EMAIL;
mMediaActionsPossible[i].mediaType = MediaType.EMAIL;

Services—Developer’s Guide 273

Chapter 18: The Agent Status Example Managing Agent Status Data

}
mMediaActionsPossible[i].agentActions =

new AgentMediaAction[]{ AgentMediaAction.LOGIN };

i++;
}

See Chapter 6 for further information about Place, DNs, and media.

Updating Statuses in the Datagrid
The AgentStatusForm instance updates the status in the datagrid when:
• mAgent gets an event, which may propagate a status change for a DN or a

media. See “Handling Events” on page 276.
• mAgent has new agent properties. A new agent or a new place may be

monitored. See “Setting Agent Properties” on page 268.
The AgentStatusForm.UpdateStatuses() method reads status information in the
mAgent.mVoiceMediaInfo array for DNs, and in the mAgent.mMediaInfo array for
media.
In these arrays, each MediaInfo or VoiceMediaInfo object corresponds to a
media or voice media of the place, and contains both the identifier and its
associated status.

Note: Refer to the Agent Interaction SDK 7.6 Services API Reference for
further details about MediaInfo or VoiceMediaInfo objects.

The following code snippet shows the source code of the
AgentStatusForm.UpdateStatuses() method.

if(mAgent.mVoiceMediaInfo!= null &&
mAgent.mVoiceMediaInfo.Length !=0)
foreach(VoiceMediaInfo v in mAgent.mVoiceMediaInfo)
{

this.SetStatus(v.dnId,v.status.ToString());
}

if(mAgent.mMediaInfo!= null && mAgent.mMediaInfo.Length != 0)
foreach(MediaInfo m in mAgent.mMediaInfo)
{

this.SetStatus(m.name,m.status.ToString());
}

See the AgentStatusForm.cs file for details about the implementation of the
AgentStatusForm.SetStatus() method, which updates the appropriate row of
the data grid with the provided name and status.

274 Agent Interaction SDK 7.6

Chapter 18: The Agent Status Example Managing Agent Status Data

Updating Buttons in the Form
The buttons of the AgentStatusForm form are associated with agent actions on
the place. To maintain consistency with the agent statuses on the place, the
AgentStatusForm instance enables and/or disables the buttons when:
• mAgent gets an event, which may propagate a change in the possible actions

on a DN or a media. See “Handling Events” on page 276.
• mAgent has new agent properties. A new agent or a new place may be

monitored and possible actions my be different. See “Setting Agent
Properties” on page 268.

The AgentStatusForm.UpdateButtons() method gets the possible actions in the
mAgent.mDnsActionsPossible array for DNs, and in the
mAgent.mMediaActionsPossible array for media.
In these arrays, each DnsActionsPossible or MediaActionsPossible object
contains the list of possible actions for a DN or media of the place.

Note: Refer to the Agent Interaction SDK 7.6 Services API Reference for
further details about DnsActionsPossible or MediaActionsPossible
objects.

The AgentStatusForm.UpdateButtons() method enables a button if the
corresponding action is available at least for one media or DN.
The following code snippet shows the source code of the
AgentStatusForm.UpdateButtons() method.

bool login = false;
bool logout = false;
bool ready = false;
bool notReady = false;

///...
/// Testing possible actions for each media

foreach(MediaActionsPossible myMediaActions
in mAgent.mMediaActionsPossible)

{
string msg = "\t"+myMediaActions.mediaType.ToString()+ " - ";
foreach(AgentMediaAction action in myMediaActions.agentActions)
{

msg+=action.ToString()+ " ";
login = login || (action == AgentMediaAction.LOGIN);
logout = logout || (action == AgentMediaAction.LOGOUT);
ready = ready || (action == AgentMediaAction.READY);
notReady = notReady || (action == AgentMediaAction.NOT_READY);

}
Trace(msg);

}

Services—Developer’s Guide 275

Chapter 18: The Agent Status Example Managing Agent Status Data

/// testing possible actions for each DN
///...

/// Updating buttons
this.buttonLogin.Enabled = login;
this.buttonLogout.Enabled = logout;
this.buttonNotReady.Enabled = notReady;
this.buttonReady.Enabled = ready;
Trace("Buttons updated");

You can change the buttons’ logic to better fit your agents’ needs. In this
example, depending on media and DNs statuses, the application might have
two contradictory buttons activated, for instance Login and Logout .

Managing Agent Actions on DNs and Media
The AgentStatusForm class includes four buttons corresponding to the main
agent actions: login, logout, ready, and not ready. Each button click calls a
handler which manages the call to the correct Agent method.
For example, a click on the buttonLogin button calls the buttonLogin_click()
handler, as shown in Figure 50.

Figure 50: Performing a Login Action on the Place

The AgentStatusForm.buttonLogin_click() handler calls the mAgent.Login()
method that implements the call to the agent service, as shown in the following
code snippet.

public void Login()
{

LoginVoiceForm myVoiceForm = new LoginVoiceForm();
ArrayList alDn = new ArrayList();
foreach(VoiceMediaInfo vmi in mVoiceMediaInfo)

alDn.Add(vmi.dnId);

agent :AgentStatusForm :Agent :IAgentService

buttonLogin_Click()

Login()

login()

276 Agent Interaction SDK 7.6

Chapter 18: The Agent Status Example Handling Events

myVoiceForm.dnIds = (string[])alDn.ToArray(typeof(string));
myVoiceForm.loginId = mAgentLogin;
myVoiceForm.password = mAgentPassword;
myVoiceForm.queue = mQueue;
myVoiceForm.workmode =

com.genesyslab.ail.ws.agent.WorkmodeType.MANUAL_IN;
myVoiceForm.reasons = null;
myVoiceForm.TExtensions = null;
MediaForm myMediaForm = new MediaForm();
myMediaForm.reasonDescription ="Login on all media.";
mConnection.mAgentService.login(mAgentId, mPlace,

myVoiceForm, myMediaForm);
}

As shown in the above code snippet, the application attempts a login action on
all the DNs and media of the place. For further details about forms for the
agent service, see “Forms and Agent Actions” on page 80.
For each successful agent action on a media or a DN, your application shall
receive a MediaEvent or a VoiceMediaEvent event. See “Handling Events” on
page 276.
For further details about actions and event flow in the agent service, see
“Forms and Agent Actions” on page 80.

Handling Events
The AgentStatusForm class gets events through its mAgent attribute. The Agent
class monitors the media voice media events occurring on the place specified
in agent properties.
For getting events, the agent status example provides two event modes: pull
(the default mode) and push.
This section details how the application example handles events in the
following subsections
• “Subscribing to Events” on page 276.
• “Handling the Pull Mode” on page 279.
• “Handling the Push Mode” on page 283.
• “Handling Event Changes” on page 286.

Subscribing to Events
The AgentStatusForm class monitors media and voice-media events occurring
on the agent’s place. To ensure the monitoring of the correct place, the
AgentStatusForm.start() method registers for events when agent properties
change, using the Agent.RegisterEvent() method.
The Agent.RegisterEvent() method, in turn:

Services—Developer’s Guide 277

Chapter 18: The Agent Status Example Handling Events

• Creates topic objects specifying triggers and filters on the Agent.mPlace ID.
• Uses a subscriber identifier—mSubscriberId—to subscribe to these topics

with the event service.
For further information about topics, triggers, and filters, see “Understanding
the Event Service” on page 54.
At the application’s startup, the agent instance has no subscriber, so the
Agent.RegisterEvent() method creates one, as shown in Figure 51.

Figure 51: Scenario for the Agent.RegisterEvent() Method

Note: The Agent instance uses a unique mSubscriberId subscriber for event
management.

The following subsections discuss the steps shown in Figure 51:
• “Creating Topic Objects” on page 277.
• “Creating a Subscriber ID” on page 278.
• “Subscribing Topics” on page 279.

Creating Topic Objects

To monitor voice-media and media events, the Agent.RegisterEvent() method
defines topic objects for the agent service. These topic objects indicate which
Agent.mPlace place to monitor for each event type—VoiceMediaEvent or
MediaEvent—, as shown here:

/// Creating topic objects for the agent service

Creating new
topics

false

Creating
mSubscriberIdand
Subscribing new

topics

Unsubscribe all
current topics

true

Subscribing
new topics

mSubscriberId
 == null

278 Agent Interaction SDK 7.6

Chapter 18: The Agent Status Example Handling Events

TopicsService [] topicServices = new TopicsService[1];
topicServices[0] = new TopicsService();
topicServices[0].serviceName = "AgentService";

topicServices[0].topicsEvents = new TopicsEvent[2];
topicServices[0].topicsEvents[0] = new TopicsEvent();

// Creating a topic event for voice media events
topicServices[0].topicsEvents[0].eventName = "VoiceMediaEvent";
topicServices[0].topicsEvents[0].attributes =

new String[]{"agent:voiceMediaInfo","agent:dnActionsPossible"};
topicServices[0].topicsEvents[0].triggers = new Topic[1];
topicServices[0].topicsEvents[0].triggers[0] = new Topic();
topicServices[0].topicsEvents[0].triggers[0].key = "PLACE";
topicServices[0].topicsEvents[0].triggers[0].value = mPlace;
topicServices[0].topicsEvents[0].filters = null;

// Creating a topic event for media events
topicServices[0].topicsEvents[1] = new TopicsEvent();
topicServices[0].topicsEvents[1].eventName = "MediaEvent";
topicServices[0].topicsEvents[1].attributes =

new String[]{"agent:mediaInfo","agent:mediaActionsPossible"};
topicServices[0].topicsEvents[1].triggers = new Topic[1];
topicServices[0].topicsEvents[1].triggers[0] = new Topic();
topicServices[0].topicsEvents[1].triggers[0].key = "PLACE";
topicServices[0].topicsEvents[1].triggers[0].value = mPlace;
topicServices[0].topicsEvents[1].filters = null;

For further information, see Chapter 4, “Subscribing to the Events of a
Service,” page 62.

Creating a Subscriber ID

At application startup, the Agent.mSubscriberId and Agent.mNotification
attributes are null. In this case, the Agent.RegisterEvent() method creates a
subscriber for the application, as shown here.

SubscriberResult result =
mConnection.mEventService.createSubscriber(mNotification,

topicServices);

if(result.errors == null || result.errors.Length == 0)
{

mSubscriberId = result.subscriberId;
mEventsStack = new ArrayList();

}

As shown above, the method passes the topics objects and notification at the
subscriber’s creation. At startup, the mNotification parameter is null and the
event service sets the pull mode for the subscribed events.

Services—Developer’s Guide 279

Chapter 18: The Agent Status Example Handling Events

Subscribing Topics

If the Agent.mSubscriberId attribute is not null, the agent instance has already
subscribed once. In this case, the Agent.RegisterEvent() method first removes
the currently-used topic objects, then subscribes with the created topic objects
that take into account the new agent properties (see “Creating Topic Objects”
on page 277).

/// Removing previous topics
this.mConnection.mEventService.unsubscribeAllTopics(this.mSubscribe
rId);

/// Subscribing for new topics
TopicServiceError[] topicsError =

this.mConnection.mEventService.subscribeTopics(
this.mSubscriberId,topicServices);

Handling the Pull Mode
This section describes two main actions for handling the pull mode in the
following subsections:
• “Setting the Pull Mode” on page 279.
• “Pulling Events” on page 281.

Setting the Pull Mode

To switch to the pull mode, the AgentStatusForm.SetPullMode() method first
calls the Agent.SetNotification() method, then creates a thread that will listen
to the subscribed events, as presented in Figure 52.

280 Agent Interaction SDK 7.6

Chapter 18: The Agent Status Example Handling Events

Figure 52: Setting the Pull Mode

Setting a null
Notification

To set the pull mode active, the mAgent.SetNotification() method sets the
mAgent.mNotification attribute to null and changes notification with the
IEventService.SetNotification() method, as shown in the following code
snippet:

public void setNotification(AgentStatusForm notifEndPoint)
{

if(notifEndPoint!=null)
{

listen = false;
///... For push mode

}
else
{

mNotification=null;
listen = true;

}
mConnection.mEventService.setNotification(this.mSubscriberId,

mNotification);
}

Note: The mAgent.listen boolean indicates whether the current event mode is
pull.

Creating a Thread Once the pull mode is active, the AgentStatusForm.SetPullMode() method
creates a AgentStatusForm.thEvents thread that listens for events, as shown in
the following code snippet:

agent
:AgentStatusForm :Agent :IEventService

menuItemPull_Click()

SetPullMode()

GetEvent
:ThreadStart

setNotification()

setNotification()

new Thread()

Start()

Services—Developer’s Guide 281

Chapter 18: The Agent Status Example Handling Events

public void SetPullMode()
{
//...
thEvents = new Thread(new ThreadStart(this.GetEvents));
thEvents.Name ="GetEvents";
thEvents.Start();
//..
}

For further details about this thread, see “Pulling Events”, immediately below.

Pulling Events

The AgentStatusForm.thEvents thread executes the
AgentStatusForm.GetEvent() method. It makes periodic calls to the
mAgent.HasEvent() method that pulls events (if any), as shown in Figure 53.

Figure 53: Periodic Pulling of the GetEvent Thread

In case of events, the mAgent.HasEvent() method adds the pulled events to an
event stack, mAgent.mEventsStack and returns true.
The AgentStatusForm.GetEvent() thread tests the result that the
mAgent.HasEvent() method returns. If the result is true, the thread calls the
mAgent.ProcessEvents() method, as shown in the following code snippet.

/// Class AgentStatusForm
public void GetEvents()
{

if(mAgent != null)
{

:AgentStatusForm :Agent :IEventService

Sleep()

GetEvent
:ThreadStart

HasEvent()

ProcessEvents()

HandleEvent()

UpdateStatuses()

UpdateButtons()

getEvent()

282 Agent Interaction SDK 7.6

Chapter 18: The Agent Status Example Handling Events

while(mAgent.listen)
{

//Pulling events
if(mAgent.HasEvent())
{

//Updating mAgent with pulled events
mAgent.ProcessEvents();
// Updating GUI
UpdateStatuses();
UpdateButtons();

}
else

Thread.Sleep(1000);
}

}
}

The call to mAgent.ProcessEvents() updates the mAgent instance with the data
changes propagated in events. Then, the thread updates AgentStatusForm with
mAgent data. See “Updating Statuses in the Datagrid” on page 273 and
“Updating Buttons in the Form” on page 274.

Agent.HasEvent() To pull events, the Agent.HasEvent() method makes a call to the
IEventService.getEvents() method and adds them to the
mAgent.mEventsStack event stack, as shown in the following code snippet.

public bool HasEvent()
{

try
{

com.genesyslab.ail.ws._event.Event [] eventResult
= mConnection.mEventService.getEvents(mSubscriberId, 0);

if(eventResult != null && eventResult.Length > 0)
{

mEventsStack.AddRange(eventResult);
return true;

}
else return false;

}
catch(Exception e)
{

return false;
}

}

Agent.
ProcessEvents()

The Agent.ProcessEvents() method parses the event stack. For each event, it
makes a call to the mAgent.handleEvent() that updates the mAgent instance with
the event content.

public void ProcessEvents()
{

Services—Developer’s Guide 283

Chapter 18: The Agent Status Example Handling Events

/// Managing events if any.
if(mEventsStack.Count > 0)
{

ArrayList eventsStack = new ArrayList(mEventsStack);
foreach(com.genesyslab.ail.ws._event.Event e in eventsStack)
{

/// Removing an event from the stack
mEventsStack.Remove(e);
/// Managing the event
HandleEvent(e);

}
}

}

For further details about mAgent.HandleEvent(), see “Handling Event Changes”
on page 286.

Handling the Push Mode
This section describes the two main actions for handling the push mode in the
following subsections:
• “Setting the Push Mode” on page 283.
• “Event Notification” on page 285.

Setting the Push Mode

To switch to the push mode, the AgentStatusForm.SetPushMode() method
makes a single call to the Agent.SetNotification() method, as presented in
Figure 54.

284 Agent Interaction SDK 7.6

Chapter 18: The Agent Status Example Handling Events

Figure 54: Setting the Push Mode

AgentStatusForm inherits INotifyService and implements the notifyEvents()
method that the event service will call in case of events. See “Event
Notification” on page 285.
The AgentStatusForm.SetPushMode() method passes this to the
Agent.SetNotification() method, as shown here:

private void SetPushMode()
{

this.mAgent.setNotification(this);
this.menuItemPull.Checked = false;
this.menuItemPush.Checked = true;
Trace("Push mode activated");

}

Creating a
Notification

Instance

To properly set the push mode, the mAgent.SetNotification() method first sets
the mAgent.listen boolean to false to stop the pulling thread (see “Pulling
Events” on page 281).
Then, the mAgent.SetNotification() method creates a Notification object
with the AgentStatusForm instance for notification end point, as shown here.

public void setNotification(AgentStatusForm notifEndPoint)
{

if(notifEndPoint!=null)
{

listen = false;
mNotification = new Notification();
mNotification.notificationEndpoint = notifEndPoint;

agent
:AgentStatusForm :Agent

menuItemPush_Click()

SetPushMode()

SetNotification()

setNotification()

:IEventServiceGetEvent
:ThreadStart

listen = false

Services—Developer’s Guide 285

Chapter 18: The Agent Status Example Handling Events

if(this.mConnection.mServiceFactory.ServiceFactoryImpl
is com.genesyslab.ail.WebServicesFactory)
mNotification.notificationType="SOAP_HTTP";

else
mNotification.notificationType="JAVA";

}
else
{

/// For pull mode
///...

}

mConnection.mEventService.setNotification(this.mSubscriberId,
mNotification);

}

Setting the
Notification Type

When setting the notification type for the created Notification object, the
method tests the mConnection.ServiceFactory object to determine which
protocol the application uses. It is SOAP_HTTP for SOAP with the Genesys
Interface Server. For further details, see Chapter 2 on page 27.
After the call to theIEventService.setNotification() method, the event
service uses the AgentStatusForm for event notification. See “Event
Notification”, immediately below.

Event Notification

In the push mode, each time an event occurs, the
AgentStatusForm.notifyEvents() method is called, see Figure 55.

Figure 55: Notification of an Event

:AgentStatusForm :Agent :IEventService

notifyEvent()

HandleEvent()

UpdateStatuses()

UpdateButtons()

286 Agent Interaction SDK 7.6

Chapter 18: The Agent Status Example Handling Events

For each event notified, the AgentStatusForm.notifyEvents() method updates
mAgent data by calling the Agent.HandleEvent() method, then it updates the
GUI, as shown in the following code snippet.

public void notifyEvents(string subscriberId,
com.genesyslab.ail.ws._event.Event[] events)

{
if (events == null)
{

Trace("NotifyEvents - null");
return ;

}
Trace("NotifyEvents getEvents : " + events.Length) ;
foreach(Event evt in events)
{

// Updating mAgent content
mAgent.HandleEvent(evt);
Trace("Service :"+ evt.serviceName

+ "Event: "+ evt.eventName
+ "timeStamp:"+ evt.timeStamp);

//Updating the GUI
UpdateButtons();
UpdateStatuses();

}
}

For further details about Agent.HandleEvent(), see “Handling Event Changes”
on page 286.

Handling Event Changes
Regardless of the event mode—push or pull—the application gets arrays of
com.genesyslab.ail.ws._event.Event objects. Each Event contains an
MediaEvent or a VoiceMediaEvent and published values for the service
attributes.
The Agent.HandleEvent() method updates mAgent agent data with the published
values for the agent service attributes and retrieves attribute values by calling
the Connection.GetValue() method:

public void HandleEvent(com.genesyslab.ail.ws._event.Event e)
{

/// Managing this event
switch(e.eventName)
{

case "VoiceMediaEvent":
{

/// Updating the voice media info.
object o = Connection.GetValue(e.attributes,

"agent:voiceMediaInfo");
if(o != null)

Services—Developer’s Guide 287

Chapter 18: The Agent Status Example Handling Events

mVoiceMediaInfo[0] = (VoiceMediaInfo)o;

/// Updating the possible agent actions on DNs
o = Connection.GetValue(e.attributes,

"agent:dnActionsPossible");
if(o != null)
{

if(mDnActionsPossible == null)
mDnActionsPossible = new

DnActionsPossible[mVoiceMediaInfo.Length];
mDnActionsPossible[0] = (DnActionsPossible)o;

}
}
break;
case "MediaEvent":

// getting values for mMediaInfo and mMediaActionsPossible
//...

}
break;

}
}

When the Agent object is updated, the AgentStatusForm instance can use the
Agent object to update the data grid and the buttons.

288 Agent Interaction SDK 7.6

Chapter 18: The Agent Status Example Handling Events

Services—Developer’s Guide 289

Index

A
action . 45
action code 244
agent

action
example 275

events . 80
forms

other media 82
voice media 81

login . 83
logout . 83
media 272
not ready 84
possible action. 78, 271

other media 79
voice media 78

ready . 84
status . 73

other media 76
voice media 73

T-Extensions. 82
workmode 82

agent status example 259
AIL . 42
answer 119, 143
Apache Axis SOAP. 68
asyncCreateServiceFactory 29
attached data. 107

event. 108
read . 107
write . 107

attributes
domain. 48
notation 48
properties 49

audience
defining 13

auto mark done
expert contact service 234

auto-mark-done 145

B
Business Attributes 245

C
callable number 91
callback 191
callback record

accept 197
attributes 194
cancel 198
event 195
mark processed 199
reject 198
reschedule 198
status 195

chapter summaries
defining 16

chat
leave session 165
start session 162

chat interaction
action 157
answer 162
attribute 157
conference 164
mark done. 165
nickname 163
party. 163
possible action 158
release 165
send message 164
start session 162
status 158
transfer agent 166
transfer place 166

chat interaction service 155

Table of Contents

290 Interaction SDK 7.6 Java

collaboration 132, 151
commenting on this document 20
contact 167, 168

attribute
metadata 177
overwrite 173
primary 170
retrieve 177
update 172, 187
value 168

attribute metadata 170
filter

leaf 179
node 179
root 181
tree 178

merge 186
overwrite. 174
predefined metadata 171, 176
search template 182

ContactValue 168
Create a service with .NET proxy 30, 36
createService. 30
createServiceFactory. 29
CTI-Less T-Server 226
Custom attached data 107
CustomAttachedData 246

D
DN . 86, 244

DnEvent 96, 98
DnUserEvent 96
do not disturb 94
forward 95
possible workmode 97
TEvent . 98
TExtension and TReason 98
workmode 97

DND . 94
DnEvent 96
DnUserEvent 96
document

conventions 17
errors, commenting on 20
version number 17

DTO . 47
event. . 51
KeyValue 48
name . 48
read . 50
write . 50

E
easy new call

expert contact service 234
e-mail

incoming 135
outgoing 135
outgoing for a reply 135

e-mail interaction
actions 136
answer 143
attributes 133
auto mark done 145
collaboration

attributes 148
150

types 148
create 141
events 137
fill . 142
mark done. 147
reply . 145
status 136

enumerator. 244
Event . .57
event

description 55
EventService

reading DTO 68
remove all TopicsEvents 64
remove specific topics. 64
unsubscribe 64

expert . 225
re-route 234

expert contact application 226
Expert Contact configuration. 227
expert contact service 226

action 230
attributes 229
auto mark done 234
context 226
easy new call 234
events 230
on call 232
preview 233
re-route 234
status 230
status request 233

F
Feedback 205
filter

leaf . 179
node. 179

Services—Developer’s Guide 291

Table of Contents

root . 181
tree . 178

filters . 59
forward . 95

G
GIS . 21
GSAP. 31, 37

H
historic

interaction attribute
metaData. 245
value 245

I
IContactService 167, 191
IEventService 53
IExtendedOutboundService 211
IInteractionService 101, 103
IInteractionVoiceService . . . 109, 235, 238, 244
INotifyService 67
interaction 101
Interaction attribute. 107
interaction attribute 245
Interaction Custom Properties 246
interaction service 102

attached data 107
get DTOs 105

interaction services. 103
InteractionEvent 102, 103, 108, 114
invitation 149

accept 154
cancel 153
recall. 152
reply149, 154
retrieve reply. 153
send . 152

IOutboundService 225
IOutboundService (deprecated) 211
is-searchable 184

K
KeyValue 48

L
login . 83
logout. 83

M
make call 116
mark done 121, 147
MediaInfo 90
MediaStatus 89

N
nickname. 163
not ready84
notification 253
notification with java68

O
OCS . 212
on call

expert contact service 232
outbound

campaign 211
action 215
attribute 213
dialing mode 214
event 216
status 215

chain 212
record 212

P
pagination 254
place . .85

dns . 271
media 271, 272

possible action45
preview

expert contact service 233
pull mode. 152

example 279
pulling mode

get events 66
specifics 66

push mode 152
example 283

pushing mode
subscribe 67

Q
queue . 237

Table of Contents

292 Interaction SDK 7.6 Java

R
ready . 84
reason . 244
record . 191
release . 120
reply . 145
re-route

expert 234
expert contact service 234

S
send 140, 142
sendUserEvent 96
server

information. 241
status 242
type . 242

server state. 241
service . 43
service approach design 42
ServiceFactory 29
SOA . 24
SOAP. 31, 36
SRL. . 201
status . 45
status request

expert contact service 233
subscriber 63, 252

remove 63
system

event. 243
service 241

T
TEvents 98
TExtension 98
TopicsEvent 59
TopicsEvents 55
TopicsServices59, 61
transfer . 121
TReason 98
triggers . 59
T-Server Events 98
typographical styles 17

U
UCS 167, 235
user data 107

V
version numbering

document 17
view . 237
voice interaction

action 111
answer a call 119
attributes 111
conference

dual-step 126
leave 129
single-step 125

create a call 116
create and dial a call 117
dial a call 118
done. 121
make a call 116
possible action 112, 136
release a call 120
status 112
transfer

dual-step 122
mute 121
single-step 121

voice interaction service 109
VoiceMediaInfo. 90
VoiceMediaStatus 89

W
wildcard 49, 52, 61
workbin. 237, 239
workbin interaction 239
workflow 237
workmode 97

possible 97

	Table of Contents
	Preface
	Intended Audience
	Usage Guidelines
	Chapter Summaries
	Document Conventions
	Related Resources
	Making Comments on This Document
	Contacting Genesys Technical Support

	About Agent Interaction SDK Services
	Overview
	Components
	Platform Requirements
	Development Platform
	Production Runtime Platform

	Scope of Use
	Architecture
	Service-Oriented Architecture
	Multithreaded
	Synchronization
	Connectivity

	About the Examples
	Generating a SOAP Proxy
	Opening a Session

	Using the .NET Proxy
	Service Factory
	Access Services
	XML Configuration File for .NET
	HTTP Redirections

	Using the Java Proxy
	Service Factory
	Access Services
	XML Configuration File for Java
	GIS License
	HTTP Redirections

	API Overview
	Building an Application Using Services
	The Remote Services
	Using the Services

	Data Transfer Object
	Introduction
	DTOs in the Service API
	Dedicated Classes
	Attributes

	DTOs Handling
	Reading DTOs
	Setting DTOs
	DTOs and Events
	DTOs and Wildcards

	The Event Service
	Event Service Overview
	Understanding the Event Service
	Events Associated with Services
	Understanding TopicsEvents and Events
	Understanding TopicsServices

	Handling Topics Objects
	Building TopicsEvent
	Building TopicsServices
	Subscribing to the Events of a Service
	Unsubscribing from Topics
	Handling Subscription Errors

	Getting Events
	Pull Mode
	Push Mode
	Reading DTOs in Events

	Event Notification in Java
	Notification Classes Generation
	Simple Notification Server

	The Agent Service
	Introduction
	Agent Service Essentials
	Agent and Statuses
	Agent and Possible Actions
	Agent and Events

	Forms and Agent Actions
	Forms for Voice Media
	Forms for Other Media
	Agent Login
	Agent Logout
	Getting Ready or Not Ready

	Place, DNs, and Media
	Introduction
	What Are Places?
	Place and Other Services
	DNs–Voice Specifics

	Understanding Place, DNs, and Media
	Place, Agent, and Statuses
	Media and Voice-Media Information
	Place and DNs’ Consolidation
	DN’s Callable Number

	Using the Place Service
	Getting Place DTOs
	PlaceEvents

	Using the DN Service
	Features and Possible Actions
	Events of the DN Service
	Switch-Specific

	The Interaction Service
	Introduction
	What Is an Interaction?
	What Is the Interaction Service?
	Specific Interaction Services

	Using IInteractionService
	Handling Interaction DTOs
	Specific Getting DTO Methods

	Opening a Workbin Interaction
	Attached Data
	Attached Data DTOs
	Attached Data and Event

	Voice Interactions
	Introduction
	Voice Interaction Essentials
	Voice Attributes
	Voice Actions
	Voice Interaction Status
	Voice Events
	TEvent DTOs

	Making and Answering Voice Calls
	Making a Call
	Answering a Call
	Terminating a Call

	Transferring Voice Calls
	Single-Step and Mute Transfers
	The Dual-Step Transfer

	Managing Conference Calls
	Single-Step Conference
	Dual-Step Conference
	Leaving the Conference

	E-Mail Interactions
	Introduction
	Common E-Mail Features
	Collaboration Features
	E-Mail Service Dependencies

	E-Mail Essentials
	E-Mail Attributes
	E-Mail Types
	E-Mail Actions
	E-Mail Statuses
	E-Mail Interactions Events

	Common E-Mail Management
	Sending an E-Mail
	Filling an E-Mail Interaction
	Answering an E-Mail
	Replying to an E-Mail
	Marking Done an E-Mail Interaction

	Collaboration Essentials
	Collaboration Attributes
	Collaboration Interaction Types
	Collaboration Status

	Collaboration Handling
	Managing a Collaboration Session
	Participating in a Collaboration Session

	Chat Interactions
	Introduction
	Chat Interaction Essentials
	Chat Interaction Attributes
	Chat Actions
	Chat Interaction Status
	Chat Interaction Events

	Managing a Chat Session
	Answering a Chat Interaction
	Getting Parties
	Sending Chat Messages
	Conferences
	Releasing a Chat Interaction
	Marking a Chat Interaction as Done

	Transferring a Chat Interaction
	Transferring to an Agent
	Transferring to a Place

	The Contact Service
	Introduction
	What Is a Contact?
	What Is the Contact Service?

	Contact Information
	Contacts’ Attributes
	Information Update

	Retrieving Contact Information
	Retrieving Contact MetaData
	Retrieving Contact Values

	Searching Contacts
	Contact Filter Trees
	Contact Search
	Tuning the Contact Search

	Managing Contacts
	Creating a Contact
	Merging Contacts
	Setting Attribute Values
	Removing Attribute Values

	The Callback Service
	Introduction
	Callback Essentials
	Record Attributes
	Record Actions
	Record Status
	Record Events

	Records Management
	Accepting a Record
	Rejecting a Record
	Canceling a Record
	Rescheduling a Record
	Marking a Record as Processed

	The SRL Service
	Introduction
	Standard and Suggested Responses
	What Is a Category?
	What Is the SRL Service?

	Using Standard Responses and Categories
	Using Standard Response
	Category Information

	Getting Categories and Standard Responses
	Getting Category DTO
	Getting Standard Responses
	Using the getStandardResponseBody() Method

	Managing Favorites
	Getting the Favorite Standard Responses
	Adding Standard Responses to Favorites
	Removing Standard Responses from Favorites

	The Outbound Service
	Introduction
	Outbound Campaigns
	Outbound Records
	Outbound Chains
	The Outbound Service

	Outbound Campaigns
	Campaign Attributes
	Campaign Dialing Modes
	Campaign Actions
	Campaign Status
	Campaign Events
	Outbound Chain Events

	Outbound Chains and Records
	Subscribe to Outbound and Chain Events
	Check Interactions for Outbound Information
	Outbound Attributes
	Outbound Actions

	Outbound Campaign in Preview Mode
	Outbound Campaign in Predictive Mode
	Active Campaigns
	Handling a Predictive Outbound Interaction

	Expert Contact
	Introduction
	What is an Expert?
	What is an Expert Contact Application?
	What Is the Expert Contact Service?

	Expert Contact Essentials
	Expert Context Attributes
	Expert Context Actions
	Expert Context Status
	Expert Events

	Using Expert Contact Features
	Managing On Call
	Managing Preview Calls
	Managing Status Request
	Managing Re-Route
	Easy New Call and Auto Mark Done

	Additional Services
	The History Service
	History Information
	Getting History Information

	The Workflow Service
	Handling a Workbin Interaction
	Workbin Information
	Workbin Interaction Information
	Getting Information

	The System Service
	Server Information
	Retrieving Server Information
	System Events

	The Resource Service
	Resource Information
	Interaction Information
	Getting Resource Information

	The Monitor Service
	Monitor Information
	Getting Monitor Information

	Best Coding Practices
	Introduction
	Avoid Wildcards
	Tips for Events Processing
	A Single Subscriber
	About Subscriptions
	About Notification

	Tips for DTOs
	Guidelines
	Additional Details

	Tips for High Availability
	Voice Interactions in Specific Service Status
	E-Mail and Open Media Interactions
	Update Status

	The Agent Status Example
	Introduction
	Agent Status Short Description
	AgentStatusExample Project

	Agent Status Architecture
	Agent Status Classes
	Class Connection
	Class Agent
	Class AgentStatusForm
	Class LoginForm

	Managing Agent Status Data
	Connecting to the GIS Server
	Setting Agent Properties
	Updating Statuses in the Datagrid
	Updating Buttons in the Form
	Managing Agent Actions on DNs and Media

	Handling Events
	Subscribing to Events
	Handling the Pull Mode
	Handling the Push Mode
	Handling Event Changes

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

