
Platform SDK 7.6

Developer’s Guide

The information contained herein is proprietary and confidential and cannot be disclosed or duplicated
without the prior written consent of Genesys Telecommunications Laboratories, Inc.
Copyright © 2006–2008 Genesys Telecommunications Laboratories, Inc. All rights reserved.

About Genesys
Genesys Telecommunications Laboratories, Inc., a subsidiary of Alcatel-Lucent, is 100% focused on software for call
centers. Genesys recognizes that better interactions drive better business and build company reputations. Customer
service solutions from Genesys deliver on this promise for Global 2000 enterprises, government organizations, and
telecommunications service providers across 80 countries, directing more than 100 million customer interactions every
day. Sophisticated routing and reporting across voice, e-mail, and Web channels ensure that customers are quickly
connected to the best available resource—the first time. Genesys offers solutions for customer service, help desks,
order desks, collections, outbound telesales and service, and workforce management. Visit www.genesyslab.com for
more information.
Each product has its own documentation for online viewing at the Genesys Technical Support website or on the
Documentation Library DVD, which is available from Genesys upon request. For more information, contact your sales
representative.

Notice
Although reasonable effort is made to ensure that the information in this document is complete and accurate at the
time of release, Genesys Telecommunications Laboratories, Inc., cannot assume responsibility for any existing errors.
Changes and/or corrections to the information contained in this document may be incorporated in future versions.

Your Responsibility for Your System’s Security
You are responsible for the security of your system. Product administration to prevent unauthorized use is your
responsibility. Your system administrator should read all documents provided with this product to fully understand the
features available that reduce your risk of incurring charges for unlicensed use of Genesys products.

Trademarks
Genesys, the Genesys logo, and T-Server are registered trademarks of Genesys Telecommunications Laboratories,
Inc. All other trademarks and trade names referred to in this document are the property of other companies. The
Crystal monospace font is used by permission of Software Renovation Corporation, www.SoftwareRenovation.com.

Technical Support from VARs
If you have purchased support from a value-added reseller (VAR), please contact the VAR for technical support.

Technical Support from Genesys
If you have purchased support directly from Genesys, please contact Genesys Technical Support at the following
regional numbers:

Prior to contacting technical support, please refer to the Genesys Technical Support Guide for complete
contact information and procedures.

Ordering and Licensing Information
Complete information on ordering and licensing Genesys products can be found in the Genesys 7 Licensing Guide.

Released by
Genesys Telecommunications Laboratories, Inc. www.genesyslab.com
Document Version: 76sdk_dev_platform_02-2008_v7.6.001.00

Region Telephone E-Mail

North and Latin America +888-369-5555 or +506-674-6767 support@genesyslab.com

Europe, Middle East, and Africa +44-(0)-118-974-7002 support@genesyslab.co.uk

Asia Pacific +61-7-3368-6868 support@genesyslab.com.au

Japan +81-3-6361-8950 support@genesyslab.co.jp

http://www.genesyslab.com
mailto:support@genesyslab.com
mailto:support@genesyslab.co.uk
mailto:support@genesyslab.com.au
mailto:support@genesyslab.co.jp
http://genesyslab.com/support/dl/retrieve/default.asp?item=B3BFC6DABE22B62AAE32A6D31E6396E3&view=item
http://genesyslab.com/support/dl/retrieve/default.asp?item=B6C52FB62DB42BB229B02755A1D12650&view=item
http://www.genesyslab.com

Developer’s Guide 3

Table of Contents
Preface ... 5

Intended Audience... 6
Usage Guidelines .. 6
Chapter Summaries... 8
Document Conventions ... 8
Related Resources.. 10
Making Comments on This Document .. 11

Chapter 1 About the Platform SDK... 13

The Platform SDKs.. 13
Configuration .. 14
Contacts.. 14
Management... 14
Open Media .. 14
Outbound Contact... 14
Statistics.. 14
Voice ... 14
Web Media.. 14

The Application Blocks .. 15
Message Broker.. 16
Protocol Manager ... 16
Warm Standby .. 16
Configuration Context ... 16
Configuration Object Model .. 16
SIP Endpoint ... 17
Multi-Channel Communication Model... 17

Learning About the Platform SDK for .NET ... 17
Learning About the Platform SDK for Java.. 18
New in this Release... 19

Contacts Platform SDK for .NET... 19
Configuration Object Model Application Block for Java 19
Host Information in Management Platform SDK................................. 19
New Java Code Examples.. 19
New .NET Code Examples ... 20

Table of Contents

4 Platform SDK 7.6

New Default Value for Users Accounts ... 20
Enhanced documentation ... 20

Chapter 2 About the .NET
Code Examples... 21

Setup for Development.. 21
Source-Code Examples.. 21
Required Third-Party Tools ... 22
.NET Environment Setup .. 22
Building the Examples .. 22
Configuration Data .. 22

Configuration Example .. 23
Connecting to Configuration Server.. 25
Event Handling ... 26

Statistics Example ... 28
Complex Example ... 33
Open Media Examples .. 36

Open Media Server Example.. 36
Open Media Client Example ... 39

Voice Examples ... 46

Chapter 3 About the Java Code Examples .. 53

Setup for Development.. 53
Source-Code Examples.. 54
Required Third-Party Tools ... 54
Java Environment Setup... 54
Building the Examples .. 55
Configuration Data .. 55

Genesys Application Blocks .. 55
Using the Protocol Manager Application Block................................... 56
Using the Message Broker Application Block 58

Configuration Example .. 59
Statistics Example ... 61
Open Media Examples .. 64

Open Media Server Example.. 64
Open Media Client Example ... 67

Index ... 73

Developer’s Guide 5

Preface
Welcome to the Platform SDK 7.6 Developer’s Guide. This document gives
you the information you need to write programs that communicate directly
with several of the servers in the Genesys Framework.
This document is valid only for the 7.6 release of this product.

Note: For versions of this document created for other releases of this product,
please visit the Genesys Technical Support website, or request the
Documentation Library CD, which you can order by e-mail from
Genesys Order Management at orderman@genesyslab.com.
For the latest versions of all SDK documents, please visit the Genesys
Developer Zone at http://www.genesyslab.com/developer.

This preface contains these sections:
Intended Audience, page 6
Usage Guidelines, page 6
Chapter Summaries, page 8
Document Conventions, page 8
Related Resources, page 10
Making Comments on This Document, page 11

The Platform SDKs are for developers requiring maximum flexibility. They
provide this flexibility by giving you low-level access to the core functionality
of the following Genesys servers:
• T-Servers
• Configuration Server
• Statistics Server
• Interaction Server
• Outbound Contact Server
• Universal Contact Server

mailto:orderman@genesyslab.com

6 Platform SDK 7.6

Preface Intended Audience

• Message Server
• Solution Control Server
• Local Control Agents
• Web API Server/Chat Server
• Web API Server/E-Mail Server Java
• Web API Server/Callback Server
By creating objects that communicate with these servers using their own
protocols, you will be able to pass messages back and forth with any or all of
them. Please note, however, that the added control you get from using the
Platform SDKs may bring with it a longer development effort than you might
need for software developed with SDKs that offer a higher level of abstraction,
such as the Interaction SDK.

Intended Audience
This document, primarily intended for software developers, assumes that you
have a basic understanding of:
• Computer-telephony integration (CTI) concepts, processes, terminology,

and applications.
• Network design and operation.
• Your own network configurations.
You should also be familiar with:
• Software development using the C# or Java programming languages
• Genesys Framework architecture and functions

Usage Guidelines
The Genesys developer materials outlined in this document are intended to be
used for the following purposes:
• Creation of contact-center agent desktop applications associated with

Genesys software implementations.
• Server-side integration between Genesys software and third-party

software.
• Creation of specialized client applications specific to customer needs.
The Genesys software functions available for development are clearly
documented. No undocumented functionality is to be utilized without
Genesys’s express written consent.

Developer’s Guide 7

Preface Usage Guidelines

The following Use Conditions apply in all cases for developers employing the
Genesys developer materials outlined in this document:
1. Possession of interface documentation does not imply a right to use by a

third party. Genesys conditions for use, as outlined below or in the Genesys
Developer Program Guide, must be met.

2. This interface shall not be used unless the developer is a member in good
standing of the Genesys Interacts program or has a valid Master Software
License and Services Agreement with Genesys.

3. A developer shall not be entitled to use any licenses granted hereunder
unless the developer’s organization has met or obtained all prerequisite
licensing and software as set out by Genesys.

4. A developer shall not be entitled to use any licenses granted hereunder if
the developer’s organization is delinquent in any payments or amounts
owed to Genesys.

5. A developer shall not use the Genesys developer materials outlined in this
document for any general application development purposes that are not
associated with the above-mentioned intended purposes for the use of the
Genesys developer materials outlined in this document.

6. A developer shall disclose the developer materials outlined in this
document only to those employees who have a direct need to create, debug,
and/or test one or more participant-specific objects and/or software files
that access, communicate, or interoperate with the Genesys API.

7. The developed works and Genesys software running in conjunction with
one another (hereinafter referred to together as the “integrated solutions”)
should not compromise data integrity. For example, if both the Genesys
software and the integrated solutions can modify the same data, then
modifications by either product must not circumvent the other product’s
data integrity rules. In addition, the integration should not cause duplicate
copies of data to exist in both participant and Genesys databases, unless it
can be assured that data modifications propagate all copies within the time
required by typical users.

8. The integrated solutions shall not compromise data or application security,
access, or visibility restrictions that are enforced by either the Genesys
software or the developed works.

9. The integrated solutions shall conform to design and implementation
guidelines and restrictions described in the Genesys Developer Program
Guide and Genesys software documentation. For example:
a. The integration must use only published interfaces to access Genesys

data.
b. The integration shall not modify data in Genesys database tables

directly using SQL.
c. The integration shall not introduce database triggers or stored

procedures that operate on Genesys database tables.

8 Platform SDK 7.6

Preface Chapter Summaries

Any schema extension to Genesys database tables must be carried out using
Genesys Developer software through documented methods and features.
The Genesys developer materials outlined in this document are not intended to
be used for the creation of any product with functionality comparable to any
Genesys products, including products similar or substantially similar to
Genesys’s current general-availability, beta, and announced products.
Any attempt to use the Genesys developer materials outlined in this document
or any Genesys Developer software contrary to this clause shall be deemed a
material breach with immediate termination of this addendum, and Genesys
shall be entitled to seek to protect its interests, including but not limited to,
preliminary and permanent injunctive relief, as well as money damages.

Chapter Summaries
In addition to this preface, this document contains the following chapters:
• Chapter 1, “About the Platform SDK,” on page 13. This chapter briefly

introduces the Platform SDKs and shows how to access the in-depth
introductory material that is available with the product.

• Chapter 2, “About the .NET Code Examples,” on page 21. This chapter
discusses how the .NET code examples that come with the Platform SDK
are packaged, how to use them, and how they work.

• Chapter 3, “About the Java Code Examples,” on page 53. This chapter
discusses how the Java code examples that come with the Platform SDK
are packaged, how to use them, and how they work.

Document Conventions
This document uses certain stylistic and typographical conventions—
introduced here—that serve as shorthands for particular kinds of information.

Document Version Number

A version number appears at the bottom of the inside front cover of this
document. Version numbers change as new information is added to this
document. Here is a sample version number:
75sdk_dev_platform_03-2007_v7.5.000.01

You will need this number when you are talking with Genesys Technical
Support about this product.

Developer’s Guide 9

Preface Document Conventions

Type Styles

Italic

In this document, italic is used for emphasis, for documents’ titles, for
definitions of (or first references to) unfamiliar terms, and for mathematical
variables.

Examples: • Please consult the Genesys 7 Migration Guide for more information.
• A customary and usual practice is one that is widely accepted and used

within a particular industry or profession.
• Do not use this value for this option.
• The formula, x +1 = 7 where x stands for . . .

Monospace Font

A monospace font, which looks like teletype or typewriter text, is used for
all programming identifiers and GUI elements.
This convention includes the names of directories, files, folders, configuration
objects, paths, scripts, dialog boxes, options, fields, text and list boxes,
operational modes, all buttons (including radio buttons), check boxes,
commands, tabs, CTI events, and error messages; the values of options; logical
arguments and command syntax; and code samples.

Examples: • Select the Show variables on screen check box.
• Click the Summation button.
• In the Properties dialog box, enter the value for the host server in your

environment.
• In the Operand text box, enter your formula.
• Click OK to exit the Properties dialog box.
• The following table presents the complete set of error messages

T-Server® distributes in EventError events.
• If you select true for the inbound-bsns-calls option, all established

inbound calls on a local agent are considered business calls.
Monospace is also used for any text that users must manually enter during a
configuration or installation procedure, or on a command line:

Example: • Enter exit on the command line.

Screen Captures Used in This Document

Screen captures from the product GUI (graphical user interface), as used in this
document, may sometimes contain a minor spelling, capitalization, or
grammatical error. The text accompanying and explaining the screen captures
corrects such errors except when such a correction would prevent you from

10 Platform SDK 7.6

Preface Related Resources

installing, configuring, or successfully using the product. For example, if the
name of an option contains a usage error, the name would be presented exactly
as it appears in the product GUI; the error would not be corrected in any
accompanying text.

Square Brackets

Square brackets indicate that a particular parameter or value is optional within
a logical argument, a command, or some programming syntax. That is, the
parameter’s or value’s presence is not required to resolve the argument,
command, or block of code. The user decides whether to include this optional
information. Here is a sample:
smcp_server -host [/flags]

Angle Brackets

Angle brackets indicate a placeholder for a value that the user must specify.
This might be a DN or port number specific to your enterprise. Here is a
sample:
smcp_server -host <confighost>

Related Resources
Consult these additional resources as necessary:
• The Genesys Developer Zone, at http://www.genesyslab.com/developer,

which contains the latest versions of all SDK documents, as well as forums
and other important sources of developer-related information.

• Platform SDK 7.6 Deployment Guide, which contains important
configuration and installation information.

• Platform SDK 7.6 API Reference for the particular SDK you are using,
which provides the authoritative information on methods, functions, and
events for your SDK.

• Platform SDK 7.6 Application Block Guide for the particular application
block you are using. Each Guide explains how to use the application block
and documents all code used in the application block itself. (Application
blocks are production-quality available code.)

• Platform SDK 7.6 Code Examples for the particular SDK you are using,
which offer illustrative ways to begin using your SDK. These code
examples are fully functioning software applications, but are for
educational purposes only and are not supported.

Developer’s Guide 11

Preface Making Comments on This Document

• The Deployment Guides for the underlying Genesys servers with which
you intend to have your Platform SDK applications integrate. For instance,
be sure to check the Framework 7.5 SIP Server Deployment Guide if you
plan on using the Voice Platform SDK and the SIP Endpoint Application
Block.

• Other Genesys SDK documentation for extended information on ways to
integrate custom applications with Genesys Servers. This includes
documents such as the T-Library SDK 7.2 C Developer’s Guide, which
contains detailed information on the TLIB protocol and on message
exchanges with T-Servers. All Genesys SDK documentation is available
from the Technical Support website and is also located on the SDK
Documentation CD and on your product CD.

• The Genesys Technical Publications Glossary, which ships on the Genesys
Documentation Library CD and which provides a comprehensive list of the
Genesys and CTI terminology and acronyms used in this document.

• The Genesys 7 Migration Guide, also on the Genesys Documentation
Library CD, which provides a documented migration strategy from
Genesys product releases 5.1 and later to all Genesys 7.x releases. Contact
Genesys Technical Support for additional information.

• The Release Notes and Product Advisories for this product, which are
available on the Genesys Technical Support website at
http://genesyslab.com/support.

Information on supported hardware and third-party software is available on the
Genesys Technical Support website in the following documents:
• Genesys 7 Supported Operating Systems and Databases
• Genesys 7 Supported Media Interfaces
Genesys product documentation is available on the:
• Genesys Technical Support website at http://genesyslab.com/support.
• Genesys Documentation Library CD, which you can order by e-mail from

Genesys Order Management at orderman@genesyslab.com.

Making Comments on This Document
If you especially like or dislike anything about this document, please feel free
to e-mail your comments to Techpubs.webadmin@genesyslab.com.
You can comment on what you regard as specific errors or omissions, and on
the accuracy, organization, subject matter, or completeness of this document.
Please limit your comments to the information in this document only and to the
way in which the information is presented. Speak to Genesys Technical
Support if you have suggestions about the product itself.

http://genesyslab.com/support/dl/retrieve/default.asp?item=B6C52FB62DB42BB229B02755A3D92054&view=item
http://genesyslab.com/support/dl/retrieve/default.asp?item=A9CB309AF4DEB8127C5640A3C32445A7&view=item
http://genesyslab.com/support
mailto:orderman@genesyslab.com
mailto:techpubs.webadmin@genesyslab.com
http://genesyslab.com/support

12 Platform SDK 7.6

Preface Making Comments on This Document

When you send us comments, you grant Genesys a nonexclusive right to use or
distribute your comments in any way it believes appropriate, without incurring
any obligation to you.

Developer’s Guide 13

Chapter

1 About the Platform SDK
The Platform SDK includes individual components that allow you to write
.NET and Java applications to communicate with Genesys servers in their
native protocols. For example, to work with Stat Server, you would write an
application that uses the Statistics Platform SDK.
The Platform SDK also includes several application blocks. These are
production-quality components that you can use to handle commonly-
encountered tasks, such as event handling or communicating with more than
one server from a single application.
Each of the server-related components comes with an API Reference and each
application block comes with an Application Block Guide. These documents
include detailed introductory material on the use of the Platform SDK, in
addition to material that relates to the individual component.
This chapter gives you a brief outline of the purpose of the individual SDKs
and the application blocks that come with them. It also shows where to find the
introductory material about the Platform SDK. It contains the following
sections:

The Platform SDKs, page 13
The Application Blocks, page 15
Learning About the Platform SDK for .NET, page 17
Learning About the Platform SDK for Java, page 18
New in this Release, page 19

The Platform SDKs
This section gives you a simple introduction to each of the Platform SDKs. It
ends with Table 1 on page 15, which shows the servers each of the Platform
SDKs connects with, and gives the names of the protocols that are used to
communicate with each server.

14 Platform SDK 7.6

Chapter 1: About the Platform SDK The Platform SDKs

Configuration
The Configuration Platform SDK enables you to build applications that add,
modify, and delete information in the Configuration Layer of your Genesys
environment.

Contacts
The Contacts Platform SDK enables you to write .NET applications that work
with the Universal Contact Server.

Management
The Management Platform SDK enables you to write applications that interact
with Message Server, Solution Control Server, and Local Control Agents.

Open Media
With the Open Media Platform SDK, you can build applications that feed open
media interactions into your Genesys environment, or applications that act as
custom media servers to perform external service processing (ESP) on
interactions that have already entered it.

Outbound Contact
The Outbound Contact Platform SDK can be used to build applications that
allow you to manage outbound campaigns.

Statistics
Use the Statistics Platform SDK to build applications that solicit and monitor
statistics from your Genesys environment.

Voice
The Voice Platform SDK enables you to design applications that monitor and
handle voice interactions from a traditional or IP-based telephony device.

Web Media
The Web Media Platform SDK can be used to build applications that interact
with Chat Server, E-Mail Server Java, and Callback Server by way of the Web
API Server.

Developer’s Guide 15

Chapter 1: About the Platform SDK The Application Blocks

The Application Blocks
When you are working with a message-based API, you need to handle events.
When you are using an application that needs to communicate with more than
one server, you have to manage the connections to each server and keep track
of the interactions with each one.
So why should every development team have to write new code to address
functionality that other developers have already had to deal with?
Genesys has written reusable production-quality components that carry out
these functions and other common development tasks facing Platform SDK
developers. We call these components application blocks. They have been
designed using industry best practices so you can use them without
modification. We have also included the source code so you can tailor them if
you need to.
This section gives a list of the application blocks that currently ship with the
Platform SDK.

Table 1: The Platform SDKs

SDK Name Server Protocol

Configuration Platform SDK Configuration Server CFGLIB

Contacts Platform SDK (.NET
only in 7.6)

Universal Contact Server UCS Protocol

Management Platform SDK Message Server
Solution Control Server
Local Control Agents

GMESSAGELIB
SCSLIB
LCALIB

Open Media Platform SDK Interaction Server ITX, ESP

Outbound Contact Platform SDK Outbound Contact Server CMLIB
OCS-Desktop Protocol

Statistics Platform SDK Stat Server STATLIB

Voice Platform SDK T-Servers TLIB
Preview Interaction
Protocol

Web Media Platform SDK Web API Server/Chat Server
Web API Server/E-Mail Server Java
Web API Server/Callback Server

MCR Chat Lib
MCR E-Mail Lib
MCR Callback Lib

16 Platform SDK 7.6

Chapter 1: About the Platform SDK The Application Blocks

Note: If you have suggestions about the application blocks, please contact us
in the forums at the Genesys Developer Zone, which can be reached
from the DevZone home page at
http://www.genesyslab.com/developer.

Message Broker
The Message Broker Application Block makes it easy for your applications to
handle events in an efficient way.

Protocol Manager
The Protocol Manager Application Block allows for simplified communication
with more than one server. It takes care of opening and closing connections to
many different servers, as well as handling the reconfiguration of high
availability connections.

Warm Standby
You can use the Warm Standby Application Block to switch to a backup server
in case your primary server fails, in cases where you do not need to guarantee
the integrity of existing interactions.

Configuration Context
The Configuration Context Application Block makes it easy for your client
applications to retrieve information from the Genesys configuration layer.

Configuration Object Model
The Configuration Object Model Application Block provides a consistent and
intuitive object model for .NET applications that need to work with
Configuration Server objects. (The Java version of this application block can
be downloaded from the Genesys Developer Zone at
http://www.genesyslab.com/developer.)

Developer’s Guide 17

Chapter 1: About the Platform SDK Learning About the Platform SDK for .NET

SIP Endpoint
The SIP Endpoint application block enables you to add Internet telephony
capabilities to your .NET softphone applications, using the Session Initiation
Protocol (SIP).

Multi-Channel Communication Model
You can use the Multi-Channel Communication Model Application Block in
your .NET applications to work with different types of communication channel
in a unified way.

Learning About the Platform SDK for .NET
As mentioned earlier, each server-related component of the Platform SDK
comes with an API Reference. Each application block also comes with its own
Application Block Guide. In addition to information that is specific to each of
these components, these documents also contained detailed introductory
material for the Platform SDK. Here is how to find that material if you are
using .NET.
First, locate the appropriate document by opening the Start Menu. Select All
Programs > Genesys Solutions > Platform SDK for .NET 7.6. If you need an
API Reference, select the appropriate link from the list that is displayed on
your screen. If you are looking for an Application Block Guide, select
Application Blocks and then select the appropriate link.
When you have opened the document, you will see a page with a title like this:
“Welcome to the Configuration Platform SDK” or “Welcome to the
Configuration Context Application Block.”
This page includes links to the following articles, which will get you started
with the Platform SDK:
• Introducing the Platform SDKs
• Architecture of the Platform SDKs
• Connecting to a Server
• Event Handling
• Namespace Structure
Once you have covered this material, you can start learning about the specifics
of the component you are working with by following the next link, which has a
title like this: “Using the Configuration Platform SDK” or “Using the
Configuration Context Application Block.”

18 Platform SDK 7.6

Chapter 1: About the Platform SDK Learning About the Platform SDK for Java

Learning About the Platform SDK for Java
As mentioned earlier, each server-related component of the Platform SDK
comes with an API Reference. Each application block also comes with its own
Application Block Guide. In addition to information that is specific to each of
these components, these documents also contain detailed introductory material
for the Platform SDK. Here is how to find that material if you are using Java.
If you are using Windows, you can locate the appropriate document by
opening the Start Menu. Select All Programs > Genesys Solutions > Platform
SDK for Java 7.6. If you need an API Reference, select the appropriate link
from the list that is displayed on your screen. If you are looking for an
Application Block Guide, select Application Blocks and then select the
appropriate link.
When you have opened the document, you will see a page with a title like this:
“Welcome to the Configuration Platform SDK” or “Welcome to the
Configuration Context Java Application Block 7.6 Guide.” Click the
Description link that appears on that page, as shown in Figure 1.

Figure 1: The Description Link on the Welcome Page

Developer’s Guide 19

Chapter 1: About the Platform SDK New in this Release

When you click this link, the page scrolls to a section that includes links to the
following articles, which will get you started with the Platform SDK:
• Introducing the Platform SDKs
• Architecture of the Platform SDKs
• Connecting to a Server
• Event Handling
• Package Structure
Once you have covered this material, you can start learning about the specifics
of the component you are working with by following the next link, which has a
title like this: “Using the Configuration Platform SDK” or “Using the
Configuration Context Application Block.”

New in this Release
This section summarizes the changes between the 7.6 release of the Platform
SDK and prior releases of this product.

Contacts Platform SDK for .NET
The Platform SDK for .NET now includes the Contacts Platform SDK for
.NET, which allows for integration with the Universal Contact Server. For
more information, see the Contacts Platform SDK API Reference.

Configuration Object Model Application Block for Java
The Configuration Object Model Application Block is now available for Java.
To obtain this application block, download it from the Genesys Developer
Zone at http://www.genesyslab.com/developer.

Host Information in Management Platform SDK
A new request has been added to the Management Platform SDK.
RequestGetHostInfo enables applications to request host information from
Solution Control Server.

New Java Code Examples
The Platform SDK now includes several Java code examples.
These examples use the Protocol Manager and Message Broker Application
Blocks, which employ industry best practices to facilitate server connections
and event handling.

20 Platform SDK 7.6

Chapter 1: About the Platform SDK New in this Release

See Chapter 3, “About the Java Code Examples,” on page 53 of this
Developer’s Guide for more information.

New .NET Code Examples
There is now a Complex .NET example that shows how to work with two
servers in a single application. Also, the Configuration and Statistics examples
have been rewritten to use the Protocol Manager and Message Broker
Application Blocks, which employ industry best practices to facilitate server
connections and event handling.
See Chapter 2, “About the .NET Code Examples,” on page 21 of this
Developer’s Guide for more information.

New Default Value for Users Accounts
Starting with release 7.6, Configuration Server does not automatically assign
new users to any Access Groups. Each new user:
• Is created with no privileges.
• Cannot log in to any interface.
• Cannot use a daemon application.
Each new user must be added to an Access Group by an Administrator or a
user with permissions to update user accounts. For details, see the chapter “No
Default Access for New Users” in the Genesys 7.6 Security Deployment Guide.

Enhanced documentation
The documentation for all API References, Application Blocks, and samples
has been enhanced. See the Genesys Developer Zone at
http://www.genesyslab.com/developer for a complete listing.

Developer’s Guide 21

Chapter

2 About the .NET
Code Examples
This chapter introduces the .NET code examples that accompany this
developer’s guide. It contains the following sections:

Setup for Development, page 21
Configuration Example, page 23
Statistics Example, page 28
Complex Example, page 33
Open Media Examples, page 36
Voice Examples, page 46

Setup for Development
When you install the Platform SDK, be sure that you have the required tools,
environment-variable values, and configuration data. See the Platform SDK
7.6 Deployment Guide for details.
The Platform SDK includes all Genesys libraries and third-party libraries
needed for proper operation, while the Genesys Developer Documentation CD
includes the Platform SDK code examples and a PDF version of this
developer’s guide.

Source-Code Examples
This chapter refers to the supplied source-code examples. These examples
illustrate the use of some common features of the Platform SDKs. They are
provided on the Genesys Documentation CD in a .zip archive file.
The examples are not tested and are not supported by Genesys.

22 Platform SDK 7.6

Chapter 2: About the .NET Code Examples Setup for Development

Note: Applications that use the Platform SDK normally receive events from
the servers they work with. Genesys recommends that you use the
Message Broker Application Block to handle these messages.
However, there may be times when this is not possible. In that case,
you will probably need to set up separate threads for message-
handling. “Voice Examples” on page 46 shows one way to do this.

Required Third-Party Tools
To develop .NET applications that use the Platform SDK, you will need .NET
Framework 2.0. If you are using Visual Studio, you will need Visual Studio
2005 or higher.
In writing this guide, Visual Studio 2005 was used to compile and run all of the
code examples.

.NET Environment Setup
In order to compile and run these examples, Visual Studio needs access to the
Platform SDK libraries. These libraries are located in the bin/ subdirectory of
the Platform SDK product installation directory.

Add references to all of these libraries to your Visual Studio projects.

If you want to use any of the application blocks that ship with the Platform
SDK, you also need to add their libraries to your projects. To create these
libraries, build each application block according to the instructions in the
appropriate Application Block Guide.

Building the Examples
To build one of the C# examples described in this document:
• Open the example in Visual Studio
• Add references to the Platform SDK libraries and any necessary

application block libraries, as mentioned in the section on environment
setup

• Build the example

Configuration Data
For the examples provided for this document to work, they need valid
configuration data, including connections to servers and configuration objects
such as Place, Dn, Agent, and so on.
See the Platform SDK 7.6 Deployment Guide for configuration details.

Developer’s Guide 23

Chapter 2: About the .NET Code Examples Configuration Example

Configuration Example
This example allows you to retrieve data from Configuration Server about
objects of a specific type.

Note: Before you try this example, you should review the introductory
material in the Configuration Platform SDK 7.6 API Reference. The
article on “Connecting to a Server” will help you understand how to
use the Protocol Manager Application Block to connect to
Configuration Server, while the article on “Event Handling” will show
how to use the Message Broker Application Block to handle messages
coming in from Configuration Server. This example uses both of these
application blocks.

The user interface for this example consists of a single button and a text
window, as shown in Figure 2.

Figure 2: Configuration Example User Interface

To use this application, you need to set up some information about your
environment. Find the following statements in the source code for Form1.cs,
and enter values that match your Genesys Configuration Layer:

// Enter configuration information here:
private string confServerHost = "<host>";
private int confServerPort = <port>;
private string clientName = "<clientName>";
private string userName = "<userName>";
private string password = "<password>";
// End of configuration information.

24 Platform SDK 7.6

Chapter 2: About the .NET Code Examples Configuration Example

Then you need to determine which object type you want to retrieve
information for. The example is set to ask for information about Filter objects
by default.
Once you have entered your configuration information, run the sample and
click the Read Objects button. If you have a Filter object in your
configuration layer, you should receive a response that looks something like
this:

This is the response:

<?xml version="1.0" encoding="UTF-8"?>
<ConfData>
 <CfgFilter>
 <DBID value="101" />
 <tenantDBID value="101" />
 <name value="Test_Filter" />
 <formatDBID value="104" />
 <state value="1" />
 </CfgFilter>
</ConfData>

If you don’t have any filters set up, you can try a different object type, for
example, Person. Look in the ReadObjectsButton_Click method to see the
code that generates the query. All you need to do is change this line of code:

(int)ConfServerObjectType.Filter,

To this:

(int)ConfServerObjectType.Person,

If you do try querying on Person objects, you may get more information than
you wanted. In that case, you might want to filter out most of the Person
objects. To do that, let’s take a look at how this query was generated.
The first thing to notice is that you obtain Configuration Layer data by issuing
a RequestReadObjects. This is done using a Create method. In this case, we are
using the ProtocolManagementService.Send method to get the request to the
server, as explained in the introductory article on event handling in the
Configuration Platform SDK API Reference:

KeyValueCollection filterKey = new KeyValueCollection();
RequestReadObjects requestReadObjects =
RequestReadObjects.Create(

(int)ConfServerObjectType.Filter,
filterKey);

protocolManagementService["Config_Server_App"].
Send(requestReadObjects);

Developer’s Guide 25

Chapter 2: About the .NET Code Examples Configuration Example

But notice that before you can create the Request object, you have to set up a
KeyValueCollection as a filter for your query. This collection can be empty, as
shown above, but you must create one.
Now try changing the object type to Person. Run the sample and examine the
response from Configuration Server. You probably got back a lot of data!
To filter out most of this data, you can add one or more key-value pairs to the
filter key, as shown in the bolded line:

KeyValueCollection filterKey = new KeyValueCollection();
filterKey.Add("user_name", "<user_name>");
RequestReadObjects requestReadObjects =

RequestReadObjects.Create(
(int)ConfServerObjectType.Person,
filterKey);

confServerProtocol.Send(requestReadObjects);

This request will only return data about one Person.

Connecting to Configuration Server
As mentioned previously, this code example uses the Protocol Manager
Application Block to connect to Configuration Server. This section will briefly
review the things you need to do to use Protocol Manager in an application of
this type.
First off, you must have the proper using statement, and then declare a new
ProtocolManagementService object:

using Genesyslab.Platform.ApplicationBlocks.Commons.Protocols;
.
.
.
ProtocolManagementService protocolManagementService;

Now you need to instantiate the Service object; set up a
ConfServerConfiguration object; and configure the Configuration object with
the appropriate settings, at which point you can register the Configuration
object with your Protocol Management Service:

protocolManagementService = new ProtocolManagementService();

ConfServerConfiguration confServerConfiguration =
new ConfServerConfiguration("Config_Server_App");

confServerConfiguration.Uri = confServerUri;
confServerConfiguration.ClientType = ConfServerClientType.SCE;
confServerConfiguration.ClientName = clientName;

26 Platform SDK 7.6

Chapter 2: About the .NET Code Examples Configuration Example

confServerConfiguration.UserName = userName;
confServerConfiguration.UserPassword = password;
protocolManagementService.Register(confServerConfiguration);

You still need to open the connection to the server, but before doing that, let’s
take a look at the event-handling code you need to set up first.

Event Handling
As shown in the article on event handling in the Configuration Platform SDK
API Reference, you only need to do a few things to set up Message Broker so
that it will work with Protocol Manager.
Just like with Protocol Manager, you will start by adding a using statement and
declaring the EventBrokerService object:

using Genesyslab.Platform.ApplicationBlocks.Commons.Broker;
.
.
.
EventBrokerService eventBrokerService;

At that point, you can instantiate the service and register the appropriate
Configuration Server events with the event handlers you have set up in your
code. (We will discuss the event handlers in just a few moments.)

eventBrokerService =
BrokerServiceFactory.CreateEventBroker
(protocolManagementService.Receiver);

eventBrokerService.Register(this.OnEventObjectsRead,
new MessageIdFilter(EventObjectsRead.MessageId));

eventBrokerService.Register(this.OnEventObjectsSent,
new MessageIdFilter(EventObjectsSent.MessageId));

eventBrokerService.Register(this.OnEventError,
new MessageIdFilter(EventError.MessageId));

Now you are ready to open the connection to the server:

protocolManagementService["Config_Server_App"].Open();

In this example, we are using three event handlers. The first method handles
EventError messages:

private void OnEventError(IMessage theMessage)
{

EventError eventError = theMessage as EventError;
if (eventError == null)

Developer’s Guide 27

Chapter 2: About the .NET Code Examples Configuration Example

{
writeToLogArea("EventError!\n");
return;

}

writeToLogArea("EventError:\n"
+ eventError + "\n\n");

}

There is also an event handler for EventObjectsSent. You will receive this
event when all of the data you requested has been sent from Configuration
Server. If you are receiving large amounts of data, this is the event that will tell
you it has all arrived. Here is the EventObjectsSent handler from the example:

private void OnEventObjectsSent(IMessage theMessage)
{

EventObjectsSent objectsSent = theMessage as EventObjectsSent;
if (objectsSent == null)
{

writeToLogArea("EventObjectsSent!\n");
return;

}

writeToLogArea("EventObjectsSent:\n"
+ objectsSent + "\n\n");

}

For the simple purposes of the sample, the EventObjectsRead handler acts as if
all of the data from the server has arrived in one response. The incoming
message is cast to EventObjectsRead and the result is written out to an XML
document:

private void OnEventObjectsRead(IMessage theMessage)
{

EventObjectsRead objectsRead = theMessage as EventObjectsRead;
if (objectsRead == null)
{

writeToLogArea
("There are no objects of the requested type\n
in the Genesys Configuration Layer.\n\n");
return;

}

XmlDocument resultDocument = new XmlDocument();
resultDocument =
(XmlDocument)objectsRead.ConfObject;

28 Platform SDK 7.6

Chapter 2: About the .NET Code Examples Statistics Example

StringBuilder xmlAsText = new StringBuilder();
StringWriter stringWriter = new StringWriter(xmlAsText);
XmlTextWriter xmlTextWriter =
new XmlTextWriter(stringWriter);
xmlTextWriter.Formatting = Formatting.Indented;

resultDocument.WriteContentTo(xmlTextWriter);

writeToLogArea("This is the response:\n\n"
+ xmlAsText.ToString() + "\n\n");

}

After the XML information is received, the example application receives an
EventObjectsSent message from Configuration Server, indicating that all of
the requested data has been sent.

Statistics Example
This example shows how to subscribe to a statistic and have it updated
periodically. The user interface of this example is very simple, with a single
button that lets you retrieve statistics information based on values that are
hard-coded in the application. Figure 3 shows the user interface.

Figure 3: Statistics Example User Interface

After clicking the Get Statistics button, you will receive an
EventPackageOpened. The application will display information similar to that
shown here:

EventPackageOpened:
'EventPackageOpened' ('2048')
message attributes:

Developer’s Guide 29

Chapter 2: About the .NET Code Examples Statistics Example

XAL_PCKG_REQ_ID [int] = 2
XAL_PCKG_ID [int] = 132
XAL_PCKG_USER_REQ_ID [int] = -1

You will also receive information similar to the following. This information
will be repeated every 15 seconds:

Statistic Metric is: StatisticType=TotalNumberInboundCalls
I=
TimeProfile=CollectorDefault
TimeRange=Range0-120
Filter=VoiceCall

Statistic Object is: Tenant=MyTenant
ObjectId=1234@theSwitch
ObjectType=RegularDN

Statistic IntValue is: 0
Statistic StringValue is: 0
Statistic ObjectValue is:
Statistic ExtendedValue is:
Statistic Tenant is: MyTenant
Statistic Type is: RegularDN
Statistic Id is: 1234@theSwitch
Statistic TimeProfile is: CollectorDefault
Statistic StatisticType is: TotalNumberInboundCalls
Statistic TimeRange is: Range0-120

Now that you have seen what the sample does, let’s look at how it works.
First of all, in order to use this example, you will have to enter the appropriate
configuration information in the following lines of Form1.cs:

// Enter configuration information here:
private string statServerHost = "<host>";
private int statServerport = <port>;
private string tenantName = "<tenantName>";
private string dn = "<DN>@<switch>";
// End of configuration information.

The structure of this example is similar to the structure of the previous one.
You start out by declaring and instantiating ProtocolManagementService and
EventBrokerService objects, which also requires the appropriate using
statements:

using Genesyslab.Platform.ApplicationBlocks.Commons.Broker;
using Genesyslab.Platform.ApplicationBlocks.Commons.Protocols;
.
.
.

30 Platform SDK 7.6

Chapter 2: About the .NET Code Examples Statistics Example

EventBrokerService eventBrokerService;
ProtocolManagementService protocolManagementService;
.
.
.
protocolManagementService = new ProtocolManagementService();
eventBrokerService =

BrokerServiceFactory.
CreateEventBroker(

protocolManagementService.Receiver);

You also need to register your event handlers:

eventBrokerService.Register(this.OnEventPackageOpened,
new MessageIdFilter(EventPackageOpened.MessageId));

eventBrokerService.Register(this.OnEventPackageError,
new MessageIdFilter(EventPackageError.MessageId));

eventBrokerService.Register(this.OnEventPackageInfo,
new MessageIdFilter(EventPackageInfo.MessageId));

Once you have set up the StatServerConfiguration object, you can register it
with the ProtocolManagementService. At that point, you are ready to open the
connection to Stat Server:

StatServerConfiguration statServerConfiguration =
new StatServerConfiguration("Stat_Server_App");

statServerConfiguration.Uri = statServerUri;
protocolManagementService.Register(statServerConfiguration);

protocolManagementService["Stat_Server_App"].Open();

Now you are ready to create a statistic. As explained in the article on “Using
the Statistics Platform SDK” in the Statistics Platform SDK API Reference,
you must first create a StatisticObject. This includes information about the
object you want to monitor:

StatisticObject objectDescription =
new StatisticObject(tenantName,

dn,
StatisticObjectType.RegularDN);

Then you create a StatisticMetric, which describes the information you need
and how you want it collected:

StatisticMetric statisticMetric =
new StatisticMetric("TotalNumberInboundCalls");

statisticMetric.TimeProfile = "CollectorDefault";

Developer’s Guide 31

Chapter 2: About the .NET Code Examples Statistics Example

statisticMetric.TimeRange = "Range0-120";
statisticMetric.Filter = "VoiceCall";

Then you combine the StatisticObject and the StatisticMetric into a
Statistic and add this new Statistic to a StatisticsCollection:

Statistic inboundCalls =
new Statistic(objectDescription, statisticMetric);

StatisticsCollection statisticsCollection =
new StatisticsCollection();

statisticsCollection.AddStatistic(inboundCalls);

Before you can send a request to Stat Server, you have to tell it how you want
to be notified. In this case, we are asking to be notified every 15 seconds:

Notification notification =
Notification.Create(NotificationMode.Periodical, 15);

You are now ready to request that Stat Server open a package, which means
“Please send me the requested information at the specified interval”:

RequestOpenPackage requestOpenPackage =
RequestOpenPackage.Create(

132,
StatisticType.Historical,
statisticsCollection,
notification);

protocolManagementService["Stat_Server_App"].
Send(requestOpenPackage);

When the package has been opened, you will receive two messages from the
server. The first is an EventPackageOpened. This message indicates that Stat
Server is ready to start sending information in response to your request. The
sample uses the OnEventPackageOpened method to handle this message:

private void OnEventPackageOpened(IMessage theMessage)
{

EventPackageOpened packageOpened = theMessage as
EventPackageOpened;

if (packageOpened != null)
{
writeToLogArea("EventPackageOpened:\n"

+ packageOpened + "");
}

}

32 Platform SDK 7.6

Chapter 2: About the .NET Code Examples Statistics Example

The second message is an EventPackageInfo, which is the server’s way of
delivering the information you requested. The OnEventPackageInfo method
that handles this message in the application simply prints the information to the
pane at the bottom of the user interface:

private void OnEventPackageInfo(IMessage theMessage)
{

EventPackageInfo packageInfo = theMessage as EventPackageInfo;
if (packageInfo != null)
{

foreach (Statistic statistic in packageInfo.Statistics)
{

writeToLogArea("\n\nStatistic Metric is: "
+ statistic.Metric.ToString());

writeToLogArea("\nStatistic Object is: "
+ statistic.Object);

writeToLogArea("\nStatistic IntValue is: "
+ statistic.IntValue);

writeToLogArea("\nStatistic StringValue is: "
+ statistic.StringValue);

writeToLogArea("\nStatistic ObjectValue is: "
+ statistic.ObjectValue);

writeToLogArea("\nStatistic ExtendedValue is: "
+ statistic.ExtendedValue);

writeToLogArea("\nStatistic Tenant is: "
+ statistic.Object.Tenant);

writeToLogArea("\nStatistic Type is: "
+ statistic.Object.Type);

writeToLogArea("\nStatistic Id is: "
+ statistic.Object.Id);

writeToLogArea("\nStatistic TimeProfile is: "
+ statistic.Metric.TimeProfile);

writeToLogArea("\nStatistic StatisticType is: "
+ statistic.Metric.StatisticType);

writeToLogArea("\nStatistic TimeRange is: "
+ statistic.Metric.TimeRange + "\n");

}
}

}

Developer’s Guide 33

Chapter 2: About the .NET Code Examples Complex Example

The code example also includes a handler for processing any errors you might
receive from Stat Server:

private void OnEventPackageError(IMessage theMessage)
{

EventPackageError packageError = theMessage as EventPackageError;
if (packageError != null)
{

writeToLogArea("EventPackageError:\n"
+ packageError + "\n\n");

}
}

When you run the example, you should receive information similar to that
shown at the beginning of this section.

Complex Example
This example shows how to work with multiple servers in a single application,
using the services of the Protocol Manager and Message Broker Application
Blocks. It makes use of concepts you have learned from the previous two
examples to connect with Configuration Server and Stat Server, but there is
one important difference, which will be explained shortly.

Figure 4: Complex Example User Interface

When you click the Read Objects button in this sample, you will receive
configuration information that is similar to what you saw in the Configuration
Example. Likewise, when you click the Get Statistics button, you will
receive periodic statistics information similar to what you saw in the Statistics
Example.
In order to run this sample, you need to enter the appropriate configuration
information, just as you did in the two previous examples. You also need to set
up ProtocolManagementService and EventBrokerService objects, and the
appropriate server Configuration objects.

34 Platform SDK 7.6

Chapter 2: About the .NET Code Examples Complex Example

The main difference between this example and the previous ones is that you
are now receiving events from more than one server. However, not all of the
events that are used in the Platform SDK have unique names.
For example, most of the servers have an EventError. There may be times
when you need to handle an error from Configuration Server differently from
one created by Stat Server. Some servers send an EventAck, which may also be
subject to special handling, depending on the server it came from.
This code example shows how to set up message filters that discriminate based
on the source of the message. In order to do this, you first need to set up a
protocol object for each server, as shown here:

ConfServerProtocol confServerProtocol =
protocolManagementService["Config_Server_App"]

as ConfServerProtocol;

You are doing this so you can get a description of that protocol. This
description will be used by the message filter to determine which server to
listen to. Here is the code to obtain the ProtocolDescription object for
Configuration Server:

ProtocolDescription configProtocolDescription = null;
if (confServerProtocol != null)
{

configProtocolDescription =
confServerProtocol.ProtocolDescription;

}

And here is how to get the protocol description for Stat Server:

StatServerProtocol statServerProtocol =
protocolManagementService["Stat_Server_App"]

as StatServerProtocol;
ProtocolDescription statProtocolDescription = null;
if (statServerProtocol != null)
{

statProtocolDescription =
statServerProtocol.ProtocolDescription;

}

When you register the event handlers for this application, the code is almost
identical to the code used in the previous two examples. However, in this case,
there is an extra argument for each message filter constructor. This extra
argument uses a ProtocolDescription object to make sure the event handler
will only pay attention to events from the indicated server.
Only two of these registration statements are shown here, but the rest use the
same technique:

Developer’s Guide 35

Chapter 2: About the .NET Code Examples Complex Example

eventBrokerService.Register(
this.OnStatEventPackageOpened,

new MessageIdFilter(
statProtocolDescription,
EventPackageOpened.MessageId));

...
eventBrokerService.Register(

this.OnConfEventObjectsRead,
new MessageIdFilter(

configProtocolDescription,
EventObjectsRead.MessageId));

There is one more technique demonstrated in this example. Protocol Manager
allows you to use either a synchronous or an asynchronous open. The
asynchronous method will open all of your server connections with a single
statement. There is also an asynchronous close method which will close every
connection with a single statement.

Note: If you use the asynchronous open method, you must be sure to wait for
all of the connections to open before sending or receiving messages.
Likewise, if you use the asynchronous close method, you must also
wait for all connections to close before carrying out any processing that
relies on a closed connection.

Here is a sample of how to use the asynchronous open method. Note that this
statement is commented out in the example.

protocolManagementService.BeginOpen();

And here is the asynchronous close method:

protocolManagementService.BeginClose();

36 Platform SDK 7.6

Chapter 2: About the .NET Code Examples Open Media Examples

Open Media Examples
There are two Open Media examples. The first example is a simple media
server that submits a new Open Media interaction. The second example is a
client application that can accept an Open Media interaction for processing.
Once an interaction has been accepted, the application allows an agent to read
information about the interaction and mark it as completed.

Note: These Open Media samples do not use the Protocol Manager and
Message Broker Application Blocks. If you are writing production
code that uses the functionality explained in these examples, you
should use these two application blocks, as explained in the previous
examples in this chapter, and in the articles on “Connecting to a
Server” and “Event Handling” in the Open Media Platform SDK API
Reference.

Open Media Server Example
This example is very simple. The user interface has a single button that
submits an Open Media interaction using information that has been hard-coded
in the application. It also has a window that displays information about the
interaction, as shown in Figure 5 on page 36.

Figure 5: Open Media Server Example User Interface

To use this application, you need to set up some information about your
environment. Find the following statements in the source code for Form1.cs,
and enter values that match your Genesys Configuration Layer:

// Enter configuration information here:
private string interactionServerName = "<server name>";
private string interactionServerHost = "<host>";

Developer’s Guide 37

Chapter 2: About the .NET Code Examples Open Media Examples

private int interactionServerPort = <port>;
private int tenantId = 101;
private string inboundQueue = "<queue>";
private string mediaType = "<media type>";
// End of configuration information.

Once you have entered this information, you can run the program. Click the
Create Interaction button, and if the interaction was successfully created,
you should soon see this message:

Response: EventAck

Now that you have seen what the program does, let’s take a look at how it
works.
Since this custom media server is such a simple program, almost all of the code
you need to understand is in the InteractionButton_Click method, which is
called when you click the Create Interaction button. The first thing this
method does is create a URI, using the server and host information you entered
in the configuration section of the program. It then uses that information to
create a new InteractionServerProtocol object, as shown here:

interactionServerUri = new Uri("tcp://"
+ interactionServerHost + ":"
+ interactionServerPort);

InteractionServerProtocol interactionServerProtocol =
new InteractionServerProtocol(

new Endpoint(
interactionServerName,
interactionServerUri));

Now the code specifies the client name and type. This is also a good time to set
up some user data for the new interaction. In this case, the code shows how to
add a subject to the new interaction.

interactionServerProtocol.ClientName = "EntityListener";
interactionServerProtocol.ClientType =

InteractionClient.MediaServer;

KeyValueCollection userData =
new KeyValueCollection();

userData.Add("Subject", "New Interaction Created by a Custom Media
Server");

38 Platform SDK 7.6

Chapter 2: About the .NET Code Examples Open Media Examples

With this basic setup accomplished, it is time to open the Protocol object, and
then submit a new interaction, as you see here:

try
{

interactionServerProtocol.Open();

RequestSubmit requestSubmit = RequestSubmit.Create(
inboundQueue,
mediaType,
"Inbound");

requestSubmit.TenantId = tenantId;
requestSubmit.InteractionSubtype = "InboundNew";
requestSubmit.UserData = userData;
IMessage response =

interactionServerProtocol.Request(requestSubmit);

Once the Request has been processed, you will receive a message from
Interaction Server, which will then be printed to the information pane of your
application:

LogAreaRichTextBox.Text = LogAreaRichTextBox.Text
+ "Response: " + response.Name + ".\n\n";

Developer’s Guide 39

Chapter 2: About the .NET Code Examples Open Media Examples

Open Media Client Example
This example enables an agent to receive an Open Media interaction, accept it
for processing, and mark it done. As you can see in Figure 6, the example has
buttons to log an agent in and out and to make the agent ready or not ready.
Once the agent has logged in, he or she can click the Receive button to receive
an interaction, and then click the Accept button to accept it.

Figure 6: Open Media Client Example User Interface

40 Platform SDK 7.6

Chapter 2: About the .NET Code Examples Open Media Examples

Figure 7 shows the information supplied by the application after an agent has
accepted an interaction and marked it done.

Figure 7: A Completed Interaction

To use this application, you need to set up some information about your
environment. Find the following statements in the source code for Form1.cs,
and enter values that match your Genesys Configuration Layer:

// Enter configuration information here:
private string mediaType = "<media type>";
private string placeId = "<place ID>";
private string interactionServerName = "<Interaction Server>";
private string interactionServerHost = "<host>";
private int interactionServerPort = <port>;
// End of configuration information.

Once you have set up the configuration information, you can run the
application. Here is what it does.

Developer’s Guide 41

Chapter 2: About the .NET Code Examples Open Media Examples

When the application starts, the Form1 constructor code sets the state of the
buttons in the user interface. Then it adds your media type to a list of the media
types your agent will use while logged in. Finally, it builds the URI for the
Interaction Server:

LoginButton.Enabled = true;
ReadyButton.Enabled = false;
LogoutButton.Enabled = false;
NotReadyButton.Enabled = false;
ReceiveInviteButton.Enabled = false;
AcceptInteractionButton.Enabled = false;
DoneButton.Enabled = false;
mediaList.Add(mediaType, 1);
interactionServerUri = new Uri("tcp://"

+ interactionServerHost + ":"
+ interactionServerPort);

Once the application is running, your agent can log in. Clicking the Log In
button will run the LoginButton_Click method, which first checks to see
whether the InteractionServerProtocol has been created. If not, the following
code is executed, creating a new protocol object and opening a connection to
Interaction Server:

interactionServerProtocol =
new InteractionServerProtocol(

new Endpoint(
interactionServerName,
interactionServerUri));

interactionServerProtocol.ClientType
= InteractionClient.AgentApplication;

interactionServerProtocol.Open();
writeToLogArea("InteractionServerProtocol object created."

+ "\nConnected to "
+ interactionServerUri + "\n\n");

protocolObjectCreated = true;

At this point, the agent can be logged in, using the media list created in the
constructor call. The first step is to create the login request and set up the
media list:

try
{

RequestAgentLogin requestAgentLogin =
RequestAgentLogin.Create(
101,
placeId,
null);

requestAgentLogin.MediaList = mediaList;

42 Platform SDK 7.6

Chapter 2: About the .NET Code Examples Open Media Examples

Now the message can be sent to the server. The Request method does the
sending and then waits for a response:

IMessage respondingEvent
= interactionServerProtocol.Request(requestAgentLogin);

When the response comes in, the code checks to see whether it was successful,
and then updates the user interface to reflect the agent’s new status:

if (checkReturnMessage(requestAgentLogin.Name, respondingEvent))
{

LoginButton.Enabled = false;
ReadyButton.Enabled = false;
LogoutButton.Enabled = true;
NotReadyButton.Enabled = true;
ReceiveInviteButton.Enabled = true;

}
}
catch (ProtocolException protocolException)
{

MessageBox.Show("Protocol Exception!\n" + protocolException);
}

Note that the first line of this snippet calls the checkReturnMessage method.
This method handles return messages for several of the requests issued in the
sample application. As you can see from its signature, this method uses the
request type and the response from the server as input. It returns a Boolean
value indicating whether the request was successful.

private bool checkReturnMessage(string requestType,
IMessage respondingEvent)

The body of the method sets the Boolean to false, initializes the message that
will be printed to the information pane, and determines which event message
was received from the server. If an acknowledgement message was received,
the Boolean is set to true. In any case, a message is written to the information
pane:

bool success = false;
string messageText = "";
switch(respondingEvent.Id)
{

case EventAck.MessageId: // 125
messageText = requestType + " succeeded.\n\n";
success = true;
break;

Developer’s Guide 43

Chapter 2: About the .NET Code Examples Open Media Examples

case EventError.MessageId: // 126
messageText = requestType + " failed with an error: \n"

+ respondingEvent.ToString() + "\n";
break;

default:
messageText = "Unexpected Event: "

+ respondingEvent.Name + "\n"
+ "Responding Event ID = " + respondingEvent.Id + "\n"
+ respondingEvent.ToString() + "\n";

break;
}
writeToLogArea(messageText);
return success;

Now the agent can click the Receive button. This triggers the
ReceiveInviteButton_Click method. This method issues a Receive method,
which waits for a response from the server:

IMessage unsolicitedEvent = interactionServerProtocol.Receive();

If the method times out, the code indicates to the agent that the queue is empty:

if (unsolicitedEvent == null)
{

LogAreaRichTextBox.Text = LogAreaRichTextBox.Text
+ "The queue is empty!\n\n";

}

Otherwise, the code determines whether the server’s response is an invitation
to process an interaction:

switch(unsolicitedEvent.Id)
{

case EventInvite.MessageId: // We are invited...
LogAreaRichTextBox.Text = LogAreaRichTextBox.Text

+ "EventInvite received.\n\n";
invitationReceived = true;
break;

case EventError.MessageId: // 126
LogAreaRichTextBox.Text = LogAreaRichTextBox.Text

+ "EventInvite failed with an error: \n"
+ unsolicitedEvent.ToString() + "\n";

break;

44 Platform SDK 7.6

Chapter 2: About the .NET Code Examples Open Media Examples

default:
LogAreaRichTextBox.Text = LogAreaRichTextBox.Text

+ "Unexpected Event: " + unsolicitedEvent.Name + "\n"
+ "Responding Event ID = " + unsolicitedEvent.Id + "\n"
+ unsolicitedEvent.ToString() + "\n";

break;
}

If the agent has been invited to process an interaction, the code prints
information about it in the information window at the bottom of the user
interface:

if (invitationReceived)
{

EventInvite eventInvite = (EventInvite) unsolicitedEvent;
incomingInteractionTicketId = eventInvite.TicketId;
incomingInteractionProperties = eventInvite.Interaction;
incomingInteractionId = eventInvite.Interaction.InteractionId;
AcceptInteractionButton.Enabled = true;
LogAreaRichTextBox.Text = LogAreaRichTextBox.Text
+ "TicketId: "
+ incomingInteractionTicketId + "\n"
+ "InteractionId: "
+ incomingInteractionId + "\n\n";

}

Here is a sample of what might be printed there:

TicketId: 5
InteractionId: 036H752427CBX002

Now the agent can click the Accept button, which triggers a request to accept
the interaction:

RequestAccept requestAccept =
RequestAccept.Create(
incomingInteractionTicketId,
incomingInteractionName);

The code then checks the response, and if the response is favorable, it updates
buttons on the user interface and prints information about the interaction in the
Interaction Information pane:

IMessage respondingEvent =
interactionServerProtocol.Request(requestAccept);

Developer’s Guide 45

Chapter 2: About the .NET Code Examples Open Media Examples

if (checkReturnMessage(requestAccept.Name, respondingEvent))
{

ReceiveInviteButton.Enabled = false;
AcceptInteractionButton.Enabled = false;
DoneButton.Enabled = true;
InteractionInfoRichTextBox.Text =

"Interaction ID: " + requestAccept.InteractionId + "\n"
...
+ "\n";

}

Here is a sample of what might be printed about an interaction created by the
Open Media Server example:

Interaction ID: 036H752427CBX002
Queue: OMProcessing
Interaction Subtype: InboundNew
Subject: New Interaction Created by a Custom Media Server
Received At: 3/10/2006 9:33:19 PM

The agent can view this interaction, and then click the Done button.

RequestStopProcessing requestStopProcessing =
RequestStopProcessing.Create(
incomingInteractionProperties.InteractionId,
null);

IMessage respondingEvent =
interactionServerProtocol.Request(requestStopProcessing);

if (checkReturnMessage(requestStopProcessing.Name, respondingEvent))
{

DoneButton.Enabled = false;
}

At this point, the agent can log out, triggering the following code, which sends
the logout request and checks the response. If the response is successful, the
buttons on the user interface are updated:

RequestAgentLogout requestAgentLogout =
RequestAgentLogout.Create();

IMessage respondingEvent =
interactionServerProtocol.Request(requestAgentLogout);

if (checkReturnMessage(requestAgentLogout.Name, respondingEvent))
{

LoginButton.Enabled = true;
ReadyButton.Enabled = false;
LogoutButton.Enabled = false;

46 Platform SDK 7.6

Chapter 2: About the .NET Code Examples Voice Examples

NotReadyButton.Enabled = false;
ReceiveInviteButton.Enabled = false;
AcceptInteractionButton.Enabled = false;
DoneButton.Enabled = false;

}

Voice Examples
These examples demonstrate how to log an agent in and out, and how to make
him or her ready and not ready. They also show how to make and receive a
call, how to put the call on hold and then retrieve it, and how to release the call.
The user interface for these examples contains several groups of buttons and an
information pane, as shown in Figure 8.

Note: These Voice samples do not use the Protocol Manager and Message
Broker Application Blocks. If you are writing production code that
uses the functionality explained in these examples, you should use
these two application blocks, as explained in the previous examples in
this chapter, and in the articles on “Connecting to a Server” and “Event
Handling” in the Voice Platform SDK API Reference.

Figure 8: Voice Examples User Interface

To use this example, you will have to set up configuration information in the
following lines of Form1.cs. Note that not all switches require a user name and
password, but they are shown here in case your switch does require them:

Developer’s Guide 47

Chapter 2: About the .NET Code Examples Voice Examples

// Enter configuration information here:
private string tServerName = "<T-Server>";
private string tServerHost = "<host>";
private int tServerport = <port>;
private string thisDn = "<DN>";
// Your switch may not require a user name and password:
private string userName = "<user name>";
private string password = "<password>";
private string thisQueue = "<queue>";
// End of configuration information.

Once you have set up the configuration information, you can run the example.
When you start the application, the constructor creates the T-Server URI and
sets up a thread that will receive messages from the server. It also sets the state
of buttons in the user interface, the code for which is not shown here:

tServerUri = new Uri("tcp://" + tServerHost + ":" + tServerport);
receiver = new Thread(new ThreadStart(this.ReceiveMessages));

When the application starts, you can log in. After you log in, your user
interface will look something like Figure 9. As you can see, the Log In button
is disabled, while the Log Out and Not Ready buttons are now enabled.
I

Figure 9: After Logging In

When you click the log in button, several things happen. First the code checks
to see if a TServerProtocol object has been created. If not, it executes the
createProtocolObject() method.

48 Platform SDK 7.6

Chapter 2: About the .NET Code Examples Voice Examples

This method creates a new protocol object and then sets a flag to indicate that
the application is running. This flag is used by the message-handling thread.
Then the method opens a connection to the server:

tServerProtocol =
new TServerProtocol(

 new Endpoint(
tServerName,
tServerUri));

isRunning = true;
receiver.Start();
tServerProtocol.Open();
writeToLogArea("TServerProtocol object created. "

+ "\nConnected to " + tServerUri + "\n\n");
protocolObjectCreated = true;

After creating the protocol object, the application issues a request to register
the DN you will be using in your session. This must happen before you can log
in:

RequestRegisterAddress requestRegisterAddress =
RequestRegisterAddress.Create(
 thisDn,
 RegisterMode.ModeShare,
 ControlMode.RegisterDefault,
 AddressType.DN);

IMessage response = tServerProtocol.Request(requestRegisterAddress);

After sending this request, the application checks the response from the server
and sends a request to log in. After checking the response, the application
updates the state of several buttons in the user interface:

checkReturnMessage(response);
RequestAgentLogin requestAgentLogin =

RequestAgentLogin.Create(
 thisDn,
 AgentWorkMode.AutoIn);

requestAgentLogin.ThisQueue = thisQueue;
// Your switch may not need a user name and password:
requestAgentLogin.AgentID = userName;
requestAgentLogin.Password = password;
response = tServerProtocol.Request(requestAgentLogin);
if (checkReturnMessage(response))
{

LoginButton.Enabled = false;
ReadyButton.Enabled = false;
LogoutButton.Enabled = true;

Developer’s Guide 49

Chapter 2: About the .NET Code Examples Voice Examples

NotReadyButton.Enabled = true;
MakeCallButton.Enabled = true;

}

Since the login request also makes the agent ready, the Make Call button is
now enabled. Before making a call, let’s take a look at the message-handling
code in the sample application.
First off, there is a method that is waiting to receive messages as long as the
isRunning switch is true. When a message is received from the server, this
method calls the checkReturnMessage() method:

private void ReceiveMessages()
{

while (isRunning)
{

if(tServerProtocol.State != ChannelState.Opened)
{

System.Threading.Thread.Sleep(500);
continue;

}

IMessage response = tServerProtocol.Receive();

if(response != null)
{

checkReturnMessage(response);
}

}
}

The checkReturnMessage() method contains a switch statement that writes
information to the user interface and returns a Boolean indicating whether it
received an event it knows about. In some cases, only the Boolean is set, while
in others, some slightly more complicated processing takes place. For instance,
if the method processes an EventDialing message, it remembers the call’s
Connection ID:

private bool checkReturnMessage(IMessage response)
{

bool knownEvent = false;
string messageText = "";
switch(response.Id)
{

case EventACK.MessageId:
knownEvent = true;
break;

case EventAgentLogin.MessageId:
knownEvent = true;
break;

50 Platform SDK 7.6

Chapter 2: About the .NET Code Examples Voice Examples

case EventDialing.MessageId:
EventDialing eventDialing = response as EventDialing;
connId = eventDialing.ConnID;
knownEvent = true;
break;

.

.

.
case EventError.MessageId: // 126

messageText = "EventError Received: \n"
+ response.ToString() + "\n";

break;
default:

messageText = "Unexpected Event: " + response.Name + "\n"
+ "Responding Event ID = " + response.Id + "\n"
+ response.ToString() + "\n";

break;
}
if (knownEvent)
{

writeToLogArea("Received " + response.Name + "\n\n");
}
else
{

writeToLogArea(messageText);
}
return knownEvent;

}

Now that you have seen how messages are processed, here is how to make a
call. First you have to fill in the Target DN field. Then click the Make Call
button. At this point, the application requests the call. If the request is
successful, the user interface is updated:

RequestMakeCall requestMakeCall =
RequestMakeCall.Create(
 thisDn,
 SinglepartyTargetDNTextBox.Text,
 MakeCallType.DirectAgent);

IMessage response = tServerProtocol.Request(requestMakeCall);
if (checkReturnMessage(response))
{

MakeCallButton.Enabled = false;
HoldButton.Enabled = true;
ReleaseButton.Enabled = true;

}

You can place this call on hold, then retrieve it. You can also release the call
when you are finished.

Developer’s Guide 51

Chapter 2: About the .NET Code Examples Voice Examples

These examples also allow you to answer a call. When you receive an
EventRinging, the checkReturnMessage() method saves the Connection ID and
then checks to see whether the call is inbound. If it is, the Answer button is
enabled:

case EventRinging.MessageId:
EventRinging eventRinging = response as EventRinging;
connId = eventRinging.ConnID;
if (eventRinging.ThisDN == thisDN)
{

AnswerButton.Enabled = true;
}
knownEvent = true;
break;

When you click the Answer button, the application issues a request to answer
the inbound call. Then it checks the response from the server and updates the
user interface:

RequestAnswerCall requestAnswerCall =
RequestAnswerCall.Create(
 thisDn,
 connId);

IMessage response = tServerProtocol.Request(requestAnswerCall);
if (checkReturnMessage(response))
{

AnswerButton.Enabled = false;
MakeCallButton.Enabled = false;
HoldButton.Enabled = true;
ReleaseButton.Enabled = true;

}

52 Platform SDK 7.6

Chapter 2: About the .NET Code Examples Voice Examples

Developer’s Guide 53

Chapter

3 About the Java Code
Examples
This chapter introduces the Java code examples that accompany this
developer’s guide. It contains the following sections:

Setup for Development, page 53
Genesys Application Blocks, page 55
Configuration Example, page 59
Statistics Example, page 61
Open Media Examples, page 64

Setup for Development
When you install the Platform SDK, be sure that you have the required tools,
environment-variable values, and configuration data. See the Platform SDK
7.6 Deployment Guide for details.
The Platform SDK includes all Genesys libraries and third-party libraries
needed for proper operation, while the Genesys Developer Documentation CD
includes the Platform SDK code examples and a PDF version of this
developer’s guide.
To download the latest version of this document, or additional code examples,
visit the DevZone website at http://www.genesyslab.com/developer.

http://www.genesyslab.com/developer

54 Platform SDK 7.6

Chapter 3: About the Java Code Examples Setup for Development

Source-Code Examples
This chapter refers to the Java source-code examples and application blocks
supplied with Platform SDK. These examples are provided on the Genesys
Documentation CD in a .zip archive file.
The code examples illustrate the use of some common features of the Platform
SDKs. The examples are not tested and are not supported by Genesys.

Required Third-Party Tools
To develop Java applications that use the Platform SDK, you will need a Java
compiler (such as the one delivered in the Java 2 Platform Standard Edition
Development Kit (JDK), version 1.5.x, from Sun Microsystems.

Note: The Sun JDK does not support all platforms. Your platform vendor can
tell you how to obtain a JDK that supports your platform.

For this guide, Eclipse was used to compile and run all of the Java code
examples.

Java Environment Setup
In order to compile and run these examples, the compiler or the JVM needs
access to the libraries of the Platform SDK. They are located in the lib/
subdirectory of the Platform SDK product installation directory.
Additionally, any code examples that use Genesys application blocks also need
access to third-party components located in the thirdparty\jwsdp-1.6\
subdirectory of the Platform SDK product installation directory.
Set the following environment variables:
• Specify the location of the Java Runtime Environment in the JAVA_HOME

environment variable.
• Specify all Platform SDK .jar files in the CLASSPATH environment variable.
• For samples that make use of the Genesys application block, include all

third component .jar files in the CLASSPATH environment variable.

Developer’s Guide 55

Chapter 3: About the Java Code Examples Genesys Application Blocks

Building the Examples
To build one of the Java examples described in this document:
1. Set your required environment variables, as described in “Java

Environment Setup” on page 54.
2. Use the javac <source>.java command to compile the example source file

into a .class file.
3. Use the java <class> command to run the code example.
Depending on your development configuration, there may be other ways to
build the Java example. For example, if you have the Eclipse Integrated
Development Environment installed you could simply import the sample code
as a new project, set your Java Build Path to include all necessary libraries, and
then run the project as a Java Application.

Configuration Data
For the examples provided for this document to work, they need valid
configuration data, including connections to servers and configuration objects
such as Place, Dn, Agent, and so on.
See the Platform SDK 7.6 Deployment Guide for configuration details.

Genesys Application Blocks
Application Blocks are production-ready components that use industry best
practices to offer functionality needed by a broad range of Genesys customers.
To make development of Platform SDK applications easier, Genesys includes a
number of these application blocks for common tasks such as managing
protocol connections and basic message handling. When writing applications
that use the Platform SDKs, Genesys recommends that you use these
application blocks whenever possible.

Note: For more information on the application blocks included with the
Platform SDK, see “The Application Blocks” in Chapter 1.

Both the Protocol Manager and Message Broker application blocks are used
within the Java samples, as described in Table 2.

56 Platform SDK 7.6

Chapter 3: About the Java Code Examples Genesys Application Blocks

Note: The Open Media examples show how you can handle Platform SDK
messages without the Message Broker application block.
Normally, you would set up and manage separate threads for message-
handling if not using the Message Broker application block, but these
examples are so simple that they carry out all message-handling
activity in a single thread.

For a full list of application blocks that are included with the 7.6 release of
Platform SDK, along with a brief description of each application block, see
your Platform SDK 7.6 Deployment Guide.

Using the Protocol Manager Application Block
The Protocol Manager application block is used to handle Platform SDK
protocol objects within your applications. It allows you to easily open and
manage multiple protocols. Although each of these examples is limited to a
single protocol, this application block is very helpful for custom applications
that must work with more than one Genesys server.
Since all Platform SDKs require you to create and work with protocol objects
to access the underlying Genesys servers, being able to efficiently manage
those protocol objects is an important function.

Note: For more information on the application blocks included with the
Platform SDK, see “The Application Blocks” in Chapter 1.

To use the Protocol Manager application block, your Java build path must
include the protocolmanagerappblock.jar library for your project. You also
need to import the appropriate application block packages in your code, as
shown by the following line:

Table 2: Java Code Examples that use Application Blocks

Example Name Application Blocks Used

Open Media Server Example (none)

Open Media Client Example Protocol Manager

Statistics Example Protocol Manager
Message Broker

Configuration Example Protocol Manager
Message Broker

Developer’s Guide 57

Chapter 3: About the Java Code Examples Genesys Application Blocks

import
com.genesyslab.platform.applicationblocks.commons.protocols.*;

As part of implementing the Protocol Manager application block, each sample
uses a ProtocolManagementServiceImpl object.

ProtocolManagementServiceImpl pmsi;

In addition to the Protocol Manager object, you also will use a server-specific
configuration object with information about the Genesys server that you are
connecting to.
Steps for configuring this object will depend on exactly which Genesys server
you are connecting to. A connection to Configuration Server is shown here as
an example:

ConfServerConfiguration confServerConfiguration;

confServerConfiguration = new ConfServerConfiguration(protocolName);
confServerConfiguration.setClientType(ConfServerClientType.SCE);
confServerConfiguration.setClientName("default");
confServerConfiguration.setUserName(confServerUserName);
confServerConfiguration.setUserPassword(confServerPassword);
try{

confServerConfiguration.setUri(new URI("tcp://" + confServerHost
+ ":" + confServerPort));
}
catch(URISyntaxException e){

// add error handling
e.printStackTrace();

}

Once the server configuration is ready, you can register it with Protocol
Manager and then open and use that protocol:

pmsi = new ProtocolManagementServiceImpl();
pmsi.register(confServerConfiguration);
try{

pmsi.getProtocol(protocolName).open();
}
catch(Exception e){

// add error handling
e.printStackTrace();

}

58 Platform SDK 7.6

Chapter 3: About the Java Code Examples Genesys Application Blocks

Using the Message Broker Application Block
The Message Broker application block is designed to handle events that are
received in response to the various requests sent to Genesys servers. Since the
Platform SDK is message based, efficient event handling is an important
function is almost all custom applications.
For example, the Configuration Example issues a RequestReadObjects, which
can receive one of two events in response. These events are EventObjectsRead
and EventError.
To use the Protocol Manager application block, you will need to add the
protocolmanagerappblock.jar library to your project. You also need to import
the appropriate application block packages, as shown in this line from the code
examples:

import
com.genesyslab.platform.applicationblocks.commons.protocols.*;

To use the Message Broker Application Block, add the
messageborkerappblock.jar library to your project, and import the appropriate
application block packages, as shown in this line from the code examples:

import com.genesyslab.platform.applicationblocks.commons.broker.*;

As part of implementing the Message Broker Application Block, this sample
uses an EventBrokerService object to handle the two types of messages that
are expected. This service is declared with the other class members:

EventBrokerService mEventBroker;

The InitializeBroker() method in the sample includes code to register the
two event-handling methods:

mEventBroker =
BrokerServiceFactory.CreateEventBroker(pmsi.getReceiver());

mEventBroker.register(new OnEventError(),
new MessageIdFilter(EventError.ID));

mEventBroker.register(new OnEventRead(),
new MessageIdFilter(EventObjectsRead.ID));

Developer’s Guide 59

Chapter 3: About the Java Code Examples Configuration Example

Finally, there are two classes that do the event handling, as just mentioned. The
first class handles EventError messages:

class OnEventError implements Action<Message> {
public void handle(Message obj) {

if (obj != null)
appendText("Error returned.");

}
}

The OnEventRead method is similar, and uses the same principles:

class OnEventRead implements Action<Message> {
public void handle(Message obj) {

if (obj == null)
appendText("There are no objects of the requested type\n" +
"in the Genesys Configuration Layer.");

else {
appendText("Response to RequestReadObjects:\n\n" +

obj.toString());
}

}
}

Configuration Example
This example allows you to retrieve data from Configuration Server about
objects of a specific type. The user interface is shown in Figure 10.

60 Platform SDK 7.6

Chapter 3: About the Java Code Examples Configuration Example

Figure 10: Configuration Example with User Interface

To use this application, you need to set up some information about your
environment. Find the following statements in the source code for
ConfigMessageBrokerExample.java, and enter values that match your Genesys
Configuration Layer:

// Beginning of Configuration Server information:
private String protocolName = "<protocol>"; //protocol name
private String confServerHost = "<host name>"; //host
private int confServerPort = <port>; //<port>
private String confServerUserName = "<username>"; //username
private String confServerPassword = "<password>"; //password
// End of Configuration Server information.

This sample issues a RequestReadObjects, which can receive one of two
events in response. These events are EventObjectsRead and EventError. Once
you have entered the configuration information above, you are ready to run the
program.
Click the Read Objects button to create and send a RequestReadObjects request
to Configuration Server. If the request was successful, then the Event Broker
will display a message that lists the event attributes:

Developer’s Guide 61

Chapter 3: About the Java Code Examples Statistics Example

Response to RequestReadObjects:

'EventObjectsRead' (73) attributes:
SATRCFG_OBJECT [str] = <?xml version="1.0" encoding="UTF-8"

standalone="no"?><ConfData>...</ConfData>
IATRCFG_OBJECTTYPE [int] = 2
IATRCFG_OBJECTCOUNT [int] = 54
IATRCFG_TOTALCOUNT [int] = 54
IATRCFG_REQUESTID [int] = 3

2008-26-02 10:48:15:719

Now that you have seen what the program does, let’s take a look at how it
works.
When this code example begins running, it immediately uses the Protocol
Manager and Event Broker application blocks, as described in the sections
above. This establishes a connection to the Configuration Server, and provides
behavior for various events that are returned.
After the basic setup is accomplished, the createReadRequest method provides
code that creates and sends a new Read Object request, which is called when
you click the Read Objects button, as you see here:

KeyValueCollection filterKey = new KeyValueCollection();
RequestReadObjects requestReadObjects = RequestReadObjects.create(

ConfServerObjectType.DN.asInteger(), filterKey);
try{

pmsi.getProtocol(protocolName).send(requestReadObjects);
}
catch (ProtocolException e){

e.printStackTrace();
}

Once the request has been processed, an event is returned containing the
information about one person from Interaction Server. The class registered
with your EventBroker object then handles the event

Statistics Example
This example shows how to subscribe to a statistic and have it update
periodically. The user interface for this example is very simple, with one
button that lets you subscribe to (and begin retrieving) statistics information
based on hard-coded values within the application, a second button to cancel
the current subscription, and a third button to clear the log window. Figure 11
shows the user interface.

62 Platform SDK 7.6

Chapter 3: About the Java Code Examples Statistics Example

Figure 11: Statistics Example User Interface

To use this example, you will have to set up configuration information in the
following lines of StatisticsPlatformSDKExample.java:

// Beginning of Statistic information:
private int statKey = 1234; // unique key for this Statistic request
private int refreshTime = 10; // notification refresh time (in
seconds)
private String statObjTenantId = "<tenant ID>";
private String statObjId = "<object ID>";
private String statMetricName = "<metric name>";
private String statMetricTimeProfile = "<metric time profile>";
private String statMetricTimeRange = "<metric time range>";
private String statMetricFilter = "<metric filter>";
// End of Statistic information.

When this code example begins running, it immediately uses the Protocol
Manager and Event Broker application blocks, as described in the sections
above. This establishes a connection to the Statistics Server, and provides
behavior for the various events that are returned.

Developer’s Guide 63

Chapter 3: About the Java Code Examples Statistics Example

At this point, it’s time to define some statistics. To do this, the
createStatisticsCollection method first creates and defines metrics for the
statistic:

// build a new StatisticMetric
StatisticMetric statisticMetric = new
StatisticMetric(statMetricName);
statisticMetric.setTimeProfile(statMetricTimeProfile);
statisticMetric.setTimeRange(statMetricTimeRange);
statisticMetric.setFilter(statMetricFilter);

Then, a new statistics object is created that identifies the Configuration Layer
object to collect information about the object’s type, and the tenant housing the
object. In this case, the object is a DN:

// build a new StatisticObject
StatisticObject objectDescription = new
StatisticObject(statObjTenantId,

statObjId, StatisticObjectType.RegularDN);

Once the statistics object and metrics have been defined, they are used to
create a new statistic. Then a new statistics collection is instantiated, and the
new statistic is added to the collection:

Statistic statistic = new Statistic(objectDescription,
statisticMetric);
// create a new StatisticCollection
StatisticsCollection statisticsCollection = new
StatisticsCollection();
statisticsCollection.addStatistic(statistic);

This statistic will be used in the checkStatistic method. This method creates a
Notification object, which gives the notification interval, creates a request to
open a statistics package, and then sends the request to the server:

Notification notification = Notification.create(
NotificationMode.Periodical, refreshTime);

RequestOpenPackage requestOpenPackage =
RequestOpenPackage.create(statKey,

StatisticType.Historical, createStatisticsCollection(),
notification);
try {
mProtocolManager.getProtocol(

protocolName).send(requestOpenPackage);

When the package has been opened, a message comes in from the server with
statistics information. This message is handled by the OnEventPackageOpened
class, which was registered with Event Broker:

64 Platform SDK 7.6

Chapter 3: About the Java Code Examples Open Media Examples

class OnEventPackageOpened implements Action<Message> {
public void handle(Message obj) {

if (obj == null)
System.out.println("nothing returned");

else
// handle EventPackageOpened
appendLogMessage("=== Event: Package Open ===\n"

+ obj.toString()
+ "\n\n" + createTimeStamp()
+ "\n=============================");

}
}

Open Media Examples
There are two Open Media examples. The first example is a simple media
server that submits a new Open Media interaction. The second example is a
client application that can accept an Open Media interaction for processing.
Once an interaction has been accepted, the application allows an agent to read
information about the interaction and mark it as completed.

Open Media Server Example
This example is very simple. The user interface has a single button that
submits an Open Media interaction using information that has been hard-coded
in the application. It also has a window that displays information about the
interaction, as shown in Figure 12.

Developer’s Guide 65

Chapter 3: About the Java Code Examples Open Media Examples

Figure 12: Open Media Server Example User Interface

To use this application, you need to set up some information about your
environment. Find the following statements in the source code for
ConfigMessageBrokerExample.java, and enter values that match your Genesys
Configuration Layer:

private String protocolName = "<protocol>"; //protocol name
private String interactionServerHost = "<host name>"; //host
private int interactionServerport = <port>; //<port>
private Integer tenantId = new Integer(101);
private String inboundQueue = "<queue>"; //queue
private String mediaType = "<media type>"; //media type

Once you have entered this information, you can run the program. Click the
Create Interaction button, and if the interaction was successfully created,
you should soon see this message:

Response: EventAck

Now that you have seen what the program does, let’s take a look at how it
works.

66 Platform SDK 7.6

Chapter 3: About the Java Code Examples Open Media Examples

Since this custom media server is such a simple program, almost all of the code
you need to understand is in the createInteraction method, which is called
when you click the Create Interaction button. The first thing this method
does is create an InteractionServerProtocol object, using the server and host
information you entered in the configuration section of the program.

interactionServerProtocol = new InteractionServerProtocol(
 new Endpoint(protocolName,
 interactionServerHost,
 interactionServerport));

Now the code specifies the client name and type. This is also a good time to set
up some user data for the new interaction. In this case, the code shows how to
add a subject to the new interaction.

interactionServerProtocol
 .setClientName("EntityListener");
interactionServerProtocol
 .setClientType(InteractionClient.MediaServer);

KeyValueCollection userData = new KeyValueCollection();

userData.addString("Subject",
 "New Interaction Created by a Custom Media Server");

With this basic setup accomplished, it is time to open the Protocol object, and
then submit a new interaction, as you see here:

try {
 interactionServerProtocol.open();

 RequestSubmit requestSubmit = RequestSubmit
 .create(inboundQueue, mediaType,
 "Inbound");
 requestSubmit.setTenantId(tenantId);
 requestSubmit
 .setInteractionSubtype("InboundNew");
 requestSubmit.setUserData(userData);

Once the Request has been processed, you will receive a message from
Interaction Server, which will then be printed to the information pane of your
application:

Message response = interactionServerProtocol
 .request(requestSubmit);

Developer’s Guide 67

Chapter 3: About the Java Code Examples Open Media Examples

String message = createTimeStamp()
 + " Response: " + response.messageName()
 + “\n” + response.toString() + “\n\n”;
 writeLogMessage(message, "regular");

Open Media Client Example
This example enables an agent to receive an Open Media interaction, accept it
for processing, and mark it done. As you can see in Figure 13, the example has
buttons to log an agent in and out and to make the agent ready or not ready.
Once the agent has logged in, he or she can click the Receive button to receive
an interaction, and then click the Accept button to accept it.

Figure 13: Open Media Client Example User Interface

68 Platform SDK 7.6

Chapter 3: About the Java Code Examples Open Media Examples

To use this application, you need to set up some information about your
environment. Find the following statements in the source code and enter values
that match your Genesys Configuration Layer:

// Enter your Interaction Server information here:
private String protocolName = "<protocol>";
private String ixnServerHost = "<host name>";
private int ixnServerPort = <port>;
private String mediaType = "<media type>";
private String placeId = "<place name>";
private long timeoutLength = 10000;
// End of Interaction Server information.

Once you have set up the configuration information, you can run the
application. Here is what it does.
When this code example begins running, it immediately uses the Protocol
Manager and Event Broker application blocks, as described in the sections
above. This establishes a connection to Open Media Server, and provides
behavior for the various events that are returned.
Once the application is running, your agent can log in. Clicking the Log In
button will run the logicLogin method. At this point, the agent can be logged
in, using the media list created in the constructor call. The first step is to create
the login request and set up the media list:

try {
RequestAgentLogin reqAgentLogin = RequestAgentLogin.create(101,

placeId, null);
KeyValueCollection kvc = new KeyValueCollection();
kvc.addPair(new KeyValuePair(mediaType, mediaType));
reqAgentLogin.setMediaList(kvc);

Now the message can be sent to the server. The Request method does the
sending and then waits for a response:

Message msgResponse =
mProtocolManager.getProtocol(protocolName).request(reqAgentLogin);

When the response comes in, the code checks to see whether it was successful,
and then updates the user interface to reflect the agent’s new status:

if (checkReturnMessage(msgResponse, "RequestAgentLogin
sent:\n")){

logoutButton.setEnabled(true);
readyButton.setEnabled(false);
readyButton.setEnabled(true);
receiveButton.setEnabled(true);

}

Developer’s Guide 69

Chapter 3: About the Java Code Examples Open Media Examples

else {
loginButton.setEnabled(true);
appendLogMessage("Could not login. Null message returned on

RequestAgentLogin attempt.\n\n");
}

}
catch (ProtocolException e) {

e.printStackTrace();
}

Note that the first line of this snippet calls the checkReturnMessage method.
This method handles return messages for several of the requests issued in the
sample application. As you can see from its signature, this method uses the
request type and the response from the server as input. It returns a Boolean
value indicating whether the request was successful.

private boolean checkReturnMessage(string requestType,
Message respondingEvent)

The body of the method sets the Boolean to false, initializes the message that
will be printed to the information pane, and determines which event message
was received from the server. If an acknowledgement message was received,
the Boolean is set to true. In any case, a message is written to the information
pane.
Now the agent can click the Receive button. This triggers the logicReceive
method. This method issues a Receive method, which waits for a response
from the server:

Message unsolicitedEvent =
mProtocolManager.getReceiver().receive(timeoutLength);

If the method times out, the code indicates to the agent that the queue is empty.
Otherwise, the code determines whether the server’s response is an invitation
to process an interaction. If the agent has been invited to process an interaction,
the code prints information about it in the information window at the bottom of
the user interface:

switch(unsolicitedEvent.messageId())
{

case EventInvite.ID: // We are invited...
EventInvite eventInvite = (EventInvite) unsolicitedEvent;
// save there parameters so that we can accept the invitation
incomingInteractionTicketId = eventInvite.getTicketId();
incomingInteractionProperties = eventInvite.getInteraction();
incomingInteractionName =

incomingInteractionProperties.getInteractionId();

70 Platform SDK 7.6

Chapter 3: About the Java Code Examples Open Media Examples

// show details of the interaction message
logMessage = "Interaction ID: " + incomingInteractionName

+ "\nQueue: " +
incomingInteractionProperties.getInteractionQueue()

+ "\nInteraction Subtype: " +
incomingInteractionProperties.getInteractionSubtype()

+ "\nSubject: " +
incomingInteractionProperties.getInteractionUserData().getString("S
ubject")

+ "\nReceived At: " +
incomingInteractionProperties.getInteractionReceivedAt();

ixnTextArea.setText(logMessage);
// display message
logMessage = "EventInvite received.\n\n"

+ "eventInvite.TicketId: "
+ incomingInteractionTicketId + "\n"
+ "eventInvite.Interaction.InteractionId: "
+ incomingInteractionName + "\n\n";

acceptButton.setEnabled(true);
break;

case EventCurrentAgentStatus.ID:
logMessage = "EventCurrentAgentStatus event received.\n\n";
receiveButton.setEnabled(true);
break;

case EventError.ID: // 126
logMessage = "EventError received. Details follow:\n"

+ unsolicitedEvent.toString() + "\n\n";
receiveButton.setEnabled(true);
break;

default:
logMessage = "Unexpected Event: " +

unsolicitedEvent.messageName() + "\n"
+ "Responding Event ID is "
+ unsolicitedEvent.messageId() + "\n"
+ unsolicitedEvent.toString() + "\n\n";

receiveButton.setEnabled(true);
break;

}

Now the agent can click the Accept button, which triggers a request to accept
the interaction:

RequestAccept requestAccept =
RequestAccept.create(incomingInteractionTicketId,

incomingInteractionName);
Message respondingEvent =
mProtocolManager.getProtocol(protocolName).request(requestAccept);

Developer’s Guide 71

Chapter 3: About the Java Code Examples Open Media Examples

The code then checks the response, and if the response is favorable, it updates
buttons on the user interface and prints information about the interaction in the
Interaction Information pane:

if (checkReturnMessage(respondingEvent, "RequestAccept sent:\n")) {
appendLogMessage("Interaction ID: " +
requestAccept.getInteractionId() + "\n"

+ "Queue: " +
incomingInteractionProperties.getInteractionQueue() + "\n"

+ "Interaction Subtype: " +
incomingInteractionProperties.getInteractionSubtype() + "\n\n"

+ "User Data: \n" +
incomingInteractionProperties.getInteractionUserData().toString() +
"\n\n"

+ "Received At: " +
incomingInteractionProperties.getInteractionReceivedAt().toString()
+ "\n\n");
doneButton.setEnabled(true);

The agent can view this interaction, and then click the Done button.

RequestStopProcessing reqDone =
RequestStopProcessing.create(incomingInteractionProperties.getInter
actionId(), null);
Message msgResponse =
mProtocolManager.getProtocol(protocolName).request(reqDone);
if (checkReturnMessage(msgResponse, "RequestStopProcessing
sent:\n")){

ixnTextArea.setText("");
receiveButton.setEnabled(true);

}
else

doneButton.setEnabled(true);

At this point, the agent can log out, triggering the following code, which sends
the logout request and checks the response. If the response is successful, the
buttons on the user interface are updated:

RequestAgentLogout reqAgentLogout = RequestAgentLogout.create();
Message msgResponse =
mProtocolManager.getProtocol(protocolName).request(reqAgentLogout);

72 Platform SDK 7.6

Chapter 3: About the Java Code Examples Open Media Examples

if (checkReturnMessage(msgResponse, "RequestAgentLogout sent:\n")){
loginButton.setEnabled(true);
readyButton.setEnabled(false);
notReadyButton.setEnabled(false);
receiveButton.setEnabled(false);
acceptButton.setEnabled(false);
doneButton.setEnabled(false);
ixnTextArea.setText("");

}
else

loginButton.setEnabled(true);

Developer’s Guide 73

Index

Symbols
.NET Framework version. 22

A
accept interaction 39, 67
agent login 39, 67
agent not ready. 39, 67
agent ready. 39, 67
answer call 51
Application Block

Configuration Context 16
Configuration Object Model 16
Message Broker . 16, 19, 20, 22, 23, 26, 29–30,

33, 35, 36, 46
Multi-Channel Communication Model 17
Protocol Manager 16, 19, 20, 23, 25–26, 29–31,

33, 34, 35, 36, 46
SIP Endpoint 17
Warm Standby. 16

asynchronous open and close methods . . . 35
audience

defining 6

B
building the examples

.NET . 22
Java . 55

button
Read Objects 24

C
call

answer. 51
make. . 50

Callback Server 14, 15
CD

Genesys Developer Documentation . . 21, 53
CFGLIB protocol15
chapter summaries

defining .8
Chat Server 14, 15
checkReturnMessage method . . . 42, 48, 49, 69
CLASSPATH54
close method

asynchronous 35
synchronous 35

CMLIB protocol 15
code examples. 21, 53
commenting on this document 11
Configuration Context Application Block. . . .16
configuration data22, 23, 29, 36, 40, 46, 55, 60, 62,

65, 68
Configuration Example. 23–28, 59–61
Configuration Layer

objects 23, 59, 63
Configuration Object Model Application Block .16
Configuration Platform SDK 14, 15
Configuration Server15

generating a query to 24
query . 24
retrieving data from 23, 59
XML response 24

connection48
Connection ID 49, 51
ConnID. 50, 51
Create method24
custom media servers14

D
defining statistics. 30, 63
deployment information

.NET . 21
Java . 53

Developer Documentation CD 21, 53
DN, register 48
document

Index

74 Platform SDK 7.6

conventions 8
errors, commenting on 11
version number 8

Documentation CD
Genesys Developer 21, 53

E
E-Mail Server Java14, 15
Endpoint 41
ESP protocol 15
event handling

Message Broker Application Block 59
EventACK 49
EventAck 42
EventAgentLogin 49
EventBrokerService 58
EventDialing 50
EventError 43, 50, 58, 60
event-handling methods

registering 26, 58
EventInvite43, 44
EventObjectsRead27, 58, 60
EventRinging 51
examples

building .NET 22
building Java 55

external service processing (ESP) 14

F
Filter objects 24
Form1.cs 23, 29, 36, 40, 46

G
Generating a query to Configuration Server . 24
Genesys Developer Documentation CD . .21, 53
GMESSAGELIB protocol. 15

I
IMessage interface 42, 44, 45, 48, 50, 51
InitializeBroker() method 58
interaction

accept 39, 67
Open Media 36, 39, 64, 67
submitting 36, 64

Interaction Server 15
InteractionServerProtocol 41
ITX protocol 15

J
Java version54
JAVA_HOME. 54
JDK version 54
JVM .54

K
KeyValueCollection 24–25, 37

L
LCALIB protocol15
libraries

Platform SDK 22
list

media . 41
Local Control Agents. 14, 15

M
make call. 50
Management Platform SDK 14, 15
MCR Callback Lib protocol 15
MCR Chat Lib protocol. 15
MCR E-Mail Lib protocol15
media list. 41
media type41
Message Broker Application Block 16, 19, 20, 22,

23, 26, 29–30, 33, 35, 36, 46, 58–59
event-handling 59

Message interface69
Message Server 14, 15
message-handling 22, 31, 48, 49, 56, 63
messages

return 42, 69
methods

event-handling
registering 26, 58

Multi-Channel Communication Model Application
Block 17

N
not ready

agent 39, 67

O
objects

Configuration Layer 23, 59, 63
Filter. . 24

Index

Developer’s Guide 75

Person . 24
OCS-Desktop Protocol 15
OnEventRead 59
Open Media examples36, 64
Open Media interaction 14, 36, 39, 64, 67
Open Media Platform SDK14, 15
open method

asynchronous 35
synchronous 35

Outbound Contact Platform SDK. 14, 15
Outbound Contact Server 15

P
Person objects 24
Platform SDK libraries 22
Preview Interaction Protocol 15
protocol

CFGLIB 15
CMLIB . 15
ESP . 15
GMESSAGELIB 15
ITX. . 15
LCALIB 15
MCR Callback Lib 15
MCR Chat Lib 15
MCR E-Mail Lib 15
OCS-Desktop 15
Preview Interaction 15
SCSLIB 15
STATLIB 15
TLIB . 15

Protocol Manager Application Block . 16, 19, 20,
23, 25–26, 29–31, 33, 34, 35, 36, 46, 56–
57

Protocol object38, 66

Q
query

Configuration Server 24

R
Read Objects button 24
ReadObjectsButton_Click method 24
ready

agent 39, 67
Receive() method 43
register DN 48
register event-handling methods26, 58
Request method 38, 42, 48, 51
RequestAccept 44
RequestAgentLogin 41

RequestAgentLogout 45
RequestAnswerCall 51
RequestReadObjects 24
RequestStopProcessing45
RequestSubmit 38
retrieving Configuration Server data 23, 59
return messages 42, 69

S
SCSLIB protocol15
SIP Endpoint Application Block 17
Solution Control Server 14, 15
source code for examples

.NET . 21
Java . 54

Stat Server15
statistic

subscribing to 28, 61
statistics

defining 30, 63
Statistics Example 28–33, 61
Statistics Platform SDK 14, 15
STATLIB protocol 15
Subject . .37
submitting an interaction. 36, 64
subscribing to a statistic 28, 61
switch

in the contact center 46
switch statement

for checking returned events 42, 43, 49
synchronous open and close methods 35

T
threads. 22, 31, 47, 48, 49, 56, 63
TLIB protocol 15
TServerProtocol 47
T-Servers 15
type

media . 41
typographical styles 9

U
user data 37, 66

V
version numbering

document8
Visual Studio22
Voice Examples 46–51
Voice Platform SDK 14, 15

Index

76 Platform SDK 7.6

W
Warm Standby Application Block. 16
Web API Server 14, 15
Web Media Platform SDK 14, 15

X
XML response from Configuration Server . . 24

	Table of Contents
	Preface
	Intended Audience
	Usage Guidelines
	Chapter Summaries
	Document Conventions
	Related Resources
	Making Comments on This Document

	About the Platform SDK
	The Platform SDKs
	Configuration
	Contacts
	Management
	Open Media
	Outbound Contact
	Statistics
	Voice
	Web Media

	The Application Blocks
	Message Broker
	Protocol Manager
	Warm Standby
	Configuration Context
	Configuration Object Model
	SIP Endpoint
	Multi-Channel Communication Model

	Learning About the Platform SDK for .NET
	Learning About the Platform SDK for Java
	New in this Release
	Contacts Platform SDK for .NET
	Configuration Object Model Application Block for Java
	Host Information in Management Platform SDK
	New Java Code Examples
	New .NET Code Examples
	New Default Value for Users Accounts
	Enhanced documentation

	About the .NET Code Examples
	Setup for Development
	Source-Code Examples
	Required Third-Party Tools
	.NET Environment Setup
	Building the Examples
	Configuration Data

	Configuration Example
	Connecting to Configuration Server
	Event Handling

	Statistics Example
	Complex Example
	Open Media Examples
	Open Media Server Example
	Open Media Client Example

	Voice Examples

	About the Java Code Examples
	Setup for Development
	Source-Code Examples
	Required Third-Party Tools
	Java Environment Setup
	Building the Examples
	Configuration Data

	Genesys Application Blocks
	Using the Protocol Manager Application Block
	Using the Message Broker Application Block

	Configuration Example
	Statistics Example
	Open Media Examples
	Open Media Server Example
	Open Media Client Example

	Index

