
Platform SDK 8.1

Developer’s Guide Wiki
Redirect

ALERT: This document is available as a
PDF only to support searches from the
Technical Support Knowledge Base.
Click here (Platform SDK Developer’s
Guide) to be redirected to the content in
its original format.

PDF generated using the open source mwlib toolkit. See http://code.pediapress.com/ for
more information.

http://docs.genesys.com/Documentation/PSDK
http://docs.genesyslab.com/wiki/index.php?title=Platform_SDK_Developer%27s_Guide

Contents
Articles

Platform SDK Developer's Guide 1
Developers Guide PDF - PSDK 7.6 3
LCA Hang-Up Detection Support 3
Lazy Parsing of Message Attributes 8
Using the Switch Policy Library 10

References
Article Sources and Contributors 20
Image Sources, Licenses and Contributors 21

Platform SDK Developer's Guide 1

Platform SDK Developer's Guide

 Home > Platform SDK > Platform SDK Developer's Guide
Purpose: To provide details, recommendations, and code samples that will aid developers using the Platform SDK.

 Important Note: The Platform SDK Developer's Guide information in this wiki is currently a work-in-progress. Check back in the following
days for new articles and additional content pages to be added.

Description
This document introduces you to the tools and examples provided to help you get started with Platform SDK
development.
The Platform SDK is divided broadly into three categories:
•• Application Blocks provide production-ready blocks of code you should leverage, and modify if necessary, when

creating applications.
•• Server-Specific SDK Protocols work directly with Genesys servers using message-based requests and events.
•• Library Components offer additional features and functionality such as logging.
There is also a list of additional topics that may pertain to general developer topics or common SDK functionality.
For additional information about the Platform SDKs, please check the introductory materials provided as part of the
Platform SDK API Reference for your release.

Application Blocks

Application Block Releated Documentation

Application Template Application Block

Configuration Object Model Application Block

Message Broker Application Block

Protocol Manager Application Block

Warm Standby Application Block

Server-Specific SDK Protocols

http://docs.genesyslab.com/wiki/index.php?title=File:Welcome.png
http://docs.genesyslab.com/wiki/index.php?title=Main_Page
http://docs.genesyslab.com/wiki/index.php?title=Platform_SDK
http://docs.genesyslab.com/wiki/index.php?title=File:DevGuide2.png
http://docs.genesyslab.com/wiki/index.php?title=File:Important.png
http://docs.genesyslab.com/wiki/index.php?title=Platform_SDK_API_Reference

Platform SDK Developer's Guide 2

Platform SDK Protocol Genesys Server(s) Releated Documentation

Configuration Platform SDK Configuration Server

Contacts Platform SDK Universal Contact Server

Management Platform SDK Message Server Solution Control Server Local Control Agent LCA Hang-Up Detection Support

Open Media Platform SDK Interaction Server

Outbound Contact Platform SDK Outbound Contact Server

Routing Platform SDK Universal Routing Server Custom Server

Statistics Platform SDK Stat Server

Voice Platform SDK T-Servers

Web Media Platform SDK Chat Server E-Mail Server Java Callback Server

Library Components

Library Component Releated Documentation

Platform SDK Log Library

Platform SDK Switch Policy Library Using the Switch Policy Library

Additional Topics
•• Lazy Parsing of Message Attributes

New Content by Release
This section provides a quick outline of developer content based on the release where that information first became
relevant, or where it where last updated.
Release 8.1.x

New Features:
•• Lazy Parsing of Message Attributes
•• LCA Hang-Up Detection Support
Release 8.0

• Please refer to developer information provided as part of the introductory material in the Platform SDK API
Reference for this release.

Release 7.6

• Please refer to the Platform SDK 7.6 Developer's Guide PDF.

http://docs.genesyslab.com/wiki/index.php?title=Platform_SDK_API_Reference
http://docs.genesyslab.com/wiki/index.php?title=Platform_SDK_API_Reference

Developers Guide PDF - PSDK 7.6 3

Developers Guide PDF - PSDK 7.6

 Home > Platform SDK > Platform SDK Developer's Guide > Developers Guide PDF - PSDK 7.6

 76sdk_dev_platform.pdf [1]

Description
This document is currently only applicable to the 7.6 release of Platform SDK.
This document introduces you to the tools and examples provided to help you get started with Platform SDK
development. In brief, you will find the following information in this guide:
•• Descriptions of the Application Blocks included with Platform SDK 7.6.
•• Setup instructions and analysis of the code examples included with Platform SDK 7.6.

<pdf>http:/ / devzone. genesyslab. com/ devportal/ 76%20SDK%20Documentation/ 76sdk_dev_platform. pdf</pdf>

References
[1] http:/ / devzone. genesyslab. com/ devportal/ 76%20SDK%20Documentation/ 76sdk_dev_platform. pdf

LCA Hang-Up Detection Support

 Home > Platform SDK > Platform SDK Developer's Guide > LCA Hang-Up Detection Support
Description: This page provides:

•• an overview and list of requirements for the LCA Hang-Up Detection Support feature
•• design details explaining how this feature works
•• code examples showing how to implement LCA Hang-Up Detection Support in your applications

Introduction to LCA Hang-up Detection Support
Beginning with release 8.1, the Platform SDKs now allow user-developed application to include hang-up detection
functionality.
The Genesys Management Layer relies on Local Control Agent (LCA) to monitor and control applications. An open
connection between LCA and Genesys applications is typically used to determine which applications are running or
stopped. However, if an application that has stopped responding still has a connection to LCA then it could appear to
be running correctly - preventing Management Layer from switching over to a backup application or taking other
actions to restore functionality.
Hang-up detection allows Local Control Agent (LCA) to detect unresponsive Genesys applications by checking for
regular heartbeat messages. When an unresponsive application is found, pre-configured actions can taken - including
triggering alarms or restarting the application.

 Note: Hang-up detection functionality has been available in the Genesys Management Layer since release 8.0.1.
For more information, refer to the Framework 8.0 Management Layer User's Guide [1]. For details about related
configuration options, refer to the Framework 8.0 Configuration Options Reference Manual [2].
Two levels of hang-up detection are available: implicit and explicit.

http://docs.genesyslab.com/wiki/index.php?title=File:Welcome.png
http://docs.genesyslab.com/wiki/index.php?title=Main_Page
http://docs.genesyslab.com/wiki/index.php?title=Platform_SDK
http://docs.genesyslab.com/wiki/index.php?title=File:PDF.png
http://devzone.genesyslab.com/devportal/76%20SDK%20Documentation/76sdk_dev_platform.pdf
http://docs.genesyslab.com/wiki/index.php?title=File:Download.png
http://devzone.genesyslab.com/devportal/76%20SDK%20Documentation/76sdk_dev_platform.pdf
http://devzone.genesyslab.com/devportal/76%20SDK%20Documentation/76sdk_dev_platform.pdf
http://docs.genesyslab.com/wiki/index.php?title=File:Welcome.png
http://docs.genesyslab.com/wiki/index.php?title=Main_Page
http://docs.genesyslab.com/wiki/index.php?title=Platform_SDK
http://docs.genesyslab.com/wiki/index.php?title=File:DevGuide2.png
http://docs.genesyslab.com/wiki/index.php?title=File:Information.png
http://genesyslab.com/support/dl/retrieve/default.asp?item=B8C93DA63FA831AA33AC3542BCCE384C&view=item
http://genesyslab.com/support/dl/retrieve/default.asp?item=B5C334AA30A63CA2389E046E95E2145F&view=item

LCA Hang-Up Detection Support 4

Implicit Hang-up Detection
The easiest form of hang-up detection to implement is implicit hang-up detection.
In this scenario, application status is monitored through the connection between your application and LCA. This
functionality can be extended by adding a requirement that your application periodically interacts with LCA (either
responding to ping request or sending its own heart-beat messages) as a necessary condition of application liveliness.
This simple form of hang-up detection can be implemented internally by using the
LocalControlAgentProtocol to connect to LCA. In this case, existing applications only need to be rebuilt
with a version of LocalControlAgentProtocol that supports hang-up detection functionality - no coding
changes are required - and given the appropriate configuration options in Genesys Management Layer.

Explicit Hang-up Detection
Explicit hang-up detection offers more robust protection from applications that may become unresponsive, but is
also more complex.
The periodic interaction that is monitored by implicit hang-up detection only confirms that your application can
interact with LCA. In most cases this means that the application is able to communicate with other apps and that the
thread responsible for communicating with LCA is still active. However, multi-threaded applications may contain
other threads that are blocked or have stopped responding without interrupting communication with LCA. Explicit
hang-up detection allows you to determine when only part of your application hangs-up by monitoring individual
threads in the application.
In addition to allowing your application to register (or unregister) individual threads to be monitored, explicit
hang-up detection also allows your application to stop or delay the monitoring process. Threads that execute
synchronous functions (which can block thread execution for some extended periods) or other features that prevent
accurate monitoring should take advantage of this feature.

Feature Overview
•• To maintain backwards compatibility, hang-up detection must be explicitly enabled in the application

configuration.
• Implicit hang-up detection can be used for applications that do not require complex monitoring functionality. No

code changes are required, just rebuild your application using the new version of
LocalControlAgentProtocol.

•• Explicit hang-up detection requires minimal application participation - enabling monitoring, registering and
unregistering execution threads, and providing heartbeats. Most hang-up detection functionality is implemented
within the Management Layer component, while all timing information (such as maximum allowed period
between heartbeats) is configured through Genesys Management Layer.

System Requirements
Genesys Management Layer:
•• Release 8.0.1 or later
Platform SDK for .NET:
•• Management SDK protocol release 8.1 or later
•• .NET Framework 3.5
•• Visual Studio 2008 (required for .NET project files)
Platform SDK for Java:
•• Management SDK protocol release 8.1 or later

LCA Hang-Up Detection Support 5

•• J2SE 5.0 or Java 6 SE runtime

Design Details
This section provides an overview of the main classes and interfaces used to add thread monitoring functionality for
Explicit hang-up detection. Before using the classes and methods described here, be sure that you have implemented
basic LCA Integration in your application using LocalControlAgentProtocol.
Although the details of thread monitoring implementation are slightly differently for Java and .NET, the basic idea is
the same: to create and update a thread monitoring table that LCA can use to confirm the status of your application.
Note that for implicit hang-up detection you are only required to rebuild your application and make adjustments to
the configuration options in Genesys Management Layer; the details described below are not required for simple
application monitoring.

Thread Monitoring Table
The new thread monitoring functions described below allow LocalControlAgentProtocol to create and
maintain a thread monitoring table within the application. This table tracks basic thread status.

Sample Thread Monitoring Table

OS Thread ID Logical Thread ID Thread Class Heartbeat Counter Flags

0 «main» 1 444345 active

1 «pool_1» 2 354354 suspend

2 «pool_2» 2 432432 deleted

3 «pool_3» 2 434323 active

4 «DB_store» 3 31212 active

....

Each row corresponds to a monitored thread. Columns of the table are:
• OS Thread ID—The OS-specific thread ID, used for thread identification during monitoring. OS thread ID is not

passed by application but is received directly from system.
• Logical Thread ID – Application logical thread ID (or logical name, in Java). Used for logging and thread

identification.
• Thread Class—Thread class integer. This value is only meaningful within the scope of the application; threads

with the same thread class value in a different application can have different roles. Examples of thread classes
might be the main loop thread, pool threads, or special threads (such as external authentication threads in
ConfigServer).

• Heartbeat Counter—Cumulative counter of Heartbeat() calls made by the corresponding thread.
Incrementing this value is the main way to indicate that the thread is still alive.

 NOTE: This value is initialized with a random value when the thread is registered for monitoring. This
prevents incorrect hang-up detection if threads are created and terminated with high frequency, leading to
repeating OS thread IDs.

• Flag—Special flags.
• Suspended/Resumed—Corresponds to the state of thread monitoring.
• Deleted—Used internally to notify LCA that a thread was unregistered from monitoring.

http://docs.genesyslab.com/wiki/index.php?title=File:Information.png

LCA Hang-Up Detection Support 6

.NET Implementation
ThreadMonitoring Class

The ThreadMonitoring class is defined in the Genesyslab.Diagnostics namespace of
Genesyslab.Core.dll. This class contains the following public static methods:
• Register(int threadClass, string threadLogicId)—enables monitoring for this thread
• Unregister()—removes this thread from monitoring
• Heartbeat()—increases heartbeat counter for this thread (indicating that thread is still alive)
• SuspendMonitoring()—suspend monitoring for this thread
• ResumeMonitoring()—resumes monitoring for this thread

 Note: Each method should be called from within the thread that is being monitored.
When a thread is registered for monitoring, the following parameters are included:
• threadClass—Any positive integer that represents the type of thread, allowing you to specify different

monitoring settings for groups of threads within an application.
• threadLogicId—A logical, descriptive thread ID that is independent from thread ID provided by OS. This

value is used for thread identification within LCA and for logging purposes. This ID should be unique within the
application.

PerformanceCounter Constants

The following String constants (names) are defined in the ThreadMonitoring class:

public const string CategoryName = "Genesyslab PSDK .NET";

public const string HeartbeatCounterName = "Thread Heartbeat";

public const string StateCounterName = "Thread State";

public const string ProcessIdCounterName = "ProcessId";

public const string OsThreadIdCounterName = "OsThreadId";

The Platform SDK thread monitoring functionality uses these constants to manage PerformanceCounter values. In
addition to these custom performance counters, you can also use standard ones, such as those defined in Thread
category: "% Processor Time", "% User Time", etc.
See MSDN[3] for details about performance counters.

 Note: Use of PerformanceCounters is optional, and is not required for LCA hang-up detection functionality.

Java Implementation
ThreadHeartbeatCounter class

The ThreadHeartbeatCounter class is defined in the
com.genesyslab.platform.commons.threading package, located within commons.jar. This class is
designed as a JMX[4] MBean and implements the public ThreadHeartbeatCounterMBean interface which is
accessible through Java management framework.
There is no public constructor for the ThreadHeartbeatCounter class; each thread that you want to monitor
should create its own instance with following static method:

public static ThreadHeartbeatCounter createThreadHeartbeatCounter(

 String threadLogicalName,

 int threadClass);

When a thread is registered for monitoring, the following parameters are included:

http://docs.genesyslab.com/wiki/index.php?title=File:Information.png
http://docs.genesyslab.com/wiki/index.php?title=File:Information.png

LCA Hang-Up Detection Support 7

• threadLogicalName—A logical, descriptive thread name that is used to identify the thread within LCA and
for logging purposes. This name should be unique within the application.

• threadClass—Any positive integer that represents the type of thread, allowing you to specify different
monitoring settings for groups of threads within an application.

One key difference from thread monitoring using .NET is the need to create a monitoring object instance. The
lifecycle of this object, including MBeanServer registration, is supported by the parent class PSDKMBeanBase
and is shown in the five steps below:
1.1. Start monitoring a thread:

ThreadHeartbeatCounter monitor =

 ThreadHeartbeatCounter.createThreadHeartbeatCounter(

 threadId, threadClass);

monitor.initialize();

1.1. Notify LCA that thread is still alive (increase heartbeat counter):

monitor.alive();

1.1. Suspend monitoring of this thread:

monitor.setActive(false);

1.1. Resume monitoring of this thread:

monitor.setActive(true);

1.1. Finish monitoring and unregister this thread:

monitor.unregister();

 Note: Each of these methods must be called from within the thread that is being monitored.
Once a ThreadHeartbeatCounter object is unregistered, that instance cannot be reused. To begin monitoring
that thread again (or any other) you first need to create a new instance of the a thread monitoring object.
ThreadHeartbeatCounterMBean interface

The ThreadHeartbeatCounterMBean interface is intended to present an open API to the JMX MBean. This
interface contains the following publicly accessible methods:

 public long getThreadSystemId();

 public String getLogicalName();

 public int getThreadClass();

 public void setThreadClass(int newThreadClass);

 public int getHeartbeatCounter();

 public void setActive(boolean isActive);

 public boolean isActive();

These methods are "MBean client-side" methods and are used by LCA protocol to get actual information about the
thread for the monitoring table. They also allow users to change the thread class and suspend or resume thread
monitoring (using setActive(false/true)) of a particular thread at application runtime.

http://docs.genesyslab.com/wiki/index.php?title=File:Information.png

LCA Hang-Up Detection Support 8

References
[1] http:/ / genesyslab. com/ support/ dl/ retrieve/ default. asp?item=B8C93DA63FA831AA33AC3542BCCE384C& view=item
[2] http:/ / genesyslab. com/ support/ dl/ retrieve/ default. asp?item=B5C334AA30A63CA2389E046E95E2145F& view=item
[3] MSDN PerformanceCounter Class (http:/ / msdn. microsoft. com/ en-us/ library/ system. diagnostics. performancecounter. aspx)
[4] JMX: Java Management Extensions (http:/ / java. sun. com/ javase/ technologies/ core/ mntr-mgmt/ javamanagement/)

Lazy Parsing of Message Attributes

 Home > Platform SDK > Platform SDK Developer's Guide > Lazy Parsing of Message Attributes
Description: This page provides:

•• an overview and list of requirements for the lazy parsing feature
•• design details explaining how this feature works
•• code examples showing how to implement lazy parsing in your applications

Introduction to Lazy Parsing
Lazy parsing allows users to specify which attributes should always be parsed immediately, and which attributes
should be parsed only on demand.
Some complex attributes (such as the ConfObject attribute found in some ConfigServer protocol messages) are large
and very complex. Unpacking these attributes can be time-consuming and, in cases when an application is not
interested in that data, can affect program performance. This issue is resolved by using the "lazy parsing" feature
included with the Platform SDK 8.1 release, which is described in this article.
When this feature is turned off, all message attributes are parsed immediately - which is normal behavior for
previous version of the Platfrom SDK. When lazy parsing is enabled, any attributes that were tagged for lazy parsing
are only parsed on demand. In this case, if the application does not explicitly check the value of an attribute tagged
for lazy parsing then that attribute is never parsed at all.

Feature Overview
•• Platform SDK includes configuration options to turn the lazy parsing functionality on or off for each individual

protocol that supports this feature.
•• Potentially time-consuming attributes that are candidates for lazy parsing are selected and marked by Platform

SDK developers. Refer to your Platform SDK API Reference for details.
•• To maintain backwards compatibility, there is no change in how user applications access attribute values.
•• By default, the lazy parsing feature is turned off.

http://genesyslab.com/support/dl/retrieve/default.asp?item=B8C93DA63FA831AA33AC3542BCCE384C&view=item
http://genesyslab.com/support/dl/retrieve/default.asp?item=B5C334AA30A63CA2389E046E95E2145F&view=item
http://msdn.microsoft.com/en-us/library/system.diagnostics.performancecounter.aspx)
http://java.sun.com/javase/technologies/core/mntr-mgmt/javamanagement/)
http://docs.genesyslab.com/wiki/index.php?title=File:Welcome.png
http://docs.genesyslab.com/wiki/index.php?title=Main_Page
http://docs.genesyslab.com/wiki/index.php?title=Platform_SDK
http://docs.genesyslab.com/wiki/index.php?title=File:DevGuide2.png

Lazy Parsing of Message Attributes 9

System Requirements
Platform SDK for .NET:
•• Management SDK protocol release 8.1 or later
•• .NET Framework 3.5
•• Visual Studio 2008 (required for .NET project files)
Platform SDK for Java:
•• Management SDK protocol release 8.1 or later
•• J2SE 5.0 or Java 6 SE runtime

Design Details
This section describes the main classes and interfaces you will need to be familiar with to implement lazy parsing in
your own application. For illustration purposes, .NET code snippets are provided.

Enabling and Disabling the Lazy Parsing Feature
At any time, a running application can enable or disable lazy parsing for a specific protocol in just a few lines of
code. This is done in three easy steps:
1.1. Create a new KeyValueCollection object.
2.2. Set the appropriate value for the CommonConnection.LazyParsingEnabledKey field. A value of True enables the

feature, while False disables lazy parsing.
3.3. Use a KeyValueConfiguration object to apply that setting to the desired protocol(s).
Note: The default value of the CommonConnection.LazyParsingEnabledKey field is always False, with the lazy
parsing feature disabled.
Once lazy parsing mode is enabled for a protocol, the change is applied immediately. Every new message that is
received takes the lazy parsing setting into account: parsing entire messages if the feature is disabled, or leaving
some attributes unparsed until their values are requested if the feature is enabled.
To enable lazy parsing for the Configuration Server protocol, an application would use the following code:

 KeyValueCollection kvc = new KeyValueCollection();

 kvc[CommonConnection.LazyParsingEnabledKey] = "true";

 KeyValueConfiguration kvcfg = new KeyValueConfiguration(kvc);

 ConfServerProtocol cfgChannel = new ConfServerProtocol(endpoint);

 cfgChannel.Configure(kvcfg); //lazy parsing is immediately active after this line

To disable lazy parsing for the protocol, only the second line of code is changed (as shown below):

 kvc[CommonConnection.LazyParsingEnabledKey] = "false";

Lazy Parsing of Message Attributes 10

Accessing Attribute Values
There is no difference in how applications access attribute values from returned messages. Whether the lazy parsing
feature is enabled or disabled, whether the attribute being access supports lazy parsing or not, your code remains
exactly the same.
However, you should consider differences in timing when accessing attribute values.
•• When lazy parsing is disabled, the entire message is parsed immediately when it is received. Accessing attribute

values is very fast, as the requested information is already prepared.
•• When lazy parsing is enabled, the delay to parse the message upon arrival is smaller but accessing any attributes

that support lazy parsing causes a slightly delay as that information must first be parsed. Note that accessing the
same attribute a second time will not result in the attribute information being parsed a second time; Platform SDK
saves parsed data.

Additional Notes
•• XML Serialization - The XmlMessageSerializer class has been updated to support lazy parsing. If a message that

contains unparsed attributes is serialized, then XmlMessageSerializer will trigger parsing before the serialization
process begins.

• ToString function - Use of the ToString method does not trigger parsing of attributes that support lazy parsing. In
this case, each unparsed attribute has its name printed along with a value of: "<value is not yet parsed>".

Using the Switch Policy Library

 Home > Platform SDK > Platform SDK Developer's Guide > Using the Switch Policy Library
Description: This document shows how to add simple T-Server functionality to your applications by using the Switch Policy Library.

The Platform SDK Switch Policy Library (SPL) can be used in applications that need to perform agent-related
switch activity with a variety of T-Servers, without knowing beforehand what kinds of T-Servers will be used. It
simplifies these applications by indicating which switch functions are available at any given time and also by
showing how you can use certain switch features in your applications. However, if your application works with only
one kind of T-Server, you may want to have your application communicate directly with the T-Server, rather than
using SPL.

Switch Policy Library Overview
Some telephony applications need to work with more than one type of switch. Unfortunately, however, one switch
may not perform a particular telephony function in the same way as another switch. This means that it can be useful
to have an abstraction layer of some kind when working with multiple switches, so that you do not need custom code
for each switch that is used by the application. The Switch Policy Library is designed with just this kind of
abstraction in mind.

Setting Up Switch Policy Library
SPL should be used by your agent desktop applications as a library, which means that it would be located within the
agent desktop application shown above. The application can call SPL for guidance on how to send requests to or
process events from your T-Server, as shown in the #Code Samples section.

http://docs.genesyslab.com/wiki/index.php?title=File:Welcome.png
http://docs.genesyslab.com/wiki/index.php?title=Main_Page
http://docs.genesyslab.com/wiki/index.php?title=Platform_SDK
http://docs.genesyslab.com/wiki/index.php?title=File:DevGuide2.png

Using the Switch Policy Library 11

SPL is driven by an XML-based configuration file that supports many commonly-used switches in performing
agent-related functions. Your application can query SPL to determine whether a particular feature is supported for
the switch you want to work with. If a feature you need is not supported for the switches you need to work with, you
can make a copy of the default configuration file and modify it as needed.

 Note: Genesys does not support modifications to the SPL configuration file. Any modifications you make are
performed at your own risk.
A copy of the default configuration file is included inside the Switch Policy Library DLL. There is also a copy in the
Bin directory of the Platform SDK installation package. If you need to modify the configuration file, you can use the
app.config file for SPL to point to your copy.

Code Samples
This section contains examples of how to perform useful functions with SPL.
The functions discussed here are all contained in a compilable and runnable sample application that is available on
the Downloads page of the Genesys Documentation Wiki. This site also hosts the SPL IsPossible Feature Demo
application. This sample application lets you specify a switch and certain characteristics of the main and secondary
parties to a call, as well DN state information. Once you have done this, it will show you which functions are
available for that switch, based on the characteristics you have specified. This application can be very helpful in
understanding the kinds of things that are available to your application when you use SPL.

Editor Note: Need to locate and upload these samples before publishing!
These samples each require a valid instance of the ISwitchPolicyService, which can be created as shown here:

ISwitchPolicyService policyService =

 SwitchPolicyFactory.CreateSwitchPolicyService();

Note: The DN classes specified below implement the IDNContext interface, while the Party classes implement the
IPartyContext interface, and the Call classes implement the ICallContext interface.

Get A Phone Set Configuration
On some switches, phone sets are presented as more than one Directory Number (DN). These DNs may also have
different types, such as Position and Extension. Because these configurations vary by switch type, an application
needs to know how the phone set configuration for a particular switch is structured. For example, it needs to know
how many DNs are used to represent a phone set, and what their types are. To retrieve this phone set configuration
information, perform the following steps:
1.1. Create an instance of PhoneSetConfigurationContext, specifying the switch type.
2.2. Call ISwitchPolicyService.GetPolicy, using this PhoneSetConfigurationContext.
3.3. Analyze the returned PhoneSetConfigurationPolicy. The PhoneSetConfigurationPolicy.Configurations property

will contain all possible phone set configurations for the specified switch.
The following code snippet shows how to do this:

PhoneSetConfigurationContext context =

 new PhoneSetConfigurationContext("SomeSwitch");

PhoneSetConfigurationPolicy policy =

switchPolicyService.GetPolicy<PhoneSetConfigurationPolicy>(context);

foreach (PhoneSetConfiguration configuration in policy.Configurations)

{

 Console.WriteLine(configuration);

}

http://docs.genesyslab.com/wiki/index.php?title=File:Important.png

Using the Switch Policy Library 12

Get Phone Set Availability Information
When working with a phone set, additional information about the included DNs may be required. This could include
information about which of the DNs should be available to the end user (for example, which ones should be visible
in the user interface), which of them is callable, and which number (the Callable Number) the application should use
to reach the agent who is logged into the phone set. To retrieve this phone set availability information, perform the
following steps:
1.1. Create an instance of DNAvailabilityContext and populate it with the following required information:

•• Specify the switch type
•• Specify the Agent ID
•• Fill the DN collection with valid implementations of IDNContext

2.2. Call ISwitchPolicyService.GetPolicy, using this DNAvailabilityContext.
3.3. Analyze the returned DNAvailabilityPolicy. The DNAvailabilityPolicy.DNStatuses property will contain

availability information for each DN in the request.
The following code snippet shows how to do this:

private static void DemonstrateDNAvailability(ISwitchPolicyService service)

{

 DNAvailabilityContext dnacontext =

 new DNAvailabilityContext("SomeSwitch");

 dnacontext.AgentId = "AgentLogin1000";

 dnacontext.DNs.Add(new Dn

 {

 AgentStatus = AgentStatus.Ready,

 Identifier = "1000",

 ServiceStatus = ServiceStatus.InService,

 Type = AddressType.DN

 });

 dnacontext.DNs.Add(new Dn

 {

 AgentStatus = AgentStatus.Ready,

 Identifier = "2000",

 ServiceStatus = ServiceStatus.InService,

 Type = AddressType.Position

 });

 DNAvailabilityPolicy dnpolicy =

 service.GetPolicy<DNAvailabilityPolicy>(dnacontext);

 DisplayInColor(dnpolicy, ConsoleColor.Red);

}

Get Function Availability Information for the Current Context
Some switches differ in when they allow certain functions to be performed. Also, some functions can always be
performed on certain switches, while others may be impossible to perform. For example, RequestMergeCalls can
never be performed on some switches. For other functions, whether or not the function can be performed varies
depending on context. For example, on some switches RequestReleaseCall can only be used when a call is in a Held,
Dialing, or Established state, while on other switches it is also possible to release a call when it is in a Ringing state.
In addition to this, on some switches the phone set is presented as more than one Directory Number (DN) and each

Using the Switch Policy Library 13

DN can have a different type, such as Position and Extension. Some functions are allowed for both types, while
some other functions may be restricted to a certain DN type. To retrieve this kind of function availability information
for the current context, perform the following steps:
1.1. Create an instance of FunctionHandlingContext and populate it with the following required information:

•• Specify the switch type
•• Specify the request by setting the Message property
•• Describe the context as fully as possible

2.2. Call ISwitchPolicyService.GetPolicy, using this FunctionHandlingContext.
3.3. Analyze the returned FunctionAvailabilityPolicy. If the specified request is possible in the given context, the

IsFunctionAvailable property will be true. However, if the request is not supported, SPL will return null.
The following code snippet shows how to do this:

foreach (string switchType in new[] { swTypeA4400Classic, swTypeA4400emul, swTypeA4400Subs })

{

 DNContext dn = new DNContext //implements IDNContext

 {

 Identifier = "1001",

 Type = AddressType.DN,

 AgentStatus = AgentStatus.Ready,

 ServiceStatus = ServiceStatus.InService,

 DndStatus = FunctionStatus.Off,

 ForwardStatus = FunctionStatus.Off

 };

 DNContext otherDN = new DNContext

 {

 Identifier = "2001",

 Type = AddressType.DN,

 AgentStatus = AgentStatus.Ready,

 ServiceStatus = ServiceStatus.InService,

 DndStatus = FunctionStatus.Off,

 ForwardStatus = FunctionStatus.Off

 };

 foreach (CallType callType in Enum.GetValues(typeof(CallType)))

 {

 PartyContext mainParty = new PartyContext //implements IPartyContext

 {

 Identifier = "1002",

 Status = PartyStatus.Established,

 CallType = callType,

 IsConferencing = true,

 IsTransferring = true,

 DN = dn

 };

 PartyContext otherParty = new PartyContext

Using the Switch Policy Library 14

 {

 Identifier = "1002",

 CallType = callType,

 DN = otherDN,

 IsConferencing = true,

 IsTransferring = true,

 Status = PartyStatus.Established

 };

 CallContextStub ccontext = new CallContextStub //implements ICallContext

 {

 CallType = callType,

 Destination = mainParty,

 Origination = otherParty,

 Identifier = "1002",

 IsConferencing = true,

 IsTransferring = true,

 Parties = new List<IPartyContext>{mainParty,otherParty},

 Parent = null//no parentCall - our call is solitary call.

 };

 FunctionHandlingContext context = new FunctionHandlingContext(switchType)

 {

 Message = RequestHoldCall.Create(),

 DN = dn,

 Party = mainParty,

 Call = ccontext

 };

 FunctionAvailabilityPolicy policy = service.GetPolicy<FunctionAvailabilityPolicy>(context);

 Console.WriteLine(policy);

 }

}

Get Instructions On How To Implement a Feature
Some switches differ in how certain features can be accessed. The majority of their features may map directly to
individual switch functions, but this is not always so. For example, for some switches it is not possible to log the
agent out while the agent is in the ready state. So, the feature which implements agent logout for these switches
would require two steps:
1.1. Make sure the agent is in a NotReady state
2.2. Log the agent out
SPL implements a feature handler for each feature that it supports. To create and run a feature handler, perform the
following steps:
1.1. Create a new instance of FunctionHandlingContext and populate it with the following required information:

•• Specify the switch type.
•• Specify the request by setting the Message property. This step can be omitted if the feature handler is created

by using the featureName parameter in the ISwitchPolicyService.CreateFeatureHandler(String featureName,

Using the Switch Policy Library 15

FunctionHandlingContext context) method.
•• Provide a valid IProtocol instance as the value of the Protocol property.
•• Describe the context as fully as possible.

2.2. Call the ISwitchPolicyService.CreateFeatureHandler and pass this FunctionHandlingContext, either alone or with
the name of the feature.

3.3. Call the BeginExecute method on the returned handler, passing the same instance of FunctionHandlingContext.
4.4. The remainder of the processing depends on the implementation, but the general approach is to perform the

following actions while the status of the handler is Executing:
1.1. Receive event from TServer
2.2. Update FunctionHandlingContext based on the received event
3.3. Assign the received event to the Message property of your FunctionHandlingContext instance
4.4. Call the Handle method of IFeatureHandler passing with it the updated FunctionHandlingContext

The following code snippet shows how to do this:

private static void LoginReadyAgent(IProtocol protocol,

 ISwitchPolicyService service, string thisdn, string agentID)

{

 FunctionHandlingContext context = new FunctionHandlingContext("SomeSwitch");

 RequestAgentLogin requestAgentLogin = RequestAgentLogin.Create();

 requestAgentLogin.ThisDN = thisdn;

 requestAgentLogin.AgentID = agentID;

 requestAgentLogin.AgentWorkMode = AgentWorkMode.AutoIn;

 context.Message = requestAgentLogin;

 context.Protocol = protocol;

 IFeatureHandler loginHandler = service.CreateFeatureHandler(context);

 if(loginHandler==null)

 {

 protocol.Send(requestAgentLogin);

 // Process the incoming events for the scenario

 return;

 }

 // Processing feature handler

 loginHandler.BeginExecute(context);

 while (loginHandler.Status == FeatureStatus.Executing)

 {

 context.Message = context.Protocol.Receive();

 // Update the context based on the received T-Server event

 loginHandler.Handle(context);

 }

}

Using the Switch Policy Library 16

Get Instructions On How To Accomplish Complex Functionality
Your application may sometimes need access to functionality that depends on the switch type. For example, when an
application receives events from the T-Server, the way a given event's fields are used can depend on both the call
scenario and the switch type. To retrieve this information, perform the following steps:
1.1. Create a MessageHandlingContext and populate it with the following required information:

•• Name of switch
•• Name of handler

2.2. Call ISwitchPolicyService.CreateMessageHandler, pass this context into it, and receive the resulting
IMessageHandler.

3.3. Call the IMessageHandler.Handle method on the received handler.
The following code snippet shows how to do this:

private static void DemonstrateMessageHandler(ISwitchPolicyService service)

{

 EventRinging message = EventRinging.Create();

 message.ThirdPartyDN = "12345";

 message.DNIS = "18009870987";

 message.CallType = CallType.Internal;

 message.OtherDN = "9875";

 MessageHandlingContext context35 =

 new MessageHandlingContext("AlcatelA4400DHS3::Classic")

 { HandlerName = "OtherDN" };

 IMessageHandler handler = service.CreateMessageHandler(context35);

 string res = (string)handler.Handle(message);

 DisplayInColor(res, ConsoleColor.Yellow);

}

Add Logging Support
To add logging support, carry out the following steps:
1.1. Create an instance of IUnityContainer and register an anonymous instance or type mapping for the ILogger

interface.
2.2. Pass the IUnityContainer created during the previous step to the factory method, which creates an instance of

ISwitchPolicyService.
The following code snippet shows how to do this:

IUnityContainer root = new UnityContainer();

root.RegisterInstance(new ConsoleLogger());

ISwitchPolicyService service =

 SwitchPolicyFactory.CreateSwitchPolicyService(root);

SPL also provides the following options:
•• Your application can log the topmost messages into a distinct log. To use this option, call the

CreateSwitchPolicyService(IUnityContainer container, ILogger logger) method of the
SwitchPolicyServiceFactory class. The passed logger (if it is not null) will be used for logging the topmost
messages.

•• You can configure any switch container to use a specific logger. Objects created by the Unity container (feature
handlers, policy providers and so on) can use the container to resolve the ILogger for further logging.

Using the Switch Policy Library 17

Note: the classes provided by SPL resolve the ILogger (if there is one) at creation time. So, if your application
changes the ILogger resolution rule for the root container that was previously passed into the SwitchPolicyService
constructor after the corresponding method call, this will not affect:
•• Existing instances
•• Objects which are created in the container(s), for which special ILogger mapping rule is configured

Supported Functions
As mentioned above, SPL is driven by a configuration file that makes it possible to support a wide variety of switch
functions. Table 1 shows the functions that are supported by SPL at installation time, using the default configuration
file.
Switch Functions Supported by SPL At Installation Time

Switch Function Description

DN and Agent Functions

RequestAgentLogin Logs in the agent specified by the AgentId parameter to the ACD group specified by the parameter.

RequestAgentLogout Logs the agent out of the ACD group specified by the Queue parameter.

RequestAgentNotReady Sets a state in which the agent is not ready to receive calls. The agents telephone set is specified by the DN
parameter; the ACD group into which the agent is logged is specified by the Queue parameter.

RequestAgentReady Sets a state in which the agent is ready to receive calls. The agents phone set is specified by the DN parameter; the
ACD group into which the agent is logged is specified by the Queue parameter.

RequestCallForwardCancel Sets the Forwarding feature to Off for the telephony object that is specified by the DN parameter.

RequestCallForwardSet Sets the Forwarding feature to On for the telephony object that is specified by the DN parameter.

RequestCancelMonitoring A request by a supervisor to cancel monitoring the calls delivered to the agent. If this request is successful,
T-Server distributes EventMonitoringCancelled to all clients registered on the supervisor's and agent's DNs.

RequestMonitorNextCall A request by a supervisor to monitor (be automatically conferenced in as a party on) the next call delivered to an
agent. Supervisors can request to monitor one subsequent call or all calls until the request is explicitly canceled. If
a request is successful, EventMonitoringNextCall is distributed to all clients registered on the supervisor's and
agent's DNs. Supervisors start monitoring each call in Mute mode. To speak, they must execute the function

RequestSetDNDOff Sets the Do-Not-Disturb (DND) feature to Off for the telephony object specified by the DN parameter.

RequestSetDNDOn Sets the Do-Not-Disturb (DND) feature to On for the telephony object specified by the DN parameter.

RequestSetMuteOff On an existing conference call, cancels the Mute mode for the party specified by the DN parameter.

RequestSetMuteOn On an existing conference call, sets Mute mode for the party specified by the DN parameter.

Call Handling Functions

RequestAlternateCall On behalf of the telephony object specified by the DN parameter, places the active call specified by
thecurrent_conn_id parameter on hold and connects the call specified by the held_conn_id parameter.

RequestAnswerCall Answers the alerting call specified by the conn_id parameter.

RequestAttachUserData On behalf of the telephony object specified by the DN parameter, attaches the user data structure specified by the
user_data parameter to the T-Server information that is related to the call specified by the conn_id parameter.

RequestClearCall Deletes all parties, that is, all telephony objects, from the call specified by conn_id and disconnects the call.

RequestCompleteConference Completes a previously-initiated conference by merging the held call specified by the held_conn_id parameter
with the active consultation call specified by the current_conn_id parameter on behalf of the telephony object
specified by the DN. Assigns the held_conn_id to the resulting conference call. Clears the consultation call
specified by the current_conn_id parameter.

Using the Switch Policy Library 18

RequestCompleteTransfer On behalf of the telephony object specified by the DN parameter, completes a previously initiated two-step
transfer by merging the held call specified by the conn_id parameter with the active consultation call specified by
the current_conn_id parameter. Assigns held_conn_id to the resulting call. Releases the telephony object specified
by the DN parameter from both calls and clears the consultation call specified by the current_conn_id parameter.

RequestDeleteFromConference A telephony object specified by DN deletes the telephony object specified by dn_to_drop from the conference call
specified by conn_id. The client that invokes this service must be a party on the call in question.

RequestDeletePair On behalf of the telephony object specified by the DN parameter, deletes the key-value pair specified by the key
parameter from the user data attached to the call specified by the conn_id parameter.

RequestDeleteUserData On behalf of the telephony object specified by the DN parameter, deletes all of the user data attached to the call
specified by the conn_id parameter.

RequestHoldCall On behalf of the telephony object specified by the DN parameter, places the call specified by the conn_id
parameter on hold.

RequestInitiateConference On behalf of the telephony object specified by the DN parameter, places the existing call specified by the conn_id
parameter on hold and originates a consultation call from the same telephony object to the called party, which is
specified by the destination parameter with the purpose of a conference call.

RequestInitiateTransfer On behalf of the telephony object specified by the DN parameter, places the existing call specified by the conn_id
parameter on hold and originates a consultation call from the same telephony object to the called party, which is
specified by the destination parameter for the purpose of a two-step transfer.

RequestListenDisconnect On an existing conference call, sets Deaf mode for the party specified by the listener_dn parameter. For example,
if two agents wish to consult privately, the subscriber may temporarily be placed in Deaf mode.

RequestListenReconnect On an existing conference call, cancels Deaf mode for the party defined by the listener_dn parameter.

RequestMakeCall Originates a regular call from the telephony object specified by the DN parameter to the called party specified by
the Destination parameter.

RequestMakePredictiveCall Makes a predictive call from the thisDN DN to the otherDN called party. A predictive call occurs before any
agent-subscriber interaction is created. For example, if a fax machine answers the call, no agent connection occurs.
The agent connection occurs only if there is an actual subscriber available on line.

RequestMergeCalls On behalf of the telephony object specified by the DN parameter, merges the held call specified by the
held_conn_id parameter with the active call specified by the current_conn_id parameter in a manner specified by
the merge_type parameter. The resulting call will have the same conn_id as the held call.

RequestMuteTransfer Initiates a transfer of the call specified by the conn_id parameter from the telephony object specified by the DN
parameter to the party specified by the destination parameter; completes the transfer without waiting for the
destination party to pick it up. Releases the telephony object specified by the DN parameter from the call.

RequestQueryCall Requests the information specified by info_type about the telephony object specified by conn_id. If the query type
is supported, the requested information will be returned in EventPartyInfo.

RequestReconnectCall Releases the telephony object specified by the DN parameter from the active call specified by the current_conn_id
parameter and retrieves the previously held call, specified by the held_conn_id parameter, to the same object. This
function is commonly used to clear an active call and to return to a held call, or to cancel a consult call (due to lack
of an answer, because the device is busy, and so on) and then to return to a held call.

RequestRedirectCall Requests that the call be redirected, without an answer, from the party specified by the DN parameter to the party
specified by the dest_dn parameter.

RequestRegisterAddress Registers for a DN. Your application must register the DN before sending the RequestAgentLogin.

RequestReleaseCall Releases the telephony object specified by the DN parameter from the call specified by the conn_id parameter.

RequestRetrieveCall Connects the held call specified by the conn_id parameter to the telephony object specified by the DN parameter.

RequestSendDtmf On behalf of the telephony object specified by the DN parameter, sends the digits that are expected by an
interactive voice response system.

RequestSetCallInfo Changes the call attributes. Warning: Improper use of this function may result in unpredictable behavior on the
part of the T-Server and the Genesys Framework. If you have any doubt on how to use it, please consult with
Genesys.

Using the Switch Policy Library 19

RequestSetMessageWaitingOff Sets the Message Waiting indication to off for the telephony object specified by the DN parameter.

RequestSetMessageWaitingOn Sets the Message Waiting indication to on for the telephony object specified by the DN parameter.

RequestSetMuteOff On an existing conference call, cancels the Mute mode for the party specified by the DN parameter.

RequestSetMuteOn On an existing conference call, sets Mute mode for the party specified by the DN parameter.

RequestSingleStepConference Adds a new party to an existing call and creates a conference.

RequestSingleStepTransfer Transfers the call from a specified directory number DN that is currently engaged in the call specified by the
conn_id parameter to a destination DN that is specified by the destination parameter.

RequestUnregisterAddress Unregisters a DN.

RequestUpdateUserData On behalf of the telephony object specified by the DN parameter, updates the user data that is attached to the call
specified by the conn_id parameter with the data specified by the user_data parameter.

Article Sources and Contributors 20

Article Sources and Contributors
Platform SDK Developer's Guide Source: http://docs.genesyslab.com/wiki/index.php?oldid=3547 Contributors: Edjamer, WikiSysop

Developers Guide PDF - PSDK 7.6 Source: http://docs.genesyslab.com/wiki/index.php?oldid=3542 Contributors: Edjamer, WikiSysop

LCA Hang-Up Detection Support Source: http://docs.genesyslab.com/wiki/index.php?oldid=3544 Contributors: Edjamer, WikiSysop

Lazy Parsing of Message Attributes Source: http://docs.genesyslab.com/wiki/index.php?oldid=3545 Contributors: Edjamer, WikiSysop

Using the Switch Policy Library Source: http://docs.genesyslab.com/wiki/index.php?oldid=3550 Contributors: Edjamer, WikiSysop

Image Sources, Licenses and Contributors 21

Image Sources, Licenses and Contributors
File:welcome.png Source: http://docs.genesyslab.com/wiki/index.php?title=File:Welcome.png License: unknown Contributors: WikiSysop
File:DevGuide2.png Source: http://docs.genesyslab.com/wiki/index.php?title=File:DevGuide2.png License: unknown Contributors: WikiSysop
File:Important.png Source: http://docs.genesyslab.com/wiki/index.php?title=File:Important.png License: unknown Contributors: WikiSysop
File:PDF.png Source: http://docs.genesyslab.com/wiki/index.php?title=File:PDF.png License: unknown Contributors: WikiSysop
File:Download.png Source: http://docs.genesyslab.com/wiki/index.php?title=File:Download.png License: unknown Contributors: WikiSysop
Image:Welcome.png Source: http://docs.genesyslab.com/wiki/index.php?title=File:Welcome.png License: unknown Contributors: WikiSysop
Image:DevGuide2.png Source: http://docs.genesyslab.com/wiki/index.php?title=File:DevGuide2.png License: unknown Contributors: WikiSysop
File:Information.png Source: http://docs.genesyslab.com/wiki/index.php?title=File:Information.png License: unknown Contributors: WikiSysop

	Developer’s Guide Wiki Redirect

