
This is the most recent version of this document provided by KANA Software, Inc. to
Genesys, for the version of the KANA software products licensed for use with the
Genesys eServices (Multimedia) products. Click here to access this document.

Hipbone, Inc.
981 Industrial Road
San Carlos, CA 94070
U.S.A. 650-802-5260

June 25, 2001 Revision 2.3

Client API Reference Guide

v2.3

Contents

Client API Reference: version 2.3 1
1 .1 Overview ... 1
1 .2 Document Conventions... 2
1 .3 Integration Mechanism.. 3
1 .4 Integrating Hipbone with your Application... 5
1 .5 Setting Up the Files... 5
1 .6 Integration Support Files ... 5
1 .7 Example Client Files ... 5
1 .8 Creating the Frameset .. 6
1 .9 Initializing the API.. 6
1 .10 Logging In Guest and Agents.. 7
1 .11 Logging in the Agent ... 7
1 .12 Logging In the Guest... 7
1 .13 Connecting Guests and Agents .. 7
1 .14 Co-navigating Links... 8
1 .15 Calling Command Methods... 8
1 .16 Receiving Messages ... 8
1 .17 Shared Browsing within an Embedded Frame.. 8
1 .18 Exiting ... 9
1 .19 Client Functions .. 10
1 .20 Client Callback API ... 17
1 .21 Client Callback Examples ... 24
Contents

Chapter 1

Client API Reference: version 2.3

Overview Section A

The Hipbone Client Integration Application Programming Interface (API) allows you to

easily integrate the Hipbone co-browsing service with your suite of applications/services. By

making slight modifications to your product(s) to make simple JavaScript calls, you can login,

connect people, conavigate the Web, and end the session. The Hipbone Client Integration API

gives your software/service three main abilities:

• Login users — provides control to login Agents and Guests (customers).

• Send messages — provides the ability to control a session on the Hipbone Server, such

as: connecting users, initiating co-browsing, and ending a session.

• Receive messages — provides the interface to receive connection confirmation and

error messages.

The following diagram illustrates Client API-based integration.

Agent

Customer

Your Client

Your Client

Hipbone
Service

In
te

g
ra

ti
o

n
 A

P
I

In
te

g
ra

ti
o

n
 A

P
I

Hipbone
Client

Hipbone
Client

Agent

Customer

Your Client

Your Client

Hipbone
Service

In
te

g
ra

ti
o

n
 A

P
I

In
te

g
ra

ti
o

n
 A

P
I

Hipbone
Client

Hipbone
Client

2
Document Conventions
Document Conventions Section B

A number of typographic conventions are used throughout this document to help you

recognize special terms and instructions. These conventions are summarized in the table

below:

Convention Description

Boldface This typeface is used for higher level descriptions of tasks to perform. More

detailed instructions follow.

Examples:

• Click Configure to configure the card processor

• Press Submit to apply changes

Italic2 This typeface is used for the following:

• Key words, such as terms that are defined in the text

• Names of books

• Important URL’s

Examples:

• The notices posted on an electronic BBS are called articles.

• For more information, refer to the Getting Started with Netscape
Navigator manual

• Go to Start-Programs-JRun-Start JRun (NT Service Mode).

Courier font This typeface is used for the following:

• Command line input or output

Examples:

\hipbone\htdocs\dev\index.html

Boldface Courier font This typeface is used for the following:

• Code samples

• Path and File Names

Examples:

• Syntax: const char* getName() const

• /var/opt/oracle/tnsnames.ora

 Integration Mechanism3
Integration Mechanism
Integration Mechanism Section C

The integration solution provides a well defined process to launch and conduct a co-

navigation session.

The following steps illustrate a typical sequence of steps in the co-navigation process.

1. Agent logs into your service and Hipbone — An Agent (customer service or sales

representative) logs into your service. Your application/service invokes a JavaScript

function provided by the Hipbone Client API to log the Agent into the Hipbone

service.

2. Guest Communicates with Agent — A Guest (customer) begins communicating with

the Agent through your application/service.

3. Guest Login to Hipbone — While communicating with the Agent, your application

uses the Hipbone API to automatically log the Guest into the Hipbone Service and

load the Hipbone Applet. The applet is loaded in the background in preparation for the

co-browsing session.

4
Integration Mechanism
4. Co-navigation Initiated — At some point during the Guest interaction with the Agent,

the Agent decides to initiate co-browsing. When the Agent initiates the co-navigation

session, your application (Agent side) sends an “initiate co-browsing” command and

the Agent’s Hipbone ID to your application (Guest side).

5. Browser Launch — Your application (Guest side) invokes the Hipbone API method

HBConnectTo (specifying the Agent’s Hipbone ID). This connects the Agent and

Guest and launches shared browsers on both computers.

• If the Guest is unable to load the Hipbone applet or connect to the Agent, the

Hipbone Server will send an error message. Your application/service can trap these

events using the Hipbone API. These messages should be used to notify the Agent.

• When the Guest successfully enters a session, the Hipbone Server sends a

confirmation message.

6. Co-Navigating — The Guest and Agent co-navigate.

7. Agent Exits — Once they are finished, the Hipbone API method HBExitSession

may be invoked on either the Guest or Agent side. Alternatively, the Guest can simply

close the navigation browser.

8. Guest Logout and Browser Close — The Hipbone Client closes the Guest browser and

logs out the Guest. The Agent is free to start another session with a new Guest.

• The Hipbone Server sends a confirmation message. Your application or service can

trap these events by using the JavaScript calls provided in the Hipbone API and

notify the Agent.

 Integrating Hipbone with your Application5
Integrating Hipbone with your Application
Integrating Hipbone with your Application Section D

This section describes how to integrate the Hipbone Client API into your Web application.

Setting Up the Files 1

Integration Support Files

Host the following documents on a Web server in an externally visible location.

• hbmessaging.js — JavaScript include file containing the API to the Hipbone Server.

• hbcallback.js — JavaScript include file containing default callback API

implementations.

• qstring.js — JavaScript include file containing a utility class.

• blank.html — default blank page for initializing empty frames used by the API.

• hbapi.html — contains support for client-side API and the Hipbone applet.

• hbmessagingform.html — Provides additional security by sending Agent login

information to be submitted as a post instead of a get.

• hbmessage_to_var.html — VAR hosted messaging file that provides messages from

the Hipbone frame to the VAR’s Web application frame.

NOTE: qstring.js and hbmessage_to_var.html must be in the same

directory.

Example Client Files

A frameset and simple Web application are provided as examples.

• toplevelframeset.html — holds callback and Hipbone messaging files.

• varExampleForm.html — simple example client that captures and sends events to

Hipbone.

• example_callbacks.html — sample implementations of each client callback provided

by the Hipbone applet.

6
Integrating Hipbone with your Application
Creating the Frameset 1

The example file toplevelframeset.html provides an example of how the frameset

should be set up.

<frameset rows=”50%,50%,1*,1*”cols=”*” frameborder=”no” border=”0”
framespacing=”0” onload=’init()’>

<FRAME NAME=”varframe” SRC=”varExampleForm.html” MARGINWIDTH=”4”
MARGINHEIGHT=”4”>

<FRAME NAME = “embedded_browser” SRC=”blank.html” frameborder=”yes”>

<FRAME NAME = “callbacks” SRC=”example_callbacks.html”>

<FRAME NAME = “hbapi” SRC=”hbapi.html”>

</frameset>

The layout of the frameset contains the following frames:

• varframe — defined in the source file varExampleForm.html and contains the

sample application code. This frame could be replaced by a page with your own

application/applet.

• embedded_browser — defined in the source file blank.html. It contains the

embedded shared browser that will be launched.

• callbacks — defined in the source file example_callbacks.html. It contains the

sample callback implementations.

• hbapi — defined in the source file hbapi.html. It contains the Hipbone applet and

APIs.

Initializing the API 1

Initialize the API by calling HBInitializeAPI. You must specify the frame to which you

want the Hipbone applet to send its set of callback messages, as well as a Hipbone Server

domain, and the relative path to the hbmessage_to_var.html file.

hbapi.HBInitializeAPI(
callbackFrameName,
co-navigationServer,
messageToVarPath);

 Integrating Hipbone with your Application7
Integrating Hipbone with your Application
Once initialized, you can access the various methods and callbacks provided by the Hipbone

API.

Logging In Guest and Agents 1

With the Hipbone API initialized, you are now ready to log in the Agent and Guest.

Logging in the Agent

The Agent should log into Hipbone as early as possible in order to preload the Hipbone

applet. Call the HBLoginAgent method to launch the Agent applet into the frame containing

the client API (hbapi).

Logging In the Guest

The Guest side should log into Hipbone as soon as the Agent and the Guest have established

communication. This allows Hipbone to preload before the Agent and Guest have established

contact.

As soon as the Agent and Guest have connected to each other through your application, call

HBLoginGuest from the Guest client.

Connecting Guests and Agents 1

Once the Agent and Guest have logged into Hipbone, connect them to each other to enable co-

navigation. There are two steps to connect:

• The Guest attempts to connect to the Agent — The Guest calls the HBConnectTo

method from the Guest Web-client. You must implement a mechanism on your Agent

client that sends a message to your Guest client to have it call HBConnectTo. This

method should provide the Agent Hipbone ID as an argument.

• The Agent must accept the Guest — When the Guest attempts to connect, the Agent

software receives a JavaScript callback HBJoinRequested. If this method returns True,

a session is established; if it returns False, the join request is rejected and no session is

established.

8
Integrating Hipbone with your Application
NOTE: The default implementation of HBJoinRequested always returns

True. It is up to the VAR to implement this method however they choose.

Once this transaction is complete, a Co-navigation browser window opens on both the Agent

and Guest computer. Once the Agent and Guest are connected, you can execute a variety of

actions.

Co-navigating Links

The Guest and Agent can co-navigate to different links by entering URLs on their respective

location bars. Additionally, you can send users to specific pages by calling the

HBConavigateLink method in the top level frameset of your client application.

Calling Command Methods

The Guest and Agent can execute a number of JavaScript commands, such as

HBConavigateLink, HBExitSession, etc. You can invoke these commands by executing

JavaScript methods in a frame containing the API (hbapi).

Receiving Messages

You can receive various messages such as HBUserExitSession, HBSessionEnded,

HBLinkConavigated, etc., by implementing the various callback methods in the

hbcallback.js file. For example, when a user exits, the HBUserExited message is received

from Hipbone.

Shared Browsing within an Embedded Frame

An initial shared browser may be embedded into a frame by providing a named frame and

then invoked by the HBInitEmbeddedFrame API with the provided name. During API

initialization, the client API will then search for the named frame and take ownership of it.

When the API claims the frame, neither the frame name nor the frame’s pre-existing contents

are preserved. Due to security restrictions imposed by some browsers, it is important to

preload the frame with a document that resides in the same domain as the hosted client API

documents.

 Integrating Hipbone with your Application9
Integrating Hipbone with your Application
In the event that an integrating partner needs to reuse this frame after Hipbone has exited, the

partner should not rely upon the frame name. Instead, a reference to the frame itself could be

maintained by the partner and be referenced for access to the frame and/or its contents.

Exiting

When the client exits your application, the Agent client is automatically exited from the

application also. This allows for session cleanup, more stability, and better metrics. Call

HBExitSession on the Agent client when the agent is notified that the Guest has exited your

application.

10
Client Functions
Client Functions Section E

The file hbmessaging.js contains methods that you can use to interface with Hipbone.

HBConavigateLink 1

Description Instructs the Hipbone applet to co-navigate to the specified URL on the specific target

frame. If the named target frame does not exist, a new shared browser is launched and
loads the specified URL.

NOTE: The frame names of shared browsers start with “HB_”. If a new
window is opened, the “HB_” is pre-pended to the target name as

necessary.

Syntax HBConavigateLink(fullURL, target);

 Parameters fullURL Fully qualified URL to the co-navigation link.

target Name of the target frame to load the specified URL. This

parameter may be left blank, defaulting to the main shared

browser window.

HBConnectTo 1

Description Joins a co-navigation session with the user specified by otherHipboneUserName.

Syntax HBConnectTo(otherHipboneUserName);

 HBCreateSession11
HBCreateSession
 Parameters otherHipboneUserNameUser name of the other Hipbone user.

HBCreateSession 1

Description Creates a co-navigation session without opening to an initial page. This method
should be called after receiving an “HBLoggedIn” callback (invoked by a successful

call to HBLoginAgent or HBLoginGuest).

Syntax HBCreateSession();

 Parameters None.

HBExitSession 1

Description Exits the current co-navigation session.

NOTE: The user remains logged into the Hipbone Server, awaiting a

command to connect to another session or a logout command.

Syntax HBExitSession();

 Parameters None.

12
HBHistoryGoBack
HBHistoryGoBack 1

Description Causes all shared browsers with the specified target named in the co-navigation
session to go one Web page back in the co-navigation session’s history.

NOTE: If no target is specified, the default target is “HB_HIPBONE”,

which is mapped to the initial shared browser.

Syntax HBHistoryGoBack(target)

 Parameters target Frame name of the shared browser to which the command
will apply.

HBHistoryGoForward 1

Description Causes all shared browsers with the specified target name in the co-navigation session

to go one Web page forward in the co-navigation session’s history.

Syntax HBHistoryGoForward(target);

 Parameters target Frame name of the shared browser to which the command

applies.

HBInitEmbeddedFrame 1

Description Initializes the embedded frame with the specified parameters.

 HBInitializeAPI13
HBInitializeAPI
NOTE: This function must be called before a call is made to

HBLoginGuest or HBLoginAgent.

Syntax HBInitEmbeddedFrame(endPage, forceNoLocationBar, frameName);

 Parameters endPage Fully qualified URL to be loaded into the frame when

“closing” the embedded shared browser.

forceNoLocationBar Boolean indicating whether to use the full Hipbone

location-bar. True specifies that you wish to force no

location-bar, without the full Hipbone location bar in the
shared browser. The default value is false, which causes

the Hipbone location bar to be displayed in the embedded

frame.

frameName Name of the frame in which to launch the initial shared

browser. Upon launching the initial shared browser, the
frame is looked up by name and is taken over by the

Hipbone shared browser. If no frame is found with the

specified name, a new window is launched. The provided
frame name is not preserved after the frame has been
initialized.

HBInitializeAPI 1

Description Initializes the client API messaging system.

All parameters are required, and must be set before calling HBLoginAgent or

HBLoginGuest.

Syntax HBInitializeAPI(callbackFrameName, navigationServer,

messageToVarPath);

14
HBLoginAgent
 Parameters callbackFrameName Name of the frame where callback messages will be sent

by the Hipbone applet.

navigationServer Name of the server that is hosting the co-navigation

session.

messageToVarPath Relative path (from the Web root) to the integrator’s
hosted hbmessage_to_var.html file.

HBLoginAgent 1

Description Loads the Hipbone applet and logs the registered user into the Hipbone Server.

Syntax HBLoginAgent(affinity, hipboneid, password,
accountSpecificData);

 Parameters affinity Account that identifies a registered Hipbone Customer

whose representatives are registered with Hipbone.

hipboneid Hipbone ID of the user logging in.

password Password of the user logging in.

accountSpecificData Account specific data.

HBLoginGuest 1

Description Assigns a temporary user name to a guest user, loads the Hipbone applet, and logs the

user into the Hipbone Server.

Syntax HBLoginGuest(affinity, userName, connectTo, nameIsExplicit,
accountSpecificData);

 HBLogout15
HBLogout
 Parameters affinity Account that identifies a registered Hipbone Customer

whose representatives are registered with Hipbone.

userName User name of the user logging in (used to form the

temporary ID).

connectTo Name of the user to whom you wish to connect.

nameIsExplicit (optional) Boolean value specifying whether to use the

passed in name as the explicit ID. True indicates that no
random numbers will be appended to the username.

accountSpecificData Account specific data.

HBLogout 1

Description Terminates the co-navigation session. The co-navigation applet is unloaded.

Syntax HBLogout();

 Parameters None.

HBPrintPage 1

Description When HBPrintPage is invoked, passing the name of a frame into the targetName
parameter, the name of the frame whose contents are to be sent to the printer.

Syntax HBPrintPage(targetName);

 Parameters targetName

16
HBReload
HBReload 1

Description Causes all shared browsers with the specified target name in the co-navigation session
to reload from the co-navigation session’s history.

Syntax HBReload(target);

 Parameters target Frame name of the shared browser to which the command
applies. If no target is specified, the default target

“HB_HIPBONE” is mapped to the initial shared browser.

HBSetPoint 1

Description Enables the pointer in the specified frame.

Syntax HBSetPoint(target, pointEnabled);

 Parameters target The frame name to which the command will apply.

pointEnabled Boolean indicating whether the pointer is to be enabled.

 Client Callback API17
Client Callback API
Client Callback API Section F

The Client Callback API provides the client with the ability to receive messages from
Hipbone. Hipbone calls functions in the topframeset based on various events. To

receive messages, you must implement the appropriate callback definitions and place

them into the topframeset.html frame.

HBAlertReceived 1

Description This is used when business rules are enabled and prevents a user action. Syntax

HBAlertReceived(title, msg);

Parameters If a window needs to be opened up to display the alert message, this parameter can be
used as the title of that window. msg.

A user may see Detailed information message such as:

You are not authorized to submit this form.

You are not authorized to co-navigate this URL:

You are not authorized to modify this field

HBCouldNotConnect 1

Description Invoked by Hipbone when Hipbone is unable to connect the user with another user.

Syntax HBCouldNotConnect(reasonID);

 Parameters reasonID The reason for the connection failure. Valid values are:

HBERR_USERNOTAVAILABLE — the requested user is not
available for co-navigation.

18
HBCouldNotCreateSession
HBERR_CONNECTIONFAILED — the connection could not

be made.

HBERR_APPLETNOTLOADED — the applet has not

completed loading.

HBCouldNotCreateSession 1

Description When a user attempts to create a session and is not able to do so, the

HBCouldNotCreateSession API can be used. Currently, this is called when a user tries
to create a session without having a valid log in.

Syntax HBCouldNotCreateSession(sReasonID);

 Parameters sReasonID Would typically be HBERR_NOT_LOGGED_IN.

HBCouldNotSetPoint 1

Description When pointers are disabled on the server and a user tries to enable them, the

HBCouldNotSetPoint callback is invoked.

Syntax HBCouldNotSetPoint(sReasonID);

 Parameters sReasonID Would typically be HBERR_POINTERS_DISABLED

 HBJoinedSuccessfully19
HBJoinedSuccessfully
HBJoinedSuccessfully 1

Description Invoked by Hipbone when a user joins a session successfully.

Syntax HBJoinedSuccessfully();

 Parameters None.

HBJoinRequested 1

Description Invoked by Hipbone when another user has requested to join a co-navigation session.

The method returns true if user accepts the join session request and false if the user

rejects the join session request.

Also, note that if a return value is not provided, the request times out and the user who

has requested the join finds that “HBCouldNotConnect” callback is invoked by

Hipbone.

Syntax boolean HBJoinRequested(name);

 Parameters name Name of the user requesting to join the session.

HBLinkConavigated 1

Description Invoked by Hipbone when a new page is being co-navigated.

Syntax HBLinkConavigated(link, targetFrame, who);

20
HBLoginError
 Parameters link URL co-navigated.

targetFrame Name of the frame for co-navigation.

who User name of the initiator of the action.

HBLoginError 1

Description Invoked by Hipbone when the user is unable to log in. This can be due to errors

relating to loading the applet, configuration, as well as an invalid username /

password.

Syntax HBLoginError(reasonID, description);

 Parameters reasonID Hipbone error code ID. Valid error codes are:

HBERR_BROWSER — Unsupported browser.

HBERR_CONFIGURATION — Unsupported browser

configuration.

HBERR_FIREWALL — Error due to firewall restrictions.

HBERR_JAVASCRIPT — JavaScript disabled.

HBERR_NOAPPLET — Java applet was unable to load, Java

not enabled.

HBERR_PLAT — Platform not supported by co-navigation

engine.

HBERR_SSL — SSL not enabled.

HBERR_COOKIES_DISABLED — Cookies are disabled.

 HBLoggedIn21
HBLoggedIn
HBERR_INVALIDUSERACCESS — Invalid user name and/

or password.

HBERR_UNKNOWN — An unknown error occurred.

description Error string associated with the error code.

HBLoggedIn 1

Description Invoked by Hipbone to notify the client that the applet has loaded and is ready.

Syntax HBLoggedIn(username);

 Parameters username The client’s assigned Hipbone ID.

HBLoggedOut 1

Description Invoked by Hipbone when the user has been logged out or a duplicate login from

another location with the same user ID.

Syntax HBLoggedOut(reasonID);

 Parameters reasonID Reason the user was logged out. Valid values are:

pollingfailed - The Hipbone messaging process is

unavailable.

duplicatelogin - Another user logged in with the same user

id and password.

22
HBSessionStarted
loggedOutByOtherProcess - The Hipbone service has

logged out the user.

Description Invoked by Hipbone when a co-navigation session ends.

Syntax HBSessionEnded();

 Parameters None.

HBSessionStarted 1

Description Invoked by Hipbone when a co-navigation session starts.

Syntax HBSessionStarted(sessionID);

 Parameters sessionID Unique session identifier.

HBSetPointSuccessfully 1

Description Invoked by Hipbone when a pointer is set.

Syntax HBSetPointSuccessfully(target, pointEnabled);

 Parameters target The name of the frame to set the pointer.

pointEnabled Boolean indicating whether the pointer is to be enabled.

 HBUserEnteredSession23
HBUserEnteredSession
HBUserEnteredSession 1

Description Invoked by Hipbone when another user joins the current session.

Syntax HBUserEnteredSession(name);

 Parameters name Name of the user entering the co-navigation session.

HBUserExitedSession 1

Description Invoked by Hipbone when another user exits the current session.

Syntax HBUserExitedSession(name);

 Parameters name Name of the user who exited the co-navigation session.

24
Client Callback Examples
Client Callback Examples Section G

NOTE: Please see the sample application included with the client-API for

a full implementation of a very basic integrated web client.

The following is an example of how to implement an application that is ready to

support Hipbone. The frame with the name "varframe" would contain an integrator's
web application, and the optional "embedded_browser" frame would contain a

Hipbone shared browser.

<html>
<head>
<title>VAR Integration</title>

<SCRIPT language="Javascript">
var startConavServerUrl = 'www5.conavigator.com';

function init() {
window.hbapi.HBInitializeAPI('callbacks',
startConavServerUrl, '/integration/hbmessage_to_var.html');

window.hbapi.HBInitEmbeddedFrame("http://
www.hipbone.com",true,"embedded_browser");

}
</script>
</head>
<frameset rows="50%,50%,1*,1*" cols="*" frameborder="no"

border="0" framespacing="0" onload='init()'>
<FRAME NAME="varframe" SRC="varExampleForm.html"

MARGINWIDTH="4" MARGINHEIGHT="4">
<FRAME NAME="embedded_browser" SRC="blank.html"

frameborder="yes">
<FRAME NAME="callbacks" SRC="example_callbacks.html">
<FRAME NAME="hbapi" SRC="hbapi.html">
</frameset>
</html>

Following is an example set of callbacks that one might implement, and would

correspond to the previous example by being loaded into the frame named

"callbacks".

 Client Callback Examples25
Client Callback Examples
<html>
<script language="Javascript">
function HBJoinedSuccessfully() {

alert("HBJoinedSuccessfully");
}//HBJoinedSuccessfully()

function HBJoinRequested(sName) {
return confirm("Co-navigate with '"+sName+"'?");

}//HBJoinRequestedByUser()

function HBLoggedIn(sHipboneID) {
alert("HBLoggedIn, my HipboneID is: "+sHipboneID);

}//HBLoggedIn()

function HBLoggedOut(sReasonID) {
alert("HBLoggedOut, reasonid="+sReasonID);

}//HBLoggedOut()

function HBLinkConavigated(sLink, sTarget, sUserName) {
alert("HBLinkConavigated, slink="+sLink+",
target="+sTarget+", sSourceUserName="+sUserName);

}//HBLinkConavigated(,,)
</script>
</html>

26
Client Callback Examples

	Contents
	Chapter�1
	Client API Reference: version 2.3
	Overview
	The Hipbone Client Integration Application Programming Interface (API) allows you to easily integ...
	• Login users — provides control to login Agents and Guests (customers).
	• Send messages — provides the ability to control a session on the Hipbone Server, such as: conne...
	• Receive messages — provides the interface to receive connection confirmation and error messages.

	The following diagram illustrates Client API-based integration.

	Document Conventions
	A number of typographic conventions are used throughout this document to help you recognize speci...

	Integration Mechanism
	The integration solution provides a well defined process to launch and conduct a co- navigation s...
	The following steps illustrate a typical sequence of steps in the co-navigation process.
	1. Agent logs into your service and Hipbone — An Agent (customer service or sales representative)...
	2. Guest Communicates with Agent — A Guest (customer) begins communicating with the Agent through...
	3. Guest Login to Hipbone — While communicating with the Agent, your application uses the Hipbone...
	4. Co-navigation Initiated — At some point during the Guest interaction with the Agent, the Agent...
	5. Browser Launch — Your application (Guest side) invokes the Hipbone API method HBConnectTo (spe...
	• If the Guest is unable to load the Hipbone applet or connect to the Agent, the Hipbone Server w...
	• When the Guest successfully enters a session, the Hipbone Server sends a confirmation message.

	6. Co-Navigating — The Guest and Agent co-navigate.
	7. Agent Exits — Once they are finished, the Hipbone API method HBExitSession may be invoked on e...
	8. Guest Logout and Browser Close — The Hipbone Client closes the Guest browser and logs out the ...
	• The Hipbone Server sends a confirmation message. Your application or service can trap these eve...

	Integrating Hipbone with your Application
	This section describes how to integrate the Hipbone Client API into your Web application.
	Setting Up the Files
	Integration Support Files
	Host the following documents on a Web server in an externally visible location.
	• hbmessaging.js — JavaScript include file containing the API to the Hipbone Server.
	• hbcallback.js — JavaScript include file containing default callback API implementations.
	• qstring.js — JavaScript include file containing a utility class.
	• blank.html — default blank page for initializing empty frames used by the API.
	• hbapi.html — contains support for client-side API and the Hipbone applet.
	• hbmessagingform.html — Provides additional security by sending Agent login information to be su...
	• hbmessage_to_var.html — VAR hosted messaging file that provides messages from the Hipbone frame...
	NOTE: qstring.js and hbmessage_to_var.html must be in the same directory.

	Example Client Files
	A frameset and simple Web application are provided as examples.
	• toplevelframeset.html — holds callback and Hipbone messaging files.
	• varExampleForm.html — simple example client that captures and sends events to Hipbone.
	• example_callbacks.html — sample implementations of each client callback provided by the Hipbone...

	Creating the Frameset
	The example file toplevelframeset.html provides an example of how the frameset should be set up.
	<frameset rows=”50%,50%,1*,1*”cols=”*” frameborder=”no” border=”0” framespacing=”0” onload=’init()’>
	<FRAME NAME=”varframe” SRC=”varExampleForm.html” MARGINWIDTH=”4” MARGINHEIGHT=”4”>
	<FRAME NAME = “embedded_browser” SRC=”blank.html” frameborder=”yes”>
	<FRAME NAME = “callbacks” SRC=”example_callbacks.html”>
	<FRAME NAME = “hbapi” SRC=”hbapi.html”>
	</frameset>

	The layout of the frameset contains the following frames:
	• varframe — defined in the source file varExampleForm.html and contains the sample application c...
	• embedded_browser — defined in the source file blank.html. It contains the embedded shared brows...
	• callbacks — defined in the source file example_callbacks.html. It contains the sample callback ...
	• hbapi — defined in the source file hbapi.html. It contains the Hipbone applet and APIs.

	Initializing the API
	Initialize the API by calling HBInitializeAPI. You must specify the frame to which you want the H...
	hbapi.HBInitializeAPI(����callbackFrameName, ����co-navigationServer, ����messageToVarPath);

	Once initialized, you can access the various methods and callbacks provided by the Hipbone API.

	Logging In Guest and Agents
	With the Hipbone API initialized, you are now ready to log in the Agent and Guest.
	Logging in the Agent
	The Agent should log into Hipbone as early as possible in order to preload the Hipbone applet. Ca...

	Logging In the Guest
	The Guest side should log into Hipbone as soon as the Agent and the Guest have established commun...
	As soon as the Agent and Guest have connected to each other through your application, call HBLogi...

	Connecting Guests and Agents
	Once the Agent and Guest have logged into Hipbone, connect them to each other to enable co- navig...
	• The Guest attempts to connect to the Agent — The Guest calls the HBConnectTo method from the Gu...
	• The Agent must accept the Guest — When the Guest attempts to connect, the Agent software receiv...
	NOTE: The default implementation of HBJoinRequested always returns True. It is up to the VAR to i...

	Once this transaction is complete, a Co-navigation browser window opens on both the Agent and Gue...
	Co-navigating Links
	The Guest and Agent can co-navigate to different links by entering URLs on their respective locat...

	Calling Command Methods
	The Guest and Agent can execute a number of JavaScript commands, such as HBConavigateLink, HBExit...

	Receiving Messages
	You can receive various messages such as HBUserExitSession, HBSessionEnded, HBLinkConavigated, et...

	Shared Browsing within an Embedded Frame
	An initial shared browser may be embedded into a frame by providing a named frame and then invoke...
	When the API claims the frame, neither the frame name nor the frame’s pre-existing contents are p...
	In the event that an integrating partner needs to reuse this frame after Hipbone has exited, the ...

	Exiting
	When the client exits your application, the Agent client is automatically exited from the applica...

	Client Functions
	The file hbmessaging.js contains methods that you can use to interface with Hipbone.
	HBConavigateLink
	Description
	NOTE: The frame names of shared browsers start with “HB_”. If a new window is opened, the “HB_” i...
	Syntax
	Parameters

	HBConnectTo
	Description
	Syntax
	Parameters

	HBCreateSession
	Description
	Syntax
	Parameters

	HBExitSession
	Description
	NOTE: The user remains logged into the Hipbone Server, awaiting a command to connect to another s...
	Syntax
	Parameters

	HBHistoryGoBack
	Description
	NOTE: If no target is specified, the default target is “HB_HIPBONE”, which is mapped to the initi...
	Syntax
	Parameters

	HBHistoryGoForward
	Description
	Syntax
	Parameters

	HBInitEmbeddedFrame
	Description
	NOTE: This function must be called before a call is made to HBLoginGuest or HBLoginAgent.
	Syntax
	Parameters

	HBInitializeAPI
	Description
	Syntax
	Parameters

	HBLoginAgent
	Description
	Syntax
	Parameters

	HBLoginGuest
	Description
	Syntax
	Parameters

	HBLogout
	Description
	Syntax
	Parameters

	HBPrintPage
	Description
	Syntax
	Parameters

	HBReload
	Description
	Syntax
	Parameters

	HBSetPoint
	Description
	Syntax
	Parameters

	Client Callback API
	HBAlertReceived
	Description
	Parameters

	HBCouldNotConnect
	Description
	Syntax
	Parameters

	HBCouldNotCreateSession
	Description
	Syntax
	Parameters

	HBCouldNotSetPoint
	Description
	Syntax
	Parameters

	HBJoinedSuccessfully
	Description
	Syntax
	Parameters

	HBJoinRequested
	Description
	Syntax
	Parameters

	HBLinkConavigated
	Description
	Syntax
	Parameters

	HBLoginError
	Description
	Syntax
	Parameters

	HBLoggedIn
	Description
	Syntax
	Parameters

	HBLoggedOut
	Description
	Syntax
	Parameters
	Description
	Syntax
	Parameters

	HBSessionStarted
	Description
	Syntax
	Parameters

	HBSetPointSuccessfully
	Description
	Syntax
	Parameters

	HBUserEnteredSession
	Description
	Syntax
	Parameters

	HBUserExitedSession
	Description
	Syntax
	Parameters

	Client Callback Examples
	NOTE: Please see the sample application included with the client-API for a full implementation of...

