S

GENESYS

AN ALCATEL-LUCENT COMPANY

Genesys Multimedia 7.6

Web API Client

Developer’s Guide

The information contained herein is proprietary and confidential and cannot be disclosed or duplicated without the
prior written consent of Genesys Telecommunications Laboratories, Inc.

Copyright © 2003-2009 Genesys Telecommunications Laboratories, Inc. All rights reserved.

About Genesys

Genesys Telecommunications Laboratories, Inc., a subsidiary of Alcatel-Lucent, is 100% focused on software for call centers.
Genesys recognizes that better interactions drive better business and build company reputations. Customer service solutions
from Genesys deliver on this promise for Global 2000 enterprises, government organizations, and telecommunications service
providers across 80 countries, directing more than 100 million customer interactions every day. Sophisticated routing and
reporting across voice, e-mail, and Web channels ensure that customers are quickly connected to the best available resource—
the first time. Genesys offers solutions for customer service, help desks, order desks, collections, outbound telesales and
service, and workforce management. Visit www. genesys lab. com for more information.

Each product has its own documentation for online viewing at the Genesys Technical Support website or on the Documentation
Library DVD, which is available from Genesys upon request. For more information, contact your sales representative.

Notice

Although reasonable effort is made to ensure that the information in this document is complete and accurate at the time of
release, Genesys Telecommunications Laboratories, Inc., cannot assume responsibility for any existing errors. Changes and/or
corrections to the information contained in this document may be incorporated in future versions.

Your Responsibility for Your System’s Security

You are responsible for the security of your system. Product administration to prevent unauthorized use is your responsibility.
Your system administrator should read all documents provided with this product to fully understand the features available that
reduce your risk of incurring charges for unlicensed use of Genesys products.

Trademarks

Genesys, the Genesys logo, and T-Server are registered trademarks of Genesys Telecommunications Laboratories, Inc. All
other trademarks and trade names referred to in this document are the property of other companies. The Crystal monospace
font is used by permission of Software Renovation Corporation, www.SoftwareRenovation.com.

Technical Support from VARs
If you have purchased support from a value-added reseller (VAR), please contact the VAR for technical support.

Technical Support from Genesys

If you have purchased support directly from Genesys, please contact Genesys Technical Support at the following regional
numbers:

Region Telephone E-Mail

North and Latin America +888-369-5555 or +506-674-6767 supportegenesyslab.com
Europe, Middle East, and Africa +44-(0)-1276-45-7002 supportegenesyslab.co.uk
Asia Pacific +61-7-3368-6868 supportegenesyslab.com.au
Japan +81-3-6361-8950 supportegenesyslab.co.jp

Prior to contacting technical support, please refer to the Genesys Technical Support Guide for complete contact
information and procedures.

Ordering and Licensing Information
Complete information on ordering and licensing Genesys products can be found in the Genesys 7 Licensing Guide.

Released by
Genesys Telecommunications Laboratories, Inc. www.genesyslab.com
Document Version: 76mm_dev_web-api_01-2009_v7.6.101.00

mailto:support@genesyslab.com
mailto:support@genesyslab.co.uk
mailto:support@genesyslab.com.au
mailto:support@genesyslab.co.jp
http://genesyslab.com/support/dl/retrieve/default.asp?item=B3BFC6DABE22B62AAE32A6D31E6396E3&view=item
http://genesyslab.com/support/dl/retrieve/default.asp?item=B6C52FB62DB42BB229B02755A1D12650&view=item
http://www.genesyslab.com
http://www.genesyslab.com

S

o

GENESYS

AN ALCATEL-LUCENT COMPANY

Table of Contents

Prefac e e n s 9
Multimedia and the CIM Platform ... 10
CIM PlatfOrm ..ot 10
0114 g =To = PP 10
Intended AUdIENCE..........ciiiiiiiiiieeeeeee e 12
USage GUIAEIINESeeeieiiiiiiiiiiee e 12
Chapter SUMMAIIES.ccoiiiiiii b eseanees 14
Document CONVENTIONSeviiiiiiiiiieiieeieeeeeeeeee e 15
Related RESOUICESuuuiiiiiiiiiiiiiiieeeee ettt 17
Making Comments on This Documentcccooiiiiiiiiiiiiiieeeeeen 18
Document Change HiStOryuuuuiiiieeiiiiiiiiiieeeeeeeeeeeeeeeeeeee e 19
New iN Version 7.6.7 19
Chapter 1 About Web API Clients..........ccccoeieiernirenenneescee s see e seseeas 21
Important Note About .NET Architecture.........cccccovvvviiiiiiiii 21
Java ArchiteCture ..., 22
PaCKageSooeiiiii e 23
Class HIi€rarChycccocciiii v nnanees 24
Packets and ENVEIOPESuuuiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeee e 26
= o3 (Y PP 26
Y1 (o] 1= 28
ENvelope FacCtOry ... 28
Media Packages (Java)..........ueeeeeiiiiiiiiiiieeeeeeeeeeeeeeeeee ettt 28
(O 11| o =T QSRR 28

(O] 0 - | PR PPTTRRPPP 31
E-Malil. e 35
OPEN MEAIA 37
Universal Contact SErver............uueviiiiiiiiiiiiiiiieeeeeeeeeeeeeeeee e 39
Statistics Packages........cooooiiiiiiiiiiicicececce s 39
API Accessibility (Java)uueeeiiiiiiiii e 40
Configuration SEIVET.......cooo i 40
[IoF=To [= =1 =T [or] o RSP 41
Balancing Multiple Web AP Serverscccoocoiiiiiiiieiiiiieee, 42
Balancing Multiple Chat Servers........cccccccvvviiiiiiii 44

Web API Client—Developer’s Guide 3

Table of Contents

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Balancing Multiple Instances of E-Mail Server Java.............cccc..u...... 45
International Language Support ... 46
APl Usage in the SamPIES..........eueiiiiiiiiiiiieieeeeeeeeeeeeeeeeeeeeeeeeeee e 47
About the SamPIes........ e 51
OVEIVIBW. ...ttt et e e e e e aeeans 51
Simple SamPIES ..., 51
Compound Sample ..., 53
TESETOOIS .o, 53
Installing the SAMPIESuuviiiiiiiiiiiiiieeeeeeeeeeeee e 53
Tools You Need Before Installation..................cc . 53
INStallation ProCeSS.......vvviiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeee ettt 53
Installation TESHNGuuciii i 53
DIreCtory STTUCIUIEceeiiiiiiiieee e 54
JAVA L 54

N E T et e e e e e e e e e e e e e e e e reaees 54
Simple Sample Files ..., 55
Compound Sample Files ..., 61
Test TOOI FileS ..o, 64
Understanding and Using the E-Mail Service.........cccociiviicciicciinnnnnnes 67
OVEIVIBW. ...ttt et e et e e e e e e eeans 68
Life Cycle of an E-Mail SESSION........cccccciiiiiiiiiiiieaeaeaaees 68
Event Flow of an E-Mail SeSSION..........covvviiiiiiiiiiiiiiiiiiiiieeeeeeeeee e 69
Understanding and Using the Flex Chat Serviceccccccoiinnnnnene. 71
OVEIVIBW. ...ttt e et e e e e e e et e e e e e e e enneeeeees 71
Life Cycle of @ Chat SeSSIONuuiiiiiiiiiiiii e 72
Event Flow of @ Chat SeSSioN ... 73
LI =T 4]0 £ P 75
Understanding and Using the Callback Service..........ccccceeiicciinnnnnee 77
OVEIVIBW. ...ttt et e e e e e e e e e e e e e eeans 77
o e 011 =T od (1] = PP 78
Event Flow of a Callback Request.............ooovvveiiiiiiiiiiiiiiiiiiieeeeee 78
Understanding and Using the Open Media Serviceccccceeiunnnnee 81
OVEIVIBW. ...ttt ettt e e e e e e et e e e e e e e e enneeeeees 81
Y e 011 =T od (1 = P 82
Event Flow of an Open Media Request.............oevvviiieeiiiiiiiiiieiieeeieeeeeee, 82
S

Genesys Multimedia 7.6 &=

Table of Contents

Chapter 7 Understanding and Using the Web Collaboration Service............... 85
What is CO-Browsing?uuiiiiiiiiiiiiiiiiieeee e 85
o o 011 =T od (1] = P 86
Web Collaboration ProCesscevviiiiiiiiiiiiiiiieiiieeeeeeeeeeeeeeeeeeeeeeeee e 87
Integrating Co-Browsing into Your Applicationccccevveveevievvieeeeeeeeee. 88

Chapter 8 Understanding and Using the FAQ Service..........ccccvvmniniiennieniinnns 91
OVEIVIEW......ciieeeeee e, 91
Genesys Knowledge Management..................cccoeei e, 92
Genesys Content ANAIYZEr ... 92
FAQ ODJECLS ..o 93
Sample FAQLJar File ... 93

Chapter 9 Multimedia Simple Samples for Javacccceccrrrierrnccnscceesscee e 95
OVEIVIEW......ccce e, 96

Sample OVEIVIEW.........coooiiii i, 96
Shared Files ... 98
File DEeSCIIPLIONS .cevvveiie et e e 99
Callback SamPle........ooooiiiiiiii 101
PUIPOSE .t 101
Functionality OVErvVIEW............eevvviiiiiiiiiiiiiieeeeeeeeeeeeeee e 101
LS e as 101
Code EXplanationcoooiiiiiiiiio e 102
Chat Sample........ooooiiii 107
PUIPOSE .ttt e e e e e e 107
Functionality OVErvIEW.............uvvviiiiiiiiiiiiiieeeeeeeeeeeeeee e 107
LS e as 107
Code EXplanationooooooiiiiii e 108
Chat with Statistics Sample ... 117
PUIPOSE .ttt e e e e eeees 117
Functionality OVEIVIEW...........uueiiiiiiiiiiieeeee e 117
LS e 118
Code EXplanationoooooiiiiiii e 118
E-Mail SAMPIE ...uueiiiiiiiiiiii e 120
PUIMPOSE ..o 120
Functionality OVEIVIEW............ueiiiiiiiiiiieeee e 121
LS e 121
Code ExXplanationcooooiiiiiiiii i 121
E-Mail with Attachment Sample..............uvvvviiiiiiiiiiiiiiiiiieeeeeeeeeeee 124
PUIPOSE . 124
LS e as 124

Web API Client—Developer’s Guide 5

Table of Contents

Chapter 10

Code EXplanationcoooiiiiiiiii e 125
E-Mail with Statistics Sample..............evvvviiiiiiiiiiiiiiiiieeeeeeeeeeeeeeee e 132
PUIMPOSE ..o 132
Bl e as 132
Code EXplanationccoooiiiiiiiioi e 132
Co-Browse Samples OVErVIEWccooeiiiiiiiiiieeeeeeeeeeeeeeeee e, 137
CommON FileS......ccoe e 137
Co-Browse Sample.........cooooiiiiiiiiiii 137
PUIPOSE ..t n e 137
The CoBrowseEventHandler.jsp File Explained 138
Chat and Co-Browse Sample ... 143
PUIMPOSE ..t 143
LS e 143
Code EXplanationcooooiiiiiiio e 144
CO-Browse Meet Me.........oeiiiiiiiiiiieee e 148
P UIPOSE .ttt e e e e eeeas 148
Bl e as 148
The CoBrowseEventHandler.jsp File Explained 148
Co-Browse Init Start Page ... 150
PUIMPOSE .. 150
LS e 150
The CoBrowseEventHandler.jsp File Explained 150
Co-Browse Dynamic Start Pageccccevviiiiiiiiiiiieieeeee e 152
PUIPOSE .ttt e e e e e e e 152
FlES ittt e e e eneeeeeees 152
Code EXPlanationeeiiiiiiiiiie e 152
Build Your Own Dynamic Start Page Examplecccccceiviiiinnn. 155
SBINGS oo 156
Limitations of the Dynamic Start Page..........ccccccooiiiiiiiiiieiii 157
FAQ e e e aaans 157
PUIPOSE .t e e 157
] SRS 157
Code EXplanationcoooiiiiiiiii e 157
Open Media Sample..... ..o 162
P UIPOSE .ttt e e eeees 162
Functionality OVEIVIEW............ueiiiiiiiiiiieeeee e 162
1= SRR 162
Code EXplanationooooooiiiiii e 163
Multimedia Simple Samples for .NET e 169
OVEIVIEW......c.ceeeeeeee e 169
Samples Included ... 170
Files Included: .ASPX Versus .ASPX.CS ..o 171
S

Genesys Multimedia 7.6 &=

Table of Contents

Shared Files ... 171
1L B LY Yod g o] 1T0] o < PP 172
Callback Sample..........coooiiiiiiiiii 173
PUIPOSE .t en e 173
Functionality OVErvVIEW.............uvvviiiiiiiiiiiiiieeeeeeeeeeeeeee e 174
] L RS PR 174
Code EXplanationcoooiiiiiiiiie e 174
Chat Sample........ooooiiii 179
PUIPOSE .ttt e e e e e 179
Functionality OVEIVIEW............ueiiiiiiiiiiieeeee e 179
LS e as 179
Code EXplanationcooooiiiiiiio e 179
Chat with AJAX Sample ..o, 192
PUIPOSE .ttt e e e e e e eeas 192
Functionality OVEIVIEW............ueiiiiiiiiiiieeeee e 192
LS e 192
Code EXplanationcooooiiiiiii e 192
E-Mail SAMPIEuuiiiiiiiiiii e 202
PUIMPOSE .. 202
Functionality OVEIVIEW............ueiiiiiiiiiiieeee e 202
1 = PSPPSR 203
Code Explanationcooooiiiiiiiii i 203
Open Media Sample.........ccoovviiiiiiii 207
PUIPOSE .t e e 207
Functionality OVEIVIEW............ueiiiiiiiiiieee e 208
Bl e as 208
Code EXPlanationeeiiiiiiiiiieeee e 208
Stat Server Sample.......oooo 217
PUIPOSE .ttt e 217
Functionality OVErVIEW.............euuviiiiiiiieiiiiieeeeeeeeeee e 218
LS e as 218
Code EXPlanationeeiiiiiiiiiieeeee e 218
Universal Contact Server Sample ... 226
PUIPOSE .t e e e e 226
Functionality OVEIVIEW............ceeiiiiiiiiiieeeee e 226
1 = PP 226
Code EXplanationcooooiiiiiiiio e 226
Chapter 11 Multimedia Compound Sample...........ccccvrrvmrrccerrnveerscee e 241
OVEIVIBW. ...ttt ettt e e ettt e e e e e e s e e e e e e e ennneees 241
Files and Directory Structurecccovviviiiiiiiiiieeeee e 241
Sample Demonstration Categories........c.ccovvuviiiiiieiiiiiiiiieeeeee e 242
COMMON FlES .o 243

Web API Client—Developer’s Guide 7

Table of Contents

Chapter 12

Chapter 13

Index

Compound Sample Structure ... 246
Running the Sample ... 248
Customizing the Compound Sample...............ccc 249
Code EXplanation ..o, 250
AUthenticationeeeiiie e 250
Web Media Features in the Compound Sample................c.oeeee. 252
CallbacK 252
(7 - | S PUPPPESRR 253
E-Malil....oeeeeeeee e 256
Multimedia Test TOOIS.......ccccooiii e 263
OVEIVIBW. ...ttt e et e e e e eeeeeaaas 263
JAVA L 263
N E T e e e e e e e e e e e e e e e e e e e nnnnees 264
USING the TOOISeveeei e e 265
Load-Balancing Servlet Configurationcccceeeveveeiiieiieeiieeeeeeeeen, 265
Verifying Chat Server Configurationcccciiiiiiiiiiiiiiiie 267
Verifying the Configuration of E-Mail Server Javaccccccccevee. 268
Verifying Stat Server Configurationceeevviiiiiiiiiiiieiiieeeeeeeeeeee, 269
Troubleshooting GUIAEoooiiiiiiiiiii e 269
Sample Client SCeNarios..........ccccvvevvierssssssssss s 271
DISCIAIMETS ..ttt e e e e e 271
CoMMON SCENAMOSceeeeeeeeeeeeeeeeeee e, 271
RS Te7 =T g = o T PSPPI 272
SCENANMO 2.ttt e e e e e e e e e e e e e 272
SCENAMO ...t 273
SCENAMO 4 ...t e e e e e e e 273
SCENANMO B e e e e e 274
CONCIUSION ...t eeens 274
... 275

Genesys Multimedia 7.6 @

S

N’

GENESYS

AN ALCATEL-LUCENT COMPANY

Preface

Welcome to the Multimedia 7.6 Web API Client Developer’s Guide. This book
will show you how to turn your call center into an Internet contact center by
adding a website that offers chat and e-mail support. It will also show you how
to use Genesys Open Media services to submit web-based interactions of
virtually any type to Genesys Interaction Server.

This guide is valid only for the 7.6 release(s) of this product.

Note: For versions of this guide created for other releases of this product,

please visit the Genesys Technical Support website, or request the
Documentation Library DVD, which you can order by e-mail from
Genesys Order Management at ordermanegenesyslab.com.

This chapter contains these sections:

Web API Client—Developer’s Guide

Multimedia and the CIM Platform, page 10
Intended Audience, page 12

Usage Guidelines, page 12

Chapter Summaries, page 14

Document Conventions, page 15

Related Resources, page 17

Making Comments on This Document, page 18

mailto:orderman@genesyslab.com

Preface

Multimedia and the CIM Platform

Multimedia and the CIM Platform

CIM Platform

Multimedia

10

The Genesys Multimedia Web API gives you the programming tools you need
to write client applications that use chat and e-mail services.

Genesys Multimedia (formerly Multi-Channel Routing) is a cover term for
Genesys components that work together to manage interactions whose media
is something other than traditional telephonic voice (for example, e-mail or
chat).

Multimedia includes some parts of the Genesys Customer Interaction
Management (CIM) Platform, plus certain of the media channels that run on
top of the Platform.

The CIM Platform consists of the following:
* Management Framework
* Reporting (CC Analyzer, CCPulse+)

* Interaction Management, which in turn consists of:
+ Universal Routing
+ Interaction Workflow
+ Knowledge Management
+ Content Analysis
+ Universal Contact History
On top of the CIM Platform are various media channels. Some, such as

Genesys Network Voice, handle traditional telephony. Others, such as Genesys
E-mail, handle other media.

Multimedia, then, consists of the following:
* From the CIM Platform, all of Interaction Management except for
Universal Routing:
+ Interaction Workflow—centralized handling of interactions
irrespective of media type
+ Knowledge Management—creation and maintenance of standard
responses and screening rules
+ Content Analysis—optional enhancement to Knowledge Management,
applying natural language processing technology to categorize
interactions
+ Universal Contact History—storage of data on contacts and on
interactions (linked as threads)

Genesys Multimedia 7.6 @

Preface Multimedia and the CIM Platform

Universal Routing is not considered part of Multimedia because it deals

with both traditional telephonic interactions and the nontraditional

interactions that are handled in Multimedia.

* From the media channels, at least one of the following:

+ Genesys E-mail—e-mail

+ Genesys Web Media—chat

+ Genesys Open Media—ability to add customized support for other
media (fax, for example)

* Optionally, Web Collaboration—the ability for agents and customers to
co-browse (simultaneously navigate) shared web pages. This is an option
that you can add to either Genesys Web Media or Inbound Voice.

Figure 1 shows the Genesys components that comprise Genesys Multimedia.

. o
Medla (others) Genesys Genesys | | Genesys Genesys Genesys
Inbound Network | | E-mail Web Open
Channels Voice Voice Media Media

Interaction Manage| nent

Universal Routing Knowledge Management
g Content Analysis
qg Interaction Workflow Universal Contact History
= L -
= Reporting
O

Framework

Figure 1: Multimedia in Relation to the CIM Platform and Media Channels

Note: Although Universal Routing is not considered part of Multimedia, any
functioning solution (platform plus channels) that includes any part of
the Interaction Management sector requires Universal Routing.

Each component has its own documentation. For details about obtaining
documents, see “Related Resources” on page 17.

Licensing

Licensing requirements are:
* For each agent: one Multimedia Agent seat.

* For each media option: one media channel (E-mail and/or Web Media and/
or custom media).

* For Genesys Content Analyzer: NLP Content Analysis license.

See also the Genesys 7 Licensing Guide.

Web API Client—Developer’s Guide 11

Preface

Intended Audience

Reporting

Reporting templates are available for Multimedia. For details, see the
Reporting Technical Reference Guide for the Genesys 7.x Release.

Intended Audience

This guide, primarily intended for developers, assumes that you have a basic
understanding of:

¢ Computer-telephony integration (CTI) concepts, processes, terminology,
and applications.

* Network design and operation.

* Your own network configuration.

You should also be familiar with:

* Genesys Framework architecture and functions.

* Genesys Multimedia architecture and functions.

* Java servlet technologies, including JavaServer Pages (JSPs).

* For the .NET implementation: the Microsoft .NET Framework and
Active Server Pages (ASPXs).

* Java and JavaScript, or comparable scripting languages like VB Script
and Jscript

* Hypertext Markup Language (HTML).

* Underlying technologies that support web servers and servlet engines.

Usage Guidelines

12

The Genesys developer materials outlined in this document are intended to be
used for the following purposes:

* Server-side integration between Genesys software and third-party
software.

* Creation of specialized web client applications that are specific to
customer needs.

The Genesys software functions available for development are clearly
documented. No undocumented functionality is to be utilized without
Genesys’s express written consent.

The following Use Conditions apply in all cases for developers employing the
Genesys developer materials outlined in this document:

1. Possession of interface documentation does not imply a right to use by a
third party. Genesys conditions for use, as outlined below or in the Genesys
Developer Program Guide, must be met.

Genesys Multimedia 7.6 @

Preface Usage Guidelines

2. This interface shall not be used unless the developer is a member in good
standing of the Genesys Interacts program or has a valid Master Software
License and Services Agreement with Genesys.

3. A developer shall not be entitled to use any licenses granted hereunder
unless the developer’s organization has met or obtained all prerequisite
licensing and software as set out by Genesys.

4. A developer shall not be entitled to use any licenses granted hereunder if
the developer’s organization is delinquent in any payments or amounts
owed to Genesys.

S. A developer shall not use the Genesys developer materials outlined in this
document for any general application development purposes that are not
associated with the above-mentioned intended purposes for the use of the
Genesys developer materials outlined in this document.

6. A developer shall disclose the developer materials outlined in this
document only to those employees who have a direct need to create, debug,
and/or test one or more participant-specific objects and/or software files
that access, communicate, or interoperate with the Genesys API.

7. The developed works and Genesys software running in conjunction with
one another (hereinafter referred to together as the “integrated solutions”)
should not compromise data integrity. For example, if both the Genesys
software and the integrated solutions can modify the same data, then
modifications by either product must not circumvent the other product’s
data integrity rules. In addition, the integration should not cause duplicate
copies of data to exist in both participant and Genesys databases, unless it
can be assured that data modifications propagate all copies within the time
required by typical users.

8. The integrated solutions shall not compromise data or application security,
access, or visibility restrictions that are enforced by either the Genesys
software or the developed works.

9. The integrated solutions shall conform to design and implementation
guidelines and restrictions described in the Genesys Developer Program
Guide and Genesys software documentation. For example:

a. The integration must use only published interfaces to access Genesys
data.

b. The integration shall not modify data in Genesys database tables
directly using SQL.

c. The integration shall not introduce database triggers or stored
procedures that operate on Genesys database tables.

Any schema extension to Genesys database tables must be carried out using
Genesys Developer software through documented methods and features.

The Genesys developer materials outlined in this document are not intended to
be used for the creation of any product with functionality comparable to any

Web API Client—Developer’s Guide 13

Preface

Chapter Summaries

Genesys products, including products similar or substantially similar to
Genesys’s current general-availability, beta, and announced products.

Any attempt to use the Genesys developer materials outlined in this document
or any Genesys developer software contrary to this clause shall be deemed a
material breach with immediate termination of this addendum, and Genesys
shall be entitled to seek to protect its interests, including but not limited to,
preliminary and permanent injunctive relief, as well as money damages.

Chapter Summaries

In addition to this preface, this guide contains the following chapters:

14

Chapter 1, “About Web API Clients,” on page 21, puts the Multimedia
Web API in a development context by outlining its architecture and
discussing the main elements of its class hierarchy.

Chapter 2, “About the Samples,” on page 51, briefly describes the sample
applications provided on the Multimedia Interaction Management CD and
tells you how to install them.

Chapter 3, “Understanding and Using the E-Mail Service,” on page 67,
provides an overview of the Multimedia e-mail service, including the life
cycle and event flow of an e-mail.

Chapter 4, “Understanding and Using the Flex Chat Service,” on page 71,
introduces the Multimedia Flex Chat service, including its life cycle and
event flow.

Chapter 5, “Understanding and Using the Callback Service,” on page 77,
introduces the Multimedia Voice Callback service, including its life cycle
and event flow.

Chapter 6, “Understanding and Using the Open Media Service,” on
page 81, introduces the Multimedia Open Media service, including its life
cycle and event flow.

Chapter 7, “Understanding and Using the Web Collaboration Service,” on
page 85, introduces the Web Collaboration service.

Chapter 8, “Understanding and Using the FAQ Service,” on page 91,
introduces the FAQ object.

Chapter 9, “Multimedia Simple Samples for Java,” on page 95, reviews the
simple callback, chat, co-browse, e-mail, and Open Media samples
provided for Java developers on the Multimedia Interaction Management
CD.

Chapter 10, “Multimedia Simple Samples for .NET,” on page 169, reviews
the simple callback, chat, e-mail, and Open Media samples provided for
.NET developers on the Multimedia Interaction Management CD.

Genesys Multimedia 7.6 @

Preface Document Conventions

e Chapter 11, “Multimedia Compound Sample,” on page 241, reviews the
Compound Sample provided for Java developers on the Multimedia
Interaction Management CD.

e Chapter 12, “Multimedia Test Tools,” on page 263, provides an overview
of the test tools provided on the Multimedia Interaction Management CD
and basic troubleshooting tips.

¢ Chapter 13, “Sample Client Scenarios,” on page 271, presents common
scenarios for web client application development and shows how to satisfy
them by using code snippets from the web samples.

Document Conventions

This document uses certain stylistic and typographical conventions—
introduced here—that serve as shorthands for particular kinds of information.

Document Version Number

A version number appears at the bottom of the inside front cover of this
document. Version numbers change as new information is added to this
document. Here is a sample version number:

mm_dev_web-api_11-2007_v7.6.000.00

You will need this number when you are talking with Genesys Technical
Support about this product.

Type Styles

Italic

In this document, italic is used for emphasis, for documents’ titles, for
definitions of (or first references to) unfamiliar terms, and for mathematical
variables.

Examples: ¢ Please consult the Genesys 7 Migration Guide for more information.

* A customary and usual practice is one that is widely accepted and used
within a particular industry or profession.

* Do not use this value for this option.

e The formula, x +1 = 7 where x stands for . . .

Web API Client—Developer’s Guide 15

Preface

16

Examples:

Example:

Document Conventions

Monospace Font

A monospace font, which looks like teletype or typewriter text, is used for
all programming identifiers and GUI elements.

This convention includes the names of directories, files, folders, configuration
objects, paths, scripts, dialog boxes, options, fields, text and list boxes,
operational modes, all buttons (including radio buttons), check boxes,
commands, tabs, CTI events, and error messages; the values of options; logical
arguments and command syntax; and code samples.

¢ Select the Show variables on screen check box.
¢ Click the Summation button.

* Inthe Properties dialog box, enter the value for the host server in your
environment.

* In the Operand text box, enter your formula.

* Click 0K to exit the Properties dialog box.

* The following table presents the complete set of error messages T-Server®

distributes in EventError events.

* Ifyouselect true for the inbound-bsns-calls option, all established
inbound calls on a local agent are considered business calls.

Monospace is also used for any text that users must manually enter during a
configuration or installation procedure, or on a command line:

* Enter exit on the command line.

Screen Captures Used in This Document

Screen captures from the product GUI (graphical user interface), as used in this
document, may sometimes contain a minor spelling, capitalization, or
grammatical error. The text accompanying and explaining the screen captures
corrects such errors except when such a correction would prevent you from
installing, configuring, or successfully using the product. For example, if the
name of an option contains a usage error, the name would be presented exactly
as it appears in the product GUI; the error would not be corrected in any
accompanying text.

Square Brackets

Square brackets indicate that a particular parameter or value is optional within
a logical argument, a command, or some programming syntax. That is, the
parameter’s or value’s presence is not required to resolve the argument,
command, or block of code. The user decides whether to include this optional
information. Here is a sample:

smcp_server -host [/flags]

Genesys Multimedia 7.6 @

Preface

Related Resources

Angle Brackets

Angle brackets indicate a placeholder for a value that the user must specify.
This might be a DN or port number specific to your enterprise. Here is a
sample:

smcp_server -host <{confighost)

Related Resources

Consult these additional resources as necessary:

Multimedia 7.6 Deployment Guide, which introduces the architecture,
required components, and procedures for deploying Multimedia.

Multimedia 7.6 Reference Manual, which provides a reference listing of all
configuration options and of field codes used in standard responses.

Multimedia 7.6 Users Guide, especially its Load Balancing chapter.

Genesys 7 Events and Models Reference Manual, which includes a set of
basic interaction models, showing the components involved and the event
messages sent among them. These models and events were formerly
presented in the Open Media Interaction Models Reference Manual. The
request messages that were also described in that book are now
documented in the API References of the Platform SDK.

Multimedia 7.6 Universal Contact Server Manager Help, which is a guide
to the user interface for Universal Contact Server Manager.

Multimedia 7.6 Knowledge Manager Help, which is a guide to the
Knowledge Manager user interface.

Multimedia 7.6 Interaction Workflow Designer Help, which is a guide to
the user interface for Interaction Workflow Designer.

Multimedia 7.6 Web API Reference (Javadoc), for the Java
implementation; or its equivalents (in compiled HTML format) for the
NET implementation:

+ Web Media Platform SDK 7.6 .NET API Reference.

+ Other pertinent Platform SDK API References, notably the
Management Platform SDK .NET API Reference.

These references list the classes, methods, fields, and constants of the Web
API portion of the Web API Server component. All of these references are
available on the Genesys DevZone portal, and also located on the Genesys
Developer Documentation Library DVD.

“Multimedia Log Events” in Framework 7.6 Combined Log Events Help,
which is a comprehensive list and description of all events that may be
recorded in logs.

Web API Client—Developer’s Guide 17

Preface

Making Comments on This Document

* KANA Response Live/Hipbone Design Guidelines: Synetry Cobrowse,
which offers design recommendations for co-browsing applications.
Genesys redistributes this document from KANA Software, Inc., which
licenses certain KANA Response Live (formerly Hipbone) co-browsing
components to Genesys.

* KANA Response Live/Hipbone Client API Reference Guide, which
provides integration details for co-browsing applications. Genesys
redistributes this document from KANA Software, Inc., which licenses
certain KANA Response Live (formerly Hipbone) co-browsing
components to Genesys.

* The Genesys Technical Publications Glossary, which ships on the Genesys
Documentation Library DVD and which provides a comprehensive list of
the Genesys and CTI terminology and acronyms used in this document.

* The Genesys 7 Migration Guide, also on the Genesys Documentation
Library DVD, which provides a documented migration strategy from
Genesys product releases 5.1 and later to all Genesys 7.x releases. Contact
Genesys Technical Support for additional information.

* The Release Notes and Product Advisories for this product, which are
available on the Genesys Technical Support website at
http://genesyslab.com/support.

* The documentation on the other three members of the Genesys Customer
Interaction Platform: Universal Routing, Reporting, and Management
Framework.

Information on supported hardware and third-party software is available on the
Genesys Technical Support website in the following documents:

* Genesys Supported Operating Systems and Databases

* Genesys Supported Media Interfaces

Genesys product documentation is available on the:

* Genesys Technical Support website at http://genesyslab.com/support.

* Genesys Documentation Library DVD, which you can order by e-mail
from Genesys Order Management at ordermanegenesyslab.com.

Making Comments on This Document

18

If you especially like or dislike anything about this document, please feel free
to e-mail your comments to Techpubs.webadminegenesyslab.com.

You can comment on what you regard as specific errors or omissions, and on
the accuracy, organization, subject matter, or completeness of this document.
Please limit your comments to the information in this document only and to the
way in which the information is presented. Speak to Genesys Technical
Support if you have suggestions about the product itself.

Genesys Multimedia 7.6 @

http://genesyslab.com/support
http://genesyslab.com/support/dl/retrieve/default.asp?item=B6C52FB62DB42BB229B02755A3D92054&view=item
http://genesyslab.com/support/dl/retrieve/default.asp?item=A9CB309AF4DEB8127C5640A3C32445A7&view=item
mailto:orderman@genesyslab.com
http://genesyslab.com/support
http://genesyslab.com/support
mailto:techpubs.webadmin@genesyslab.com
mailto:techpubs.webadmin@genesyslab.com
http://genotype.genesyslab.com/support/dl/retrieve/default.asp?item=ABCF2EAA26B21E7A56424EAED21659A3&view=item
http://genotype.genesyslab.com/support/dl/retrieve/default.asp?item=AACD2BA6319CF7E2EDE8E30A6D90D616&view=item

Preface Document Change History

When you send us comments, you grant Genesys a nonexclusive right to use or
distribute your comments in any way it believes appropriate, without incurring
any obligation to you.

Document Change History

This section lists topics that are new in the current release of this document, or

that have changed significantly from the preceding release.

New in Version 7.6.1

The following topics have been added or significantly changed since the initial
7.6 release:

* The LoadBalancer.GetServiceInfo(ConfServerClientType, String) method
has been deprecated. It has been replaced by the
LoadBalancer.GetServiceInfo (CfgAppType, String) method. The code
snippets in Chapter 10, “Multimedia Simple Samples for .NET,” on page 169
have been updated to include this change.

* Chapter 11, “E-Mail,” on page 256 includes new functionality that enables us
to link the reply to an e-mail that has its parent message stored in the Universal
Contact Server Database.

Web API Client—Developer’s Guide 19

Preface Document Change History

20 Genesys Multimedia 7.6 @

S

N’

GENESYS

AN ALCATEL-LUCENT COMPANY

Chapter

About Web API Clients

The Multimedia Web API enables you to write client applications that support
chat, e-mail, web collaboration, voice callback, and FAQ interactions. It
includes predefined, media-specific packages for these purposes. Using Open
Media, you can also write applications that handle custom media types.

This chapter provides the context you need to make practical use of the
Web API. It contains the following sections:

« Important Note About .NET Architecture, page 21

« Java Architecture, page 22

« Packets and Envelopes, page 26

« Media Packages (Java), page 28

+ Statistics Packages, page 39

« API Accessibility (Java), page 40

« API Usage in the Samples, page 47

Note: To use the 7.6.1 version of Web API Server, you must also install the
7.6.1 version of the Third Party components.

Important Note About .NET Architecture

The package structure described in most of this chapter does not apply to the
NET implementation—it is specific to the Java version.

For details about the .NET implementation’s architecture, refer to these
sources:

* Web Media Platform SDK .NET API Reference.
* Management Platform SDK .NET API Reference.

* Other API References for the Platform SDK, as pertinent to the
applications you are building.

Web API Client—Developer’s Guide 21

Chapter 1: About Web API Clients

Java Architecture

For instructions about accessing these documents, see “Related Resources” on
page 17.

Instead of the Java package structure shown in Figure 2, the NET
implementation contains a single “flat” directory, providing the following
libraries:

Genesyslab
Genesyslab
Genesyslab
Genesyslab
Genesyslab
Genesyslab
Genesyslab
Genesyslab
Genesyslab
Genesyslab
Genesyslab
Genesyslab
Genesyslab
Genesyslab
LogLib4NET

.Core.dll
.Platform.
.Platform.
.Platform.
.Platform.
.Platform.
.Platform.
.Platform.
.Platform.
.Platform.
.Platform.
.Platform.
.Platform.
.Platform.
.dlLl

Commons.dll
Commons.Collections.dll
Commons.Collections.Binding.dlLl
Commons.Connection.dll
Commons.Protocols.dll
Configuration.Protocols.dll
Contacts.Protocols.dll
Management.Protocols.dll
OpenMedia.Protocols.dlLl
Outbound.Protocols.dll
Reporting.Protocols.dll
Voice.Protocols.dll
WebMedia.Protocols.dll

= 1) Simplesamples7al
I Callback,
IZ) Chat
) Chathjax
[# |2} Email
[Ikxsubmit
|2 Stakiskics
) ucs
|Z) TestTool7a1

Figure 2: Web API Package Structure for .NET

Java Architecture

22

The Web API enables your customized server pages (JSPs or ASPXs) to
perform common functions such as sending an e-mail or conducting a chat
session. This is done by communicating with a servlet container—such as
WebSphere, WebLogic, Tomcat, or JRun—that is running on a web server. The
servlet container processes the JSP or ASPX and forwards the content to the
appropriate server. Figure 3 shows this process for an e-mail.

Genesys Multimedia 7.6 @

Chapter 1: About Web API Clients

Web
Browser

Web form
request

Java Architecture

Web MCR E-Mail
Server Server

Servlet Container
(WebSphere,
Tomcat,

or JRun)

HTTP

p»{ MCR
Web API

Proprietary
protocol

Figure 3: Sending an E-Mail to Multimedia (Container Could Also Be WebLogic)

Packages

The Web API’s Java implementation consists of several packages that are
organized by function and by media type (as shown in Figure 4 on page 24):

Genesys.webapi .
Genesys.webapi .
Genesys.webapi .
Genesys.webapi .
Genesys.webapi .
Genesys.webapi .
Genesys.webapi .

Genesys.webapi .

Web API Client—Developer’s Guide

media.common—Classes used by all media types
media.direct—Contains the direct superclass
media.interaction—The Open Media package
media.callback—The voice callback packages
media.chat—The chat packages

media.irs—The e-mail packages

media.ucs—The Universal Contact Server packages

stat—The statistics packages

23

Chapter 1: About Web API Clients Java Architecture

=l IJ] @enesys
=l |1 webapi
1 diagnostic
=l 11 media
= I callback,
) direct
) prokacol
=l | chat
1 direct
1 prokacal
1 chatb
i direct

1 prokocal
] Commnan

) contact_server
) prokacol
1 direct
[inkerackion
) direct
=l I irs
i direct
1 prokocal
=l) ucs
[direct
=| I stat
1 direct

1 prokocal
] MET&-INF

Figure 4: Web API Package Structure

Class Hierarchy

The non-statistics packages in the Web API are divided into two categories—
the Open Media package (Genesys.webapi.media.interaction), which is
provided only for Java in this release, and all the rest. If you are developing an
Open Media application in Java, you will work primarily with the
_interaction_direct class, which is in Genesys.webapi.media.interaction,
and with the _communication_exception class, which is in
Genesys.webapi.media.common.

To be comfortable working with the other packages in the Web API, you must
understand the role of the two base packages: Genesys.webapi.media.common
and Genesys.webapi.media.direct. The voice callback, chat, web

24 Genesys Multimedia 7.6 @

Chapter 1: About Web API Clients Java Architecture

collaboration, and e-mail packages extend classes that are defined in these two
packages.

Genesys.webapi.media.common

This package contains 10 classes. Three of these classes are central to the
workings of the Web API. Each one is the base class of an important object
hierarchy:

e _protocol_element—A Packet object. See “Packet” on page 26 for more
information.

* _envelope—Holds a packet. See “Envelope” on page 28 for more
information

* _envelope_factory—Generates Envelope objects. See “Envelope Factory”
on page 28 for more information.

The following classes are utility classes used for exception and data handling:
* _communication_exception—Handles communication exceptions.

* _kvitem—Represents data as a key-value pair.

e _kvlist—A list of kvitem objects.

* _parse_exception—Handles XML-parsing exceptions.

The Web API chat and e-mail packages each contain a protocol subpackage
that is used to extend the _protocol_element, _envelope, and
_envelope_factory classes. These subpackages are discussed in

“Media Packages (Java)” on page 28.

Genesys.webapi.media.direct

This package contains only the _direct_access class. This _direct_access
class extends the Java Runnab le interface to make threading available to the
Web API. The connect () method makes a socket connection to a media server,
using host and port information. Your client application can either pass this
information when it is instantiated, or pass it by means of the connect ()
method. The instance runs as a thread, and either listens to the incoming server
data stream or sends client data to the server.

Clients can use the _direct_access class to contact any server that is compliant
with the XML-envelope protocol schema. All subclasses that extend
_direct_access must override the following methods:

public abstract void process(_protocol_element element);
public abstract void closed();

“Media Packages (Java)” on page 28 explains these two methods in detail.

Web API Client—Developer’s Guide 25

Chapter 1: About Web API Clients Packets and Envelopes

The chat and e-mail packages each contain a direct subpackage, which in turn
contains a class that extends the _direct_access class. These classes are called
_chat_direct and _irs_direct, respectively.

Packets and Envelopes

Open Media uses interaction-based processing to transmit binary data.

The other packages of the Web API use XML. The following discussion will
help you understand the XML-based packages, which were designed using the
metaphor of packets and envelopes.

A packet is a collection of data. An envelope holds the packet. An application
creates a packet and places it inside an envelope, which is produced by an
envelope factory. The application then passes the envelope around in the
system. This concept is illustrated in Figure 5.

- | Media
- Server

alaa| ..| 1010

a|aal..| 1010

Application

Figure 5: Packets and Envelopes

Packet

The root class of the packet hierarchy, _protocol_element, is an abstract class.
The chat and e-mail packages each contain an abstract subclass of
_protocol_element, respectively called c_chat_packet and _irs_packet. These
subclasses define the constants used for their media types. The remaining
classes in each media package extend the corresponding packet superclass. For

26 Genesys Multimedia 7.6 @

Chapter 1: About Web API Clients Packets and Envelopes

example, _chat_request extends _chat_packet, which in turn extends
_protocol_element. Figures 6 shows a diagram of this class relationship.

_protocol_element

|

_chat_packet

[

_chat_request

Figure 6: Sample Packet Hierarchy

The final child class (such as _chat_request in Figure 6 above) references the
constants inherited from its direct superclass, and implements the interface
methods inherited from the root packet class (_protocol_element).

Important Methods

_protocol_element defines two important methods that are implemented by its
subclasses. These methods process the contents of the packet.

Pack Method

The pack (Document, Element) method adds media-specific elements or
attributes into the <body> element, and may add kv list objects. For example,
the XML data may look something like the following in _chat_Request:

<envelope>
<body>
<requestJoin refld="xxx" userId="xxx" secureKey="xxx"
queueKey="xxx" subject="xxx">
{/requestdoin>

{/body>
{/envelope)

Parse Method

Every subclass overrides the parse () method inherited from the superclass.
The (XML) ELement object contains many attributes. If the subclass method
finds the specific attributes that it needs, it extracts the corresponding data
from the object.

Web API Client—Developer’s Guide 27

Chapter 1: About Web API Clients Media Packages (Java)

Envelope

_enve Lope is the root class of the envelope class hierarchy. Each media package
contains a class that extends the _enve Lope class. The subclass usually
overrides only the parse() and pack () methods.

The pack () method in the _envelope class constructs a basic XML structure
using the XML Document Object Model (DOM) API:

<envelope)
<header>
{protocol-info protocol-id="xxx", version-minor="xxx",
version-major="xxx">
{/protocol)
{/header)
<body>
<{/body>
{/envelope>

This structure is then passed into the pack () method in the subclass of the
_protocol_element class. This, in turn, adds more information to the body
element.

Envelope Factory

The _envelope_factory class is the root class of the envelope factory class
hierarchy. Each media package has a class that extends _enve lope_factory. The
subclass does not implement any extra logic. It invokes the superclass
methods.

Media Packages (Java)

Callback

28

This section discusses the Java implementation’s media packages and their
functionality.

Genesys.webapi.media.callback.protocol

Most of the classes in this package represent callback message packets, as
shown in Figure 7 on page 29.

Genesys Multimedia 7.6 @

Chapter 1: About Web API Clients Media Packages (Java)

_callback_statinfo

_callback_getstat

_callback_redirect

_callback_envelope_factory

_callback_cancel Zﬁ

-m_userdata _callback_envelope

_callback_ack

_callback_error \A
_callback_packet _kvlist

_callback_getstat /V/]
_callback_getinfo

_callback_reqinfo

_callback_request

_callback_statinfo

_callback_search
_callback_searchresult

Figure 7: Genesys.webapi.media.callback.protocol Class Diagram

Dependencies

The Genesys.webapi.media.callback.protocol package uses classes from
Genesys.webapi.media.common.

Classes
e _callback_ack—Encodes and decodes a callback packet containing an
acknowledgement.

* _callback_cancel—Encodes and decodes packets containing requests to
cancel a callback request.

* _callback_envelope—Can contain one or more callback protocol packets
for sending to an instance of Callback Server.

e _callback_envelope_factory—A factory that creates _callback_envelope
objects that can be sent to and received from a Callback Server.

* _callback_error—Encodes and decodes a packet containing a callback
error.

* _callback_getinfo—Creates requests for callback information from the
Callback Server.

* _callback_getstat—Represents a statistics request packet.

* _callback_packet—The abstract base class for all callback protocol packet
classes.

* _callback_redirect—Redirects a packet to another Callback Server.
* _callback_reginfo—Creates a callback request for information packet.
* _callback_request—Represents a callback request packet.

* _callback_search—Represents a search request.

Web API Client—Developer’s Guide 29

Chapter 1: About Web API Clients Media Packages (Java)

Connect to
Universal Callback
Server

Work with
Universal Callback
Server Data

Handle Errors

30

* _callback_searchresult—Creates a search results packet that may contain
information on one or more callback requests.

* _callback_statinfo—Represents a statistics information packet.

Genesys.webapi.media.callback.direct

Dependencies

The Genesys.webapi.media.callback.direct package uses classes in these
packages:

* Genesys.webapi.media.common

* Genesys.webapi.media.direct

* Genesys.webapi.media.callback.protocol

Classes

This package only contains a single class, _callback_direct, which allows
direct access to Universal Callback Server. This class extends the Runnab Le root
class _direct_access, which makes the _callback_direct class a thread.
Therefore, all the public method signatures in this class contain the
synchronize keyword.

The class performs these operations:

* “Connect to Universal Callback Server”

* “Work with Universal Callback Server Data”

* “Handle Errors”

The no-argument constructor instantiates a new object. You must use the

connect () method afterwards to establish a connection with an instance of
Universal Callback Server.

The constructor that takes arguments instantiates a new object and attempts to
connect with the specified instance of Universal Callback Server.

The submit () method attempts to submit the packet to the specified instance of
Universal Callback Server.

The reqid () method returns the request ID set for this instance.

The rc () method returns the result code after an operation. Universal Callback
Server returns one of the values listed in Table 1 on page 31.

The Lasterror () method returns the last error. Universal Callback Server
returns one of the values listed in Table 1 on page 31 or the default value.

Genesys Multimedia 7.6 @

Chapter 1: About Web API Clients

Media Packages (Java)

Table 1: Return Codes for Universal Callback Server

Value Error Code Description

0 __rc ok Universal Callback Server accepts the
request.

1 __rc_timeout No response from Universal Callback
Server.

2 __rc_closed Lost or unestablished connection to
Universal Callback Server.

3 __rc_failed Request failed. Use the Lasterror () method
to get an error description.

4 __rc_internal Internal error. Use the Lasterror () method
to get an error description.

5 __rc_confail Connection failure.

Chat

The Chat Sample discussed in this guide uses the Flex Chat API to
communicate with the Chat Server. The API enables direct access to a

Chat Server, using the HTTP chat protocol to connect to and disconnect from
the Chat Server and to establish and close chat sessions.

Genesys.webapi.media.chat.protocol

Most of the classes in this package represents e-mail message packets, as
shown in Figure 8.

_chat_disconnect

_chat_connect

_chat_envelope

_chat_transcript /

_chat_packet

_chat_response

\

_kvlist
(from common))

_chat_envelope _factory

_chat_request

_chat_refresh

Figure 8: Genesys.webapi.media.chat.protocol Class Diagram

Web API Client—Developer’s Guide

31

Chapter 1: About Web API Clients Media Packages (Java)

32

Dependencies

The protocol package uses classes in Genesys.webapi.media.common.

Classes

Eight classes are in this package. Here is a list of the classes. (See the
Multimedia 7.6 Web API Reference or the Web Media Platform SDK 7.6 NET
API References for details in using these classes.)

e _chat_connect—This class connects a user to Chat Server.

* _chat_disconnect—This class encodes and decodes a request to close a
chat session with a Chat Server.

* _chat_envelope—This class wraps a chat packet.
* _chat_envelope_factory—This class creates Envelope objects.
* _chat_packet—This class represents a chat message.

* _chat_response—This class encodes and decodes a Chat Server response
to a request.

* _chat_request—This class encodes and decodes a request to join or create
a chat session.

e _chat_transcript—This class encodes and decodes a chat session
transcript.

* _chat_refresh—This class encodes and decodes a packet containing data
refresh requests.

Genesys.webapi.media.chat.direct

The Genesys.webapi.media.chat.direct package contains the _chat_direct
class, which client applications use to interact with Chat Server. This is the
only class in this package.

The Chat Sample that is discussed in this book imports the package and uses
the _chat_direct subclass of _direct_access. A client connects to, joins, and
disconnects from a chat session using this class.

Dependencies

The Genesys.webapi.media.chat.direct package uses classes in these
packages:

* Genesys.webapi.media.common
* Genesys.webapi.media.direct
* Genesys.webapi.media.chat.protocol

Classes

This package has only one class, _chat_direct. This class allows direct access
to a Chat Server using the HTTP chat protocol. It extends the Runnable root

Genesys Multimedia 7.6 @

Chapter 1: About Web API Clients Media Packages (Java)

Log In To
Chat Server

Log Out from
Chat Server

Create a Session

Handle Errors

class _direct_access, which makes the _chat_direct class a thread. Therefore,
all the public method signatures in this class contain the synchronize keyword.

The class performs these operations:

* “Log In To Chat Server”

* “Log Out from Chat Server”

* “Create a Session”

* “Handle Errors”

* “Work with Chat Server Data”

* “Process Events”

A client application logs in and registers a user to a Chat Server via the Login ()
method of _chat_direct. Users can identify themselves using nicknames. All

user data provided with the request must contain certain keys that will be used
for user identification and routing.

To log out of a chat session using the Logout () method, a client application
must pass in the parameters user_id and secure_key from the last reply of the
Chat Server.

One can either create a new web chat session, or join an existing chat session.
For this second purpose, use the join () method with a different set of
parameters.

Note: The web sample client does not include the ability to join an existing
chat session. However, this ability can be provided by using the join()
method and including the session_id parameter.

Deal with errors using these methods:

e The rc() method returns the error code for the last-performed operation as
reported by Chat Server.

* The error () and errdesc () methods return the error code and description,
respectively, returned by Chat Server.

* The Lasterror () method returns an error description for the last operation
performed. Table 2 lists the possible error codes.

Table 2: Chat Server Error Code and Description

Error Code Description
0 Success

1 Timeout occurred
2 Connection closed
3 Operation failed

Web API Client—Developer’s Guide 33

Chapter 1: About Web API Clients

34

Work with Chat
Server Data

Process Events

Media Packages (Java)

Table 2: Chat Server Error Code and Description (Continued)

Error Code Description
4 Internal failure
5 Connection failed
default Unknown error

Your client application must work with Chat Server at a relatively low level.
Your application must maintain secure keys for transmitting transcript data,
must track which users join and leave a session, and must frequently calculate
the correct position for all the transcripts. There are many methods that help
your application work with Chat Server:

The refresh () methods send an update request to a Chat Server for the
specified chat session.

The status () method returns the status of the last operation, as reported by
Chat Server.

The script_pos () method returns the relative position of the chat
transcript. The position value is where the client application has last
received a transcript. Your application must supply this value, incremented
by 1, in a subsequent refresh request. This is necessary so that Chat Server
will send transcript updates starting from the specified transcript position.
If this method returns string value 0, then the chat session is over.

The secure_key () method returns a key generated by Chat Server for
security purposes. Your application must supply this value in subsequent
requests to Chat Server.

The user_id() method returns a user ID generated by Chat Server for
identification purposes. Your application must supply this value in
subsequent requests to Chat Server.

The timestamp () method returns a timestamp from Chat Server in response
to a refresh request.

The transcript () method returns part of a chat transcript sent by

Chat Server in response to a refresh request. This value can be null if there
were no updates since the last refresh request. Otherwise, the transcript
will contain a vector of classes of type _event, which describes events that
took place in a chat session since the client’s last refresh request.

After a client application receives a user connected event, the first chat
message may come from an agent application. Therefore, client applications
should call event.event_body () to verify the presence of a chat message, in
case of an error. Here is a code snippet showing how the application should
check for this possibility:

Genesys Multimedia 7.6 @

Chapter 1: About Web API Clients Media Packages (Java)

if(event.event_type().equals
(_chat_packet.__attrv_event_type_connect)) {

text2append = text2append + "New party ('"+ event.user_nick()
+ "') has joined the session";

if (event.event_body() != null)
text2append = text2append + ": " + event.event_body();
}

Log Out Gracefully Your client application’s code must disable the Stop chat button until the

E-Mail

application receives a reply from Chat Server to the browser’s Connect request.
This avoids prematurely ending a chat (by sending a requestLogout to

Chat Server). Such premature logouts leave behind pending interactions that
Genesys Desktop will be unable to delete.

Genesys.webapi.media.irs.protocol

Most of the classes in this package represent e-mail message packets, as shown
in Figure 9.
Dependencies

The Genesys.webapi.media.irs.protocol package uses classes from
Genesys.webapi.media.common.

Web Web Servlet Engine MCR
Browser Server (Tomcat, Jrun) Servers Routing
MCR reC:Ztst
Web a Chat Interaction Agent
API Server Server [|Desktop
Chat
HTML [
Form Universal
Contact
Server

Figure 9: Genesys.webapi.media.irs.protocol Class Diagram

Classes
* _irs_ack—This class represents a protocol acknowledgment packet.
* _irs_envelope—This class constructs an e-mail protocol packet for E-mail

Server Java and decodes information received from the server.

e _irs_envelope_factory—This class creates instances of e-mail envelopes
for direct access to E-mail Server Java.

Web API Client—Developer’s Guide 35

Chapter 1: About Web API Clients Media Packages (Java)

Connect to E-Mail

36

Server Java

Work with E-Mail
Server Java Data

* _irs_error—This class represents an e-mail protocol error packet.

* _irs_getstat—Deprecated. Statistics functions are now carried out by the
Genesys.webapi.stat packages. See “Statistics Packages” on page 39.

* _irs_getvrpstat—Deprecated. Statistics functions are now carried out by
the Genesys.webapi.stat packages. See “Statistics Packages” on page 39.

* _irs_packet—This abstract class represents an e-mail packet.

* _irs_statinfo—Deprecated. Statistics functions are now carried out by the
Genesys.webapi.stat packages. See “Statistics Packages” on page 39.

* _irs_submit—This class represents a packet containing a request to submit
an e-mail.

* _irs_vrpstatinfo—Deprecated. Statistics functions are now carried out by

the Genesys.webapi.stat packages. See “Statistics Packages™ on page 39.

Genesys.webapi.media.irs.direct

Dependencies

The Genesys.webapi.media.irs.direct package uses classes in these packages:
* Genesys.webapi.media.common

* Genesys.webapi.media.direct

* Genesys.webapi.media.irs.protocol

Classes

This package only contains a single class, _irs_direct, which allows direct
access to E-mail Server Java. This class extends the Runnab Le root class
_direct_access, which makes the _irs_direct class a thread. Therefore, all the
public method signatures in this class contain the synchronize keyword.

The class performs these operations:

¢ “Connect to E-Mail Server Java”

e “Work with E-Mail Server Java Data”

* “Handle Errors”

The no-argument constructor instantiates a new object. You must use the

connect () method afterwards to establish a connection with an instance of
E-mail Server Java.

The constructor that takes arguments instantiates a new object and attempts to
connect with the specified instance of E-mail Server Java.

The submit () method attempts to submit the packet to the specified instance of
E-mail Server Java.

The reqid () method returns the request ID set for this instance.

The rc () method returns the result code after an operation. E-mail Server Java
returns one of the values listed in Table 3 on page 37.

Genesys Multimedia 7.6 @

Chapter 1: About Web API Clients Media Packages (Java)

Handle Errors

Open Media

Connect to
Interaction Server

The Lasterror () method returns the last error. E-mail Server Java returns one
of the values listed in Table 3 on page 37 or the default value.

Table 3: Return Codes for E-Mail Server Java

Value Error Code Description

0 __rc ok E-mail Server Java accepts the request.

1 __rc_timeout No response from E-mail Server Java.

2 __rc_closed Lost or unestablished connection to E-mail
Server Java.

3 __rc_failed Request failed. Use the Lasterror () method

to get an error description.

4 __rc_internal Internal error. Use the Lasterror () method
to get an error description.

5 __rc_confail Connection failure.

Genesys.webapi.media.interaction.direct

Dependencies

The Genesys.webapi.media.interaction.direct package uses the
_communication_exception class in this package:

* Genesys.webapi.media.common

Classes

This package only contains a single class, _interaction_direct, which allows
direct access to Interaction Server. This class extends the Runnab Le abstract
class IPConnection, which allows _interaction_direct to run as a thread.
Therefore, most of the public method signatures in this class contain the
synchronize keyword.

The class performs these operations:

e “Connect to Interaction Server”

* “Work with Interaction Server Data”

e “Handle Errors”

The no-argument constructor instantiates a new object. You must use the

connect () method afterwards to establish a connection with an instance of
Interaction Server.

Web API Client—Developer’s Guide 37

Chapter 1: About Web API Clients Media Packages (Java)

Interaction Server

38

Work with

Data

Handle Errors

The constructor that takes arguments instantiates a new object and attempts to
connect with the specified instance of Interaction Server.

The register () method registers a user with an Interaction Server using a
specific media type.

The close () method closes the connection to Interaction Server.

The submit () method attempts to submit a packet to the specified instance of
Interaction Server.

The change_properties () method updates the attached data of an interaction.
The stop_processing() method cancels the specified interaction.

The run () method starts an _interaction_direct thread that reads from a
specific media server.

The get_interaction_id() method gets the interaction ID from the last server
response.

The send () method encodes a packet and sends it to an instance of Interaction
Server.

The rc () method returns the result code after an operation. Interaction Server
returns one of the values listed in Table 4.

The Lasterror () method returns the last error. Interaction Server returns one of
the values listed in Table 4 or the default value.

Table 4: Return Codes for Interaction Server

Value Error Code Description
0 __rc ok Interaction Server accepts the request.
1 __rc_timeout No response from Interaction Server.
2 __rc_closed Lost or unestablished connection to

Interaction Server.

3 __rc_failed Request failed. Use the Lasterror () method
to get an error description.

4 __rc_internal Internal error. Use the Lasterror () method
to get an error description.

5 __rc_confail Connection failure.

Genesys Multimedia 7.6 @

Chapter 1: About Web API Clients Statistics Packages

Universal Contact Server

Genesys.webapi.media.ucs.direct

Dependencies
The Genesys.webapi.media.ucs.direct package uses the

_communication_exception class in this package:
* Genesys.webapi.media.common

Classes

e _ucs_direct—Retrieves or creates a contact and allows access to the
contact’s data.

* _ucs_attribute—Creates an attribute and allows you to set and retrieve its
value or its hash code value. It is also used to determine if an attribute has
been modified or lets you compare it to another object.

* _ucs_interaction—Creates an interaction and allows you access to the
interaction’s data, ID, and attributes.

* _ucs_parameter_map—Creates a parameter map and allows you to
manipulate it.

Statistics Packages

The Web API lets you retrieve selected chat and e-mail statistics using the
stat_direct class contained in package Genesys.webapi.stat.direct. The
getQueueStat method of stat_direct retrieves the following statistics:

* _stat_chat_total_distribution_time—Average time lapse between the
creation of a chat session and when the first meaningful response was sent.

e _stat_chat_queue_length—Total number of chat sessions that have been
submitted and are awaiting processing.

e _stat_chat_total_destributed—Total number of chat sessions that have
been submitted and processed.

* _stat_webform_total_distribution_time—Average time lapse between the
creation of an e-mail and when the first meaningful response was sent.

* _stat_webform_queue_length—Total number of e-mails that have been
submitted and are awaiting processing.

e _stat_webform_total_destributed—Total number of e-mails that have
been submitted and processed.

The Chat-with-Statistics Sample discussed in this guide uses the statistics
packages to gather the first three statistics. It then uses

Web API Client—Developer’s Guide 39

Chapter 1: About Web API Clients APl Accessibility (Java)

_stat_chat_total_distribution_time and _stat_chat_total_destributed to
calculate the estimated wait time.

The Web API has two statistics packages, Genesys.webapi.stat.direct and
Genesys.webapi.stat.protocol. Genesys.webapi.stat.protocol is not used
directly by your applications, and will not be described further in this
document.

Genesys.webapi.stat.direct

Dependencies

The Genesys.webapi.stat.direct package uses classes in these packages:
* com.genesyslab.statistics.lib

* Genesys.webapi.media.stat.protocol

* Genesys.webapi.media.common

* Genesys.ComLib.TKV

* (Genesys.ML.Log

Classes

This package contains one class, stat_direct, which has a getQueueStat ()
method that is used to retrieve selected chat and e-mail statistics.

API Accessibility (Java)

This section explains how the Java API retrieves the data and configuration
options from Genesys Configuration Server to make the sample applications
work properly.

Configuration Server

40

The Web API must access Configuration Server and retrieve certain option
settings; otherwise, the Compound and Simple Samples will not work properly.
The ApplicationConstant.jsp file retrieves these options.

Web Sample and Configuration Access

The sample uses the ApplicationConstant.jsp page to retrieve options from
the Multimedia Compound Sample Application object in Configuration
Server. Table 5 on page 41 shows the configuration options needed and their
default value if the retrieval is not successful.

Genesys Multimedia 7.6 @

Chapter 1: About Web API Clients API Accessibility (Java)

Table 5: Configuration Options That Web API Retrieves

Section Option Default Value
chat chat-queue chat inbound queue
chat chat-stat-interval "" (an empty String) or null
e-mail email-queue inbound queue
e-mail e-mail-stat-interval "" (an empty String) or null
miscellaneous applets-code-base /CodeBase761
miscellaneous stat-refresh-interval 30
miscellaneous tenant "" (an empty String) or null

Test Tool Access

The Multimedia test tools include files that access the Configuration Server
during their diagnostic tests—ChatSelfTest.jsp and Emai LSelfTest.jsp. These
files retrieve the options from the Chat Server and E-mail Server Java
Application objects, respectively. Chapter 12 on page 263 discusses the test
tools in more detail.

Load Balancing

The Web API lets you take advantage of Multimedia’s load-balancing features.
This section briefly describes these features and how to use them. For
more-detailed information, refer to Multimedia 7.6 User s Guide.

Load balancing provides greater scalability and service availability by
providing multiple instances of certain Multimedia servers. The redundancy
provided by load balancing also helps prevent loss of data. Load balancing can
take place within a tenant or across tenants.

The load-balancing API provides the following functionality:

* It can select a particular server instance from a set of instances of the
specified server type.

* Upon the first request to a server instance, the API can create an alias for
the selected server instance and store it for future use.

* It can use the alias to obtain connection parameters (host name and port) of
the server instance.

* It has access to configuration information.

Web API Client—Developer’s Guide 41

Chapter 1: About Web API Clients API Accessibility (Java)

Balancing Multiple Web API Servers

42

Web API Server runs on your web server, which is the front end of the Internet
contact center. To handle high volumes of incoming messages or requests, you
might want to run multiple web servers, and therefore, also run multiple
instances of Web API Server. This section describes load balancing by one
Web API Server among other Web API Server instances.

The actual required number of Web API Servers depends on several factors,
such as host performance, required number of simultaneous chat sessions, chat
update interval (see “Limitations” on page 45), network performance, and so
on.

Note: More sophisticated third-party solutions are available to balance traffic
among multiple Web API Server instances. You can use one of these
alternatives rather than the load balancing API described in this
section.

Required Configuration

The Multimedia Load-Balancing API can load-balance data traffic across
multiple instances of Web API Server. To do this, you must:

* Configure and install several instances of Web API Server.

* Designate one of the Web API Server instances for load balancing and
configure connections from it to all other Web API Server instances in the
configuration.

You can use Application Clusters to simplify configuration, as described below
in “Using Load-Balancing API for Web API Server Instances”.

Note: For load balancing to work, Web API Servers must have a connection
to Solution Control Server (SCS).

Using Load-Balancing API for Web API Server
Instances

Using the load-balancing API is very simple, as shown in the samples:

1. Create an instance of the class SvcDispatcher.

Note: Use this instance of the class for only one thread. Additional
threads require additional instances.

2. Use the method inqSrvcByType ("CfgAppType.CFGServerType",
strTenantName) or some other inqSrvcByType method, to select a Web API
Server instance.

Genesys Multimedia 7.6 @

Chapter 1: About Web API Clients API Accessibility (Java)

3. Use the methods getSrvcHost () and getSrvcPort () to produce redirect
instructions.

4. If you know the alias of a specific server instance and want to be able to
connect to that instance again, you must use the method ingSrvcByAlias
(strAliasName) .

Here is a step-by-step procedure for using Web API Server load balancing:

1. For the first request when you do not know the alias of the server:

SvcDispatcher svcDispatcher = new SvcDispatcher();
// it is possible to use previously created SvcDispatcher
instance if it is in the same thread

svcDispatcher.ingSrvcByType (CfgAppType.CFGWebAPIServer, strTenant);
if (getErrorCode() != 0) {

// The required service was not found so do something else!
}
String strHost = svcDispatcher.getSrvcHost();
String strPort = svcDispatcher.getSrvcPort();
String strAlias2Remember = svcDispatcher.getSrvcAlias();

2. For the second request when you know the alias of the server, and want to
connect to it again:

SvcDispatcher svcDispatcher = new SvcDispatcher();
// it is possible to use previously created SvcDispatcher
instance if it is in the same thread
svcDispatcher.inqSrvcByAlias(strAlias2Remember);
if (getErrorCode() != 0) {
// The required service was not found so do something else!
}
String strHost = svcDispatcher.getSrvcHost();
String strPort = svcDispatcher.getSrvcPort();

Samples

These two samples demonstrate load balancing between instances of Web API
Server:

* jcc_start.jsp
* icc_start_client.jsp
Both samples use the Load-Balancing API to select the available Web API

Server. The difference is that the first sample uses a server-side redirect to the
selected Web API Server, while the second sample uses a client-side redirect.

Note: The host where Web API Server is running must have access to
Configuration Server, Solution Control Server, and Message Server.

Web API Client—Developer’s Guide 43

Chapter 1: About Web API Clients API Accessibility (Java)

Balancing Multiple Chat Servers

44

Required Configuration

For load balancing by Web API Server between multiple Chat Servers, you
must configure multiple applications of type Chat Server. Web API Server
must have either direct connections to Chat Servers, or connections to

Chat Servers through Application Clusters.

Using Load Balancing API for Chat Server Load
Balancing

Since chat interactions take place online, only the Chat Server that handles a
particular chat session can process requests about that session. This requires
that the web application select the Chat Server while the chat session is being
established, and that it continue to use the same Chat Server for all subsequent
requests.

The operation sequence shown in the chat sample application is shown here:
1. For every user request, create an instance of the class SvcDispatcher.
It is possible to use only one instance if it is thread-safe.

2. When the user starts the chat session:
a. Call the method ingSrvcByType (CfgAppType.CFGChatServer,
strTenant) to select the Chat Server for the session.

b. Call the method getSrvcAlias() to obtain the selected server’s alias
and store it in the application. The server alias is transferred to and
from the client part of the web application.

3. For all subsequent requests as the chat session continues, call the method
ingSrvcByAlias({chat server allias)) to obtain the Chat Server by its
stored alias.

4. For any request, use the methods getSrvcHost () and getSrvcPort() to
obtain the Chat Server host and port.

Sample
The HTML chat sample uses a separate frame for communication with
Chat Server and consists of the following files:

* HtmlChatFrameSet.jsp (Java) or ChatFrameset.htm (.NET)—The sample
main frame.

* HtmlChatPanel.jsp (Java) or ChatPanel.aspx (NET)—The content of the
frame that contains the chat form and is visible to the user. The page is
requested once from the Web API Server.

Genesys Multimedia 7.6 @

Chapter 1: About Web API Clients API Accessibility (Java)

* HtmlChatCommand.jsp (Java) or ChatCommand.aspx (.NET)—The content of
the invisible frame that interacts with the Chat Server and makes any
necessary changes to the visible frame.

Limitations

* While developing a chat application using the Multimedia Load-Balancing
API, you must ensure that all subsequent requests regarding a chat session
are directed to the same Chat Server that established the chat session.
Additional Chat Servers cannot process these requests.

* You must set a constant for the update time interval. Do this using the
chatRefreshTimeout variable in the ...\WebAPISamples761\constants.jsp
file. Be aware that if this time interval is too long, the application will seem
slow to the user. On the other hand, if this interval is too short, the Web
API Servers and Chat Servers will have to bear an unnecessarily high load.
A shorter interval may require more instances of Web API Server, as
described in “Using Load-Balancing API for Web API Server Instances”
on page 42.

* A good rule of thumb is that the shorter the update time interval, the more
Web API Servers are needed.

Balancing Multiple Instances of E-Mail Server Java

Required Configuration

For load balancing among multiple instances of E-mail Server Java, you must
configure multiple applications of type E-mail Server Java. Web API Server
must have either direct connections to instances of E-mail Server Java, or
connections to instances of E-mail Server Java through Application Clusters.

Using Load Balancing API for E-Mail Server Java
Instances

The HTML e-mail sample consists of the file Emai L. jsp (Java) or Emai L.aspx
(.NET).

Note: Communication with E-mail Server Java for web-form submission is
stateless. So, you may prefer not to store an alias for E-mail Server

Java, and to select a new instance for every web-form submission.

The e-mail sample application performs the following operations:

1. Gathers information from the form submission.

Web API Client—Developer’s Guide 45

Chapter 1: About Web API Clients API Accessibility (Java)

2. Gets e-mail host and port from the Load-Balancing API. The operations in
this step are identical with those in “Using Load-Balancing API for Web
API Server Instances” on page 42.

Prepares data for the Multimedia Web API.
4. Submits the request via the Multimedia Web API.

Returns the RefID of the request, possibly with an error code and
description.

International Language Support

46

Multimedia supports multiple natural languages for the client applications.
However, client requests must be in the same natural language as the media
server with which the client is interacting. To resolve this, an international
language support class—i 18nsupport—facilitates interaction between the
client and server data.

For example, you might have a client who is using an Asian language, such as
Chinese or Japanese, that uses a multi-byte character set (MBCS). Your
customized server pages (JSPs or ASPXs) must use this character set when
interacting with this client. The HTTPServletResponse class has a method called
setContentType (), which your server pages can use to do just that. You can
choose the character set on the Options tab under the Web API Server’s
Application object.

Likewise, the media servers send Unicode data. The servlet (and engine) must
respond to the client in the appropriate character set, which in this multi-byte
case is not Unicode. However, this can only occur if the server knows both the
correct character set and the correct code page for this data, because the same
combination of MBCS characters may have different Unicode values for
different code pages. For example, you cannot use the charset option for
Chinese characters and the code page option for Cyrillic characters at the same
time.

Here is a code snippet showing how a client using a different natural language
can communicate with the server. The client gets the correct response based on
the charset set by the JSP or ASPX:

{%response.setContentType ("text/html; charset="
+ i18nsupport.GetCharSet()); %>

The GetCharSet () method invokes internal methods that set the code page and
charset correctly before returning the value. The default code page is
Microsoft’s Cp1252, and the default character set is 1S0-8859-1.

The following line from the sample JSP file retrieves a user’s first name from
the i18nsupport class instead of from the HTTPServletRequest class. The
GetSubmitParametr () method retrieves the requested parameters and processes
them. In case of internationalization, the method returns a different character

Genesys Multimedia 7.6 @

Chapter 1: About Web API Clients API| Usage in the Samples

code value, which is properly handled by the customized server page. For
clients that have the same code value as the server, this line does not change
anything.

String first_name = i18nsupport.GetSubmitParametr
(request, fldnFirstName);

APl Usage in the Samples

The Simple and Compound Samples use various parts of the Multimedia Web
API to accomplish their tasks.

Note: Use this section in conjunction with the Multimedia Web API
Reference (Javadoc), or with the Web Media Platform SDK 7.6 .NET
API References (.(CHM). These are located on the Genesys Developer
Documentation Library DVD. They are also installed with the
software, at the default location:
{Web_API_Server_application_object_name)\doc. These references
give details on how to use the classes and their methods. For an
explanation of how to create a sample application, see Chapter 9 on
page 95, and Chapter 11 on page 241.

All the samples access the Genesys.webapi.media.common (page 25) and
Genesys.webapi.media.direct (page 25) classes. Each sample uses one or
more specific APIs. Table 6 lists their API usage. For information on these
packages, see “Media Packages (Java)” on page 28.

Table 6: API Access by Samples

Sample Web APIs Used

E-mail Genesys.webapi.system.loadbalancing
Genesys.webapi.media.irs.direct
Genesys.webapi.media.irs.protocol
Genesys.webapi.media.common

Genesys.webapi.utils.il8n

E-mail with Attachment Genesys.webapi.system.loadbalancing
Genesys.webapi.media.irs.direct
Genesys.webapi.media.irs.protocol
Genesys.webapi.media.common

Genesys.webapi.utils.il8n

Web API Client—Developer’s Guide 47

Chapter 1: About Web API Clients

48

API| Usage in the Samples

Table 6: API Access by Samples (Continued)

Sample

Web APIs Used

E-mail with Statistics

Genesys.webapi.system.loadbalancing
Genesys.webapi.media.irs.direct
Genesys.webapi.media.irs.protocol
Genesys.webapi.media.common
Genesys.webapi.utils.il8n
Genesys.webapi.media.stat.direct

Genesys.webapi.media.stat.protocol

Chat

Genesys.webapi.system.loadbalancing
Genesys.webapi.media.chat.direct
Genesys.webapi.media.chat.protocol
Genesys.webapi.media.common

Genesys.webapi.utils.il18n

Chat with Statistics

Genesys.webapi.system.loadbalancing
Genesys.webapi.media.stat.direct
Genesys.webapi.media.stat.protocol
Genesys.webapi.media.chat.direct
Genesys.webapi.media.chat.protocol
Genesys.webapi.media.common

Genesys.webapi.utils.il8n

Callback

Genesys.webapi.system.loadbalancing
Genesys.webapi.media.callback.direct
Genesys.webapi.media.callback.protocol
Genesys.webapi.media.common

Genesys.webapi.utils.il18n

Open Media (Interaction Submit)

Genesys.webapi.system.loadbalancing
Genesys.webapi.media.interaction.direct
Genesys.webapi.media.common
Genesys.webapi.utils.il8n

Genesys.webapi.confserv

Co-Browse

Genesys.webapi.system.loadbalancing

Genesys.webapi.utils.il8n

Genesys Multimedia 7.6 @

Chapter 1: About Web API Clients API| Usage in the Samples

Table 6: API Access by Samples (Continued)

Sample Web APIs Used

Co-Browse Dynamic Start Page Genesys.webapi.system.loadbalancing
Genesys.webapi.utils.il18n

Co-Browse Init Start Page Genesys.webapi.system.loadbalancing

Genesys.webapi.utils.il8n

Co-Browse Meet Me Genesys.webapi.system.loadbalancing

Genesys.webapi.utils.il8n

ChatAndCo-Browse Genesys.webapi.system.loadbalancing
Genesys.webapi.media.chat.direct
Genesys.webapi.media.chat.protocol
Genesys.webapi.media.common

Genesys.webapi.utils.il8n

FAQ Genesys.webapi.utils.il8n

Genesys.webapi.media.faq.direct

Web API Client—Developer’s Guide 49

Chapter 1: About Web API Clients API| Usage in the Samples

50 Genesys Multimedia 7.6 @

S

N’

GENESYS

AN ALCATEL-LUCENT COMPANY

Chapter

About the Samples

This chapter briefly describes the sample applications that come with the
Multimedia Web API. It also outlines how to install them. Then it describes the
files and directories you must create to run these samples. Later chapters
explain these components in detail.

The information in this chapter is divided among the following topics:

« Overview, page 51

+ Installing the Samples, page 53

« Directory Structure, page 54

Overview

This section describes the sample applications.

Simple Samples

Each Simple Sample application demonstrates a particular Web API feature or
feature combination. Table 7 lists these samples and briefly describes them.

The .NET implementation includes the E-mail, Chat, Chat with AJAX,
Callback, Open Media, Stat Server, and Universal Contact Server Simple

Samples. The Java implementation includes all the Simple Samples listed in
Table 7.

Table 7: Multimedia Simple Samples

Sample Description
E-mail A sample that demonstrates how to send e-mail.
E-mail with Attachment A sample that demonstrates how to send e-mail with an
attachment.

Web API Client—Developer’s Guide 51

Chapter 2: About the Samples

Overview

Table 7: Multimedia Simple Samples (Continued)

Sample

Description

E-mail with Statistics

A sample that demonstrates how to submit an e-mail interaction
to E-mail Server Java via a web form, and to also retrieve
statistics from Stat Server about the number of interactions in a
queue (queue length), distribution volume, distribution time,
and estimated wait time.

Chat

A sample that demonstrates how to initiate a chat session and
implement user typing functionality.

Chat with Statistics

A sample that demonstrates how to initiate a chat session, and to
also retrieve statistics from Stat Server about the number of
interactions in a queue (queue length), distribution volume,
distribution time, and estimated wait time.

Chat and Co-Browse

A sample that demonstrates how to initiate a chat session and
initiate co-browsing during that session.

Callback

A sample that demonstrates how to submit a voice callback
request.

Open Media (Interaction Submit)?

A sample that demonstrates how to use Open Media features to
create a custom interaction.

Co-Browse

A sample that demonstrates how to initiate a co-browse session.

Co-Browse Dynamic Start Page

A sample that demonstrates how to initiate a co-browse session
with a dynamic start page.

Co-Browse Init Start Page

A sample that demonstrates how to initiate a co-browse session
with a specified start page.

Co-Browse Meet Me

A sample that demonstrates how to initiate a co-browse “meet
me” session.

FAQ

A sample that demonstrates FAQ functionality.

a. The Open Media sample is also variously referred to as the Interaction Submit Sample,
Interaction Server Sample, and Custom Web Form Submit Sample. Its literal subdirectory name is
Itx-Submit. These all refer to the same sample.

52

Genesys Multimedia 7.6 @

Chapter 2: About the Samples Installing the Samples

Compound Sample

The Multimedia Compound Sample, provided only for Java in this release, is a
simple web application based on code from the web samples listed above in
Table 7. The Compound Sample shows how to incorporate several Multimedia
features into a single web application. Chapter 11 on page 241 explains the
Compound Sample in detail.

Test Tools

The Web API installation includes test tools. You can use these tools to verify
that the API is working properly, and, if you cannot get your application
working, to troubleshoot it.

The Web API’s Java and .NET implementations each include a load-balancing
test tool. The Java implementation also provides chat and e-mail test tools.

Installing the Samples

This section identifies where you can find prerequisites and instructions for
installing the samples, and tells you how to test their installation.

Note: On some platforms, samples install automatically with product
installation, so you need not explicitly install them.

Tools You Need Before Installation

For information on what you will need before installing the samples, refer to
Genesys Supported Operating Systems and Databases.

Installation Process

For complete installation instructions, see the Multimedia 7.6 Deployment
Guide’s chapter on “Multimedia Configuration and Installation in Windows.”

Installation Testing

After installation, use the test tool to verify the installation. Launch a web
browser and type in the URL of the test tool. The URL should look like this:

http://<{web_server_hostname):<web_server_port>/TestTool761/index.html

Web API Client—Developer’s Guide 53

Chapter 2: About the Samples Directory Structure

Directory Structure

The following directory structures reflect the standard web client and API
server installations.

Java
Installing the Java implementation produces the following directory structures.
Tomcat
e <(tomcat_home>\webapps\CompoundSample761\
* <(tomcat_home \webapps\WebAPI761\
e <(tomcat_home>\webapps\WebAPISamples761\
* <(tomcat_homeX\webapps\TestTool761\
where <tomcat_home) is the directory that contains Tomcat.
JRun
* <jrun_home)\servers\default\CompoundSampLle761\
* {jrun_home\servers\default\default-ear\
* {jrun_home>\servers\default\SERVER-INF\
* {jrun_home\servers\default\TestTool761\
e (jrun_homeM\servers\default\WebAPI761\
* {jrun_home>\servers\default\WebAPISamples761\
where <jrun_home) is the directory that contains JRun.
NET

Installing the .NET implementation produces the following directory structure.
Its root, <Target folder>,is the Genesys common product directory.
{WebAPI_Server_App_name) stands for the Configuration Layer’s application
name for the Web API Server and Samples application.

* (Target folder)\.NET Web API Server &
Samp Les\<WebAPI_Server _App_name>\

+ Root directory for WebAPIServer761 web application. Contains some
system and support files.

* <(Target folder>\.NET Web API Server &
Samp Les\<WebAPI_Server_App_name>\TestTool761\

+ Test Tools web application directory.

* <(Target folder>\.NET Web API Server &
Samp Les\<WebAPI_Server_App_name>\SimpleSamples761\

+ Examples web application directory.

54 Genesys Multimedia 7.6 @

Chapter 2: About the Samples Directory Structure

* <(Target folder>\.NET Web API Server &
Samp Les\<WebAPI_Server_App_name>\SimpleSamples761\Cal Lback\

+ Callback example directory.

* (Target folder>\.NET Web API Server &
Samp Les\<WebAPI_Server_App_name>\SimpleSamples761\Chat\

+ Chat example directory.

* <(Target folder>\.NET Web API Server &
Samp Les\<WebAPI_Server_App_name>\SimpleSamples761\ChatAjax\

+ Chat with AJAX example directory.

* <(Target folder>\.NET Web API Server &
Samp Les\<WebAPI_Server_App_name>\SimpleSamples761\Emai L\

+ E-mail example directory.

* <(Target folder>\.NET Web API Server &
Samp Les\<WebAPI_Server_App_name>)\SimpleSamples761\ItxSubmit\

+ Open Media example directory.

* <Target folder>\.NET Web API Server &
Samp Les\<WebAPI_Server_App_name>\SimpleSamples761\Statistics\
+ Stat Server example directory.

* <(Target folder>\.NET Web API Server &
Samp Les\<WebAPI_Server_App_name>\SimpleSamp Les761\UCS\

+ Universal Contact Server example directory.

Simple Sample Files

Each Simple Sample demonstrates a particular media feature or a combination
of two features. Each sample consists of one or more files.

The samples are categorized by media type:

¢ Chat
e E-mail
e (Callback

* Open Media
* Co-Browse
* FAQ

* Stat Server

e Universal Contact Server

Chat Samples
Three samples demonstrate chat-related functionality: Chat, Chat with

Statistics, and Chat and Co-Browse. In this release, only the basic Chat and
Chat with AJAX samples are provided for the .NET implementation.

Web API Client—Developer’s Guide 55

Chapter 2: About the Samples Directory Structure

56

Chat
The Chat Sample has three to five files, which demonstrate how to create a
chat session and implement user typing functionality:

* HtmlChatCommand.jsp (Java) or ChatCommand.aspx.cs and
ChatCommand.aspx (.NET)—Controls the behavior of the chat page, based
on user commands.

* HtmlChatFrameSet.jsp (Java) or ChatFrameset.htm—Contains the frameset
for the other two chat files.

* HtmlChatPanel.jsp (Java) or ChatPanel.aspx.cs and ChatPanel.aspx
(.NET)—Controls the display in the chat panel.

Refer to “Chat Sample” on page 107 for more information.

Chat with Statistics

The Chat with Statistics Sample (provided only for Java in this release) has
five files, which demonstrate how to create a chat session and retrieve chat
statistics:

* blank.jsp—Used as a placeholder in a frame.

* ChatStatInfo.jsp—Retrieves and displays statistics information for a chat
session.

* HtmlChatCommand.jsp—Controls the behavior of the chat page, based on
user commands.

* HtmlChatFrameSet.jsp—Contains the frameset for the other two chat files.
* HtmlChatPanel.jsp—Controls the display on the chat panel.

Refer to “Chat with Statistics Sample” on page 117 for more information on
this sample.

Chat and Co-Browse

The Chat and Co-Browse Sample (provided only for Java in this release)
demonstrates how to initiate a chat session and to initiate co-browsing during
that session. Its file base is almost identical to those of the two samples on
which it is based: Chat, and Co-Browse. For more information on this sample,
see “Chat and Co-Browse Sample” on page 143.

Chat with AJAX

The Chat with AJAX Sample (provided only for .NET in this release) has three
to five files, which demonstrate how to create a chat session:

* ChatCommand.aspx.cs and ChatCommand.aspx—Controls the behavior of the
chat page, based on user commands.

* ChatPanel.aspx.cs and ChatPanel.aspx—Controls the display in the chat
panel.

Refer to “Chat with AJAX Sample” on page 192 for more information.

Genesys Multimedia 7.6 @

Chapter 2: About the Samples Directory Structure

E-Mail Samples

Three samples demonstrate e-mail functionality: E-mail, E-mail with
Attachment, and E-mail with Statistics. In this release, the NET
implementation combines the features of both the E-mail and the E-mail with
Attachment samples in a single E-mail sample.

E-mail
The E-mail Sample demonstrates e-mail functionality, and consists of either
one or two files:

* Email.jsp (Java), or Email.aspx.cs and EmaiL.aspx (NET)—Contain code
snippets that use the e-mail portion of the Web API to send e-mails.

Refer to “E-Mail Sample” on page 120 for more information on this sample.

E-mail with Attachment
The E-mail with Attachment Sample demonstrates how to create an e-mail
with an attachment included, and consists of only one file:

* Email.jsp—Contains Java code snippets that use the e-mail portion of the
Web API to send e-mails that include attachments.

Refer to “E-Mail with Attachment Sample” on page 124 for more information
on this sample.

E-mail with Statistics

The E-mail with Statistics Sample (provided only for Java in this release)
demonstrates how to submit interactions (via a web form) to E-mail Server
Java, while also polling Stat Server to retrieve statistics about the number of
interactions in a queue (queue length), distribution volume, and distribution
time.

Callback Sample

One sample demonstrates voice callback functionality. It consists of either one
or two files:

* Callback.jsp (Java) or Callback.aspx.cs and Callback.aspx (NET)—
Contain code snippets that use the callback portion of the Web API to
submit a voice callback request.

Refer to “Callback Sample” on page 101 for more information on this sample.

Open Media Sample

One sample demonstrates Open Media functionality. This sample consists of
either one or two files:

Web API Client—Developer’s Guide 57

Chapter 2: About the Samples Directory Structure

e ItxSubmit.jsp (Java) or ItxSubmit.aspx.cs and I'txSubmit.aspx (NET)—
Contain code snippets that use the Open Media portion of the Web API to
submit a custom interaction.

Refer to “Open Media Sample” on page 162 for more information on this
sample.

Co-Browse Samples

Five samples (provided only for Java in this release) demonstrate web
collaboration related functionality: Co-Browse, Co-Browse with Dynamic
Start Page, Co-Browse with Initial Start Page, Co-Browse with Meet Me, and
Chat and Co-Browse.

Co-Browse

One sample (provided only for Java in this release) demonstrates basic
Co-Browse functionality. It is based on the Co-Browsing Server API, and
consists of nine files:

* blank.html—Initializes empty frames used by the API. This is a default
page.
* hbapi.html—Supports the client-side API and the co-browse applet.

* hbmessage_to_var.html—A messaging file that provides messages from
the co-browse frame to the web application frame.

* hbmessage_to_var.js—A messaging file that provides messages from the
co-browse frame to the web application frame.

* hbmessaging.js—JavaScript file containing the API of Co-Browsing
Server.

* hbmessagingform.html—Increases security by sending Agent login
information as a HTTP POST request instead of a GET request.

* gstring.js—A JavaScript file containing a utility class.
* CoBrowse.htm—The main frameset of the co-browse sample.

* CoBrowseEventHandler.jsp—Co-Browse event-receiver frame for “meet
me” sample.

Refer to “Co-Browse Samples Overview” on page 137 for more information
on this sample.

Note: gstring.js, hbmessage_to_var.html, and hbmessage_to_var.js must
all reside in the same directory.

58 Genesys Multimedia 7.6 @

Chapter 2: About the Samples Directory Structure

Chat and Co-Browse
The Chat and Co-Browse Sample demonstrates how to create a chat session
and use web collaboration features. It consists of 11 files:

* blank.html—Initializes empty frames used by the API. This is a default
page.
* ChatAndCoBrowse.htm—The main frameset of the sample.

* hbapi.html—Supports the client-side API and the co-browse applet.

* hbmessage_to_var.html—A messaging file that provides messages from
the co-browse frame to the web application frame.

* hbmessage_to_var.js—A messaging file that provides messages from the
co-browse frame to the web application frame.

* hbmessaging.js—JavaScript file containing the API of Co-Browsing
Server.

* hbmessagingform.html—Increases security by sending Agent login
information as a HTTP POST request instead of a GET request.

* gstring.js—A JavaScript file containing a utility class.

* HtmlChatCommand.jsp—Controls the behavior of the chat page based on
user commands.

* HtmlChatFrameSet.jsp—Contains the frameset for the other two chat files.

* HtmlChatPanel.jsp—Controls the display on the chat panel and handles
co-browse functionality.

Note: gstring.js, hbmessage_to_var.html, and hbmessage_to_var.js must
all reside in the same directory.

Refer to “Chat and Co-Browse Sample” on page 143 for more information on
this sample.

Co-Browse Dynamic Start Page

One sample demonstrates Co-Browse Dynamic Start Page functionality.
Its core logic resides in this file:

e ExampleOfDynamicStartPage.jsp

The sample’s remaining files should not be manipulated in any way:

* responselive.js

* responselLivelLauncher.html

* responselLiveScripletLauncher.html

* responselLiveStartApp.html

Refer to “Co-Browse Dynamic Start Page” on page 152 for more information
on this sample.

Web API Client—Developer’s Guide 59

Chapter 2: About the Samples Directory Structure

Co-Browse Init Start Page
One sample demonstrates Co-Browse Init Start Page functionality. It consists
of nine files:

* blank.html—Initializes empty frames used by the API. This is a default
page.

* CoBrowseEventHandler.jsp—Cobrowse event-receiver frame.

* hbapi.html—Supports the client-side API and the co-browse applet.

* hbmessage_to_var.html—A messaging file that provides messages from
the co-browse frame to the web application frame.

* hbmessage_to_var.js—A messaging file that provides messages from the
co-browse frame to the web application frame.

* hbmessaging.js—JavaScript file containing the API of Co-Browsing
Server.

* hbmessagingform.html—Increases security by sending Agent login
information as a HTTP POST request instead of a GET request.

e InitialStartPageExample.html—Start a co-browser session from this page.
* gstring.js—A JavaScript file containing a utility class.

Refer to “Co-Browse Init Start Page” on page 150 for more information on this
sample.

Co-Browse With Meet Me
One sample demonstrates Co-Browse with Meet Me functionality. It consists
of nine files:

* blank.html—Initializes empty frames used by the API. This is a default
page.
* CoBrowse.htm—The main frameset of the co-browse sample.

* CoBrowseEventHandler.jsp—Cobrowse event-receiver frame for “meet
me” sample.

* hbapi.html—Supports the client-side API and the co-browse applet.

* hbmessage_to_var.html—A messaging file that provides messages from
the co-browse frame to the web application frame.

* hbmessage_to_var.js—A messaging file that provides messages from the
co-browse frame to the web application frame.

* hbmessaging.js—JavaScript file containing the API of Co-Browsing
Server.

* hbmessagingform.html—Increases security by sending Agent login
information as a HTTP POST request instead of a GET request.

* gstring.js—A JavaScript file containing a utility class.

Refer to “Co-Browse Meet Me” on page 148 for more information on this
sample.

60 Genesys Multimedia 7.6 @

Chapter 2: About the Samples Directory Structure

FAQ Sample for Java

One sample demonstrates FAQ (self-serve Knowledge Base) functionality.
It consists of only one file:

* FAQ.jsp—Dynamic FAQ sample main page.

Refer to “FAQ” on page 157 for more information on this sample.

Stat Server Sample for .NET

One sample demonstrates statistics functionality. It consists of two files:

* StatInfo.aspx.cs and StatInfo.aspx—Contain code snippets that retrieve
statistics about interactions from Stat Server.

Refer to “Stat Server Sample” on page 217 for more information on this
sample.

Universal Contact Server Sample for .NET

The Universal Contact Server sample has four files, which demonstrate e-mail
history functionality:

* Action.aspx.cs and Action.aspx—Controls the behavior of the page.

* UCS.aspx.cs and UCS.aspx—Controls most of the page presentation to the
user.

Refer to “Universal Contact Server Sample” on page 226 for more
information.

Compound Sample Files

The Compound Sample is provided only for Java in this release. It includes
some nine folders and 56 files, of which 25 are graphics files. The rest of the
files are mostly from the Simple Samples. The files are organized into these
categories:

* “Graphics”

* “Authentication”

* “Graphical User Interface”
e “Servlet Container”

* “Media”

Graphics

This folder contains image files used in the Compound Samples.

Web API Client—Developer’s Guide 61

Chapter 2: About the Samples Directory Structure

62

Images Folder

Contains .gif files used in the Compound Sample GUI display.

Authentication

These folders contain files that identify and authenticate users. The user

information entered is also used as attached data in various media requests.

Accountinfo Folder

* Personallnfo.jsp—Presents a form in which users can enter their personal
information.

Login Folder

* CheckLogin.jsp—Validates a user’s login credentials.
* Login.jsp—Presents a login page for users.

* Logout.jsp—Allows users to log out of a session.

Graphical User Interface

This folder contains . j sp files used to create the user interface.

MainWindow Folder

* AllMedia.jsp—Determines which media are working and available for use
in the web sample.

* Command.jsp—Presents the command tabs for the sample.
* LeftNavFrame.jsp—Allows users to navigate the sample website.

* MainFrame.jsp—Presents the main entry page for the sample.

Servlet Container

All web applications running in a servlet container—such as WebSphere,
WebLogic, Tomcat, or JRun—are required to have these folders and files. You
can leave them as they are, or edit them to include application-specific
information for the servlet container.

WEB-INF Folder

* web.xml—Application-level configuration file for use by servlet container.

META-INF Folder

* MANIFEST.MF—Application-level manifest file for use by servlet container.

Genesys Multimedia 7.6 @

Chapter 2: About the Samples

Directory Structure

Media

The folders under this category are organized according to the media they
represent. The files in these folders are mainly from the simple web samples.

Chat Folder

blank.jsp—Used as a placeholder in a frame.

ChatStatInfo.jsp—Retrieves and displays statistics information for a chat
session.

HtmLlChatCommand. j sp—Controls the behavior of the chat page, based on
user commands.

HtmlChatFrameSet.jsp—Contains the frameset for the other two chat files.
HtmLChatPanel.jsp—Controls the display on the chat panel.

ChatOptions.jsp—Checks for chat media availability and presents a chat
window only if chat is available.

ChatTranscript.jsp—Supports popular Internet expressions such as
smiling or frowning facial expressions and hyper links in an e-mail or chat
communication.

Email Folder

Emai L.jsp—Contains Java code snippets that use the e-mail portion of the
Web API to send e-mails.

Emai LHistory.jsp—Gets customer interactions history from Universal
Contact Server.

Emai LHistoryFrameset.jsp—The frameset for the e-mail history
functionality.

Emai LOptions.jsp—Shows all available e-mail options like web form
submission, e-mail history from Universal Contact Server.

PrintHistory.jsp—Prints selected thread or single e-mail. Also helps to
update attach data of the interaction.

Callback Folder

HtmlCal lback.jsp—Provides functionality similar to the Cal Lback JSP used
in the Simple Sample.

CallbackOptions.jsp—Checks for callback availability and presents the
callback JSP only if the callback service is available.

calendar.jsp—Provides a JavaScript calendar window.

Help Folder

AllMediaHelp.jsp—States that the user can access all media requests.

ChatOptionsHelp.jsp—Explains to a user how to choose chat options.

Web API Client—Developer’s Guide 63

Chapter 2: About the Samples Directory Structure

* EmailHelp.jsp—Explains to users how to create an e-mail request from the
sample.

* CallbackOptionsHelp.jsp—Explains to a user how to choose chat options.

* Help.jsp—Contains general help message for the sample. It is a simple
FAQ example.

* HtmlChatPanelHelp.jsp—Explains to users how to use the HTML Chat
Sample request.

* PersonalInfoHelp.jsp—Explains to users that they must fill in their
personal information.

Test Tool Files

Java

The Java implementation provides these test tools:

* blank.html—Initializes empty frames used by the API. This is a default
page.

* CallbackSelfTest.jsp—Validates Multimedia callback web API.

* ChatSelfTest.jsp—Validates Multimedia chat web API.

* ComboTestPage.jsp—Validates system load-balancing installation.

* EMailSelfTest.jsp—Validates Multimedia e-mail web API.
* index.html—The primary entry point to the Test Tools.

* LBTestPage.jsp—Validates system load-balancing installation.
* StatSelfTest.jsp—Validates web statistics API.

.NET

The .NET implementation provides these test tools:
* diagnostic.xsl—Stylesheet file for diagnostic routines.

* LBTest.aspx.cs—Partial class for LBTest.aspx page: validates system
load-balancing installation.

* LBTest.aspx—Displays LBTest.aspx.cs.

* EmailSelfTest.aspx.cs—Partial class for EmailSelfTest.aspx page:
validates Multimedia e-mail .NET API.

* EmailSelfTest.aspx—Displays Emai lSelfTest.aspx.cs.

* ChatSelfTest.aspx.cs—Partial class for ChatSelfTest.aspx page:
validates Multimedia chat. NET API.

* ChatSelfTest.aspx—Displays ChatSelfTest.aspx.cs.

* CallbackSelfTest.aspx.cs—Partial class for CallbackSelfTest.aspx page:
validates Multimedia callback .NET APIL.

64 Genesys Multimedia 7.6 @

Chapter 2: About the Samples Directory Structure

* CallbackSelfTest.aspx—Displays CallbackSelfTest.aspx.cs.

* StatSelfTest.aspx.cs—Partial class for StatSelfTest.aspx page:
validates Multimedia stat server .NET API.

* StatSelfTest.aspx—Displays StatSelfTest.aspx.cs.

* UCSSelfTest.aspx.cs—Partial class for UCSSelfTest.aspx page: validates
Multimedia Universal Contact Server .NET API.

e UCSSelfTest.aspx—Displays UCSSelfTest.aspx.cs.

Web API Client—Developer’s Guide

65

Chapter 2: About the Samples Directory Structure

66 Genesys Multimedia 7.6 @

S

GENESYS

AN ALCATEL-LUCENT COMPANY

Chapter

Understanding and Using
the E-Mail Service

Multimedia’s e-mail service is powerful but fairly complicated. It involves
many servers, and is tied to routing and workflow strategies, statistics,
classification, and knowledge-management tasks. Because deploying an e-mail
service involves many development groups and levels, this chapter aims to
present an overview of the e-mail service, and to explain the service from a
web-application perspective.

This chapter explains how you can use this service in a web application,
without knowing what happens to the e-mail after submission. It does not
attempt to address any strategies, intelligent routing, or the classification
mechanism. It contains the following sections:

« Overview, page 68

« Life Cycle of an E-Mail Session, page 68

« Event Flow of an E-Mail Session, page 69

To fully understand the e-mail service, consult the Multimedia 7.6 Deployment
Guide, Multimedia 7.6 User s Guide, Universal Routing 7.6 Business Process
User’s Guide, Universal Routing 7.6 Reference Manual, and Framework 7.6
Stat Server User s Guide.

Web API Client—Developer’s Guide 67

Chapter 3: Understanding and Using the E-Mail Service Overview

Overview

Figure 10 shows the architecture and components involved in an e-mail
service. The Multimedia 7.6 Deployment Guide explains the behavior of E-
mail Server Java in greater detail.

Web Web Servlet Engine MCR
Browser Server (Tomcat, Jrun) Servers Routing
MCR || i :
Web a E-mail Interaction Agent
AP| Server Server Desktop
E-mail
HTML
Form Universal|__| Classification
Contact Server
Server

Figure 10: Web-Based E-Mail Service Architecture

Life Cycle of an E-Mail Session

The life cycle of an e-mail session is quite complicated. Figure 11 depicts this
life cycle from the perspective of the Multimedia E-mail Sample. The initial
state is the empty state. The only action available here is to connect to E-mail
Server Java. After your application logs in, the user can either submit the
e-mail form immediately, or ask to see statistics. In either case, the action
moves the form from the logged in state to the in session state. However, after
submission, the web client immediately executes the close action and changes
the state to empty again.

Log out
empty state Login logged in

Log out Submit/Get statistic

Figure 11: State Diagram of an E-Mail Session

68 Genesys Multimedia 7.6 @

Chapter 3: Understanding and Using the E-Mail Service Event Flow of an E-Mail Session

Event Flow of an E-Mail Session

This section presents the event flow of an e-mail session, from a web-client
perspective. Figure 12 shows the event flow from the Web sample to E-mail
Server Java. The rightmost box represents the workflow-control components,
such as knowledge management (classification), routing, and strategies, if any,

as a single entity.
Client Web Server with Web API Load-balancing Routing, strategies,
(web browser) Servlet Engine servlet servlet E-mail Server classification
asynchronous synchronous asynchronous !
Finds

synchronous N

available

resolve [———————gethostand port E-mail Server
@ host an ‘ .1 through

|

|

|

|

[}

port (———————return host and port Solution :

Control |

invoke one of the methods: Server |

— connect, close, or submit] o :

connect using host and port ————— | |
|

detailed detailed e————————check 9”‘0" code———————{ | :

gi:":Z:] < API send one of appropriate requests: | Forward data for
9 method connect, close, or submit internal processing
|
& ~4————appropriate reply ——————_«acknowledgement
]
— |

r———return result lose :

[}

[}

[}

|

|

|

}

Figure 12: Event Flow Between the Web API Servlet and E-Mail Server Java

Note: Figure 12 shows a detailed view of the event flow between the
Web API servlet and E-mail Server Java. It identifies certain sections
of the event flow with the labels A and B. Figure 13 on page 70
abstracts those sections of the diagram by referencing these labels.

Your web application gets a host name and port number from load balancing,
and uses them to create an _irs_direct object that is connected to the specified
host and port. The Web API’s customized server page (JSP or ASPX) then
forwards the request to E-mail Server Java. E-mail Server Java then forwards
the request data to Interaction Server, which in turn repackages it and forwards
it for further processing. At this point, the _irs_direct object must close the
connection. Strictly speaking, the web-based e-mail architecture ends at
E-mail Server Java. Any subsequent activity is not considered to be part of the
e-mail architecture, but rather part of the Multimedia architecture.

Figure 13 on page 70 depicts the event flow of an HTTP request for
connection, statistic retrieval, or submission.

For more information on how Multimedia processes an e-mail, refer to the
Multimedia 7.6 Deployment Guide.

Web API Client—Developer’s Guide 69

Chapter 3: Understanding and Using the E-Mail Service

Client
(web browser)

asynchronous

L HTTP request
(connect, get statistics, or submit)

Generated HTML
based on response

Web Server with
Servlet Engine
N

r4————— reply

synchronous

e emeemeoesensenseeececnecneeneeneen @5 0l VE hOSt @Nd port

request————p»

Web API
servlet

Load-balancing
servlet

Event Flow of an E-Mail Session

E-mail Server

®

I e— |
synchronous

asynchronous

connect, send request , r

eceive reply, disconnect)

Figure 13: Event Flow for a Connection, Statistic Retrieval, or Submission Request

70

Genesys Multimedia 7.6 @

S

GENESYS

AN ALCATEL-LUCENT COMPANY

Chapter

Understanding and Using
the Flex Chat Service

This chapter details the chat service in Multimedia, and the Flex Chat API
concept. It contains the following topics:

« Overview, page 71

- Life Cycle of a Chat Session, page 72
« Event Flow of a Chat Session, page 73
« Transcripts, page 75

Overview

This section illustrates the concepts and architecture for the chat service.
Figure 14 depicts the components involved in a chat service. This chapter only
discusses the browser, web server, Web API, and Chat Server. The Multimedia
7.6 Deployment Guide discusses Chat Server in more detail.

Web Web Servlet Engine MCR
Browser Server (Tomcat, Jrun) Servers Routing
MCR I'eCTJZtSl
Web a Chat Interaction Agent
API Server Server [| | Desktop
Chat
HTML]
Form Universal
Contact
Server

Figure 14: Architecture of the Flex Chat Service

Web API Client—Developer’s Guide 71

Chapter 4: Understanding and Using the Flex Chat Service Life Cycle of a Chat Session

Life Cycle of a Chat Session

72

To successfully deploy a chat service onto your web application, you must first
understand the life cycle of a chat session. Figure 15 shows the life cycle as a
state diagram. The start state is the empty state. The only action available here
is to log in to Chat Server as a chat user. Note that your application can log out
of Chat Server without attempting to create or join a session (logged in state).
However, this is not the normal flow of a chat session. It usually indicates that
an error or exception has occurred.

Warning! Your client application’s code must disable the Stop chat button
until the application receives a reply from Chat Server to the
browser’s Connect request. This avoids prematurely ending a chat
(by sending a requestLogout to Chat Server). Such premature
logouts leave behind pending interactions that Genesys Desktop
will be unable to delete.

After your customer is logged in, your application must call the join()
method. If join () is invoked with a null session_id parameter, a new session is
created. If it is invoked with an existing session ID, your customer is
reconnected with that session.

Note: The Multimedia Web API samples show how to use the join () method
to create a new session. A customer logged into Chat Server can
participate in only one session. To connect or create another chat
session, the customer needs to perform another login, which will
produce a separate user_id.

These samples do not show how to connect to an existing session. For
that information, consult the Multimedia 7.6 Web API Reference or the
Web Media Platform SDK 7.6 .NET API References.

Log out

empty state Login logged in

Refresh

Log out Join

Figure 15: State Diagram of a Chat Session

Once a chat session starts, your application must periodically send a refresh
request to keep the session alive. The refresh frequency is dependent on your

Genesys Multimedia 7.6 @

Chapter 4: Understanding and Using the Flex Chat Service Event Flow of a Chat Session

application. However, you can use the f lLex-disconnect-timeout configuration
option in Chat Server to specify the maximum timeout between refresh
requests. Make sure that the interval in which your application calls the
refresh () method falls within the f lex-disconnect-timeout value. Your
application stays in the in session state until it logs out of Chat Server.

Note: You can view the life cycle of a chat session from two perspectives:
that of the Chat Server and that of a chat participant. From
Chat Server’s point of view, the session begins when the first
participant joins, and continues until the last participant disconnects
from the session. From a user’s point of view, the chat session is over
when that user disconnects. The user receives the transcript up to the
point where he or she stopped chatting. However, Chat Server is still
servicing the other users, and their transcripts will be different. See the
section “Transcripts” on page 75 for more information.

Event Flow of a Chat Session

This section details the event flow of a typical chat session (see Figure 16 on
page 74).

In the first request in a chat session, the API servlet must request the alias for a
Chat Server (flow A in Figure 16 on page 74). All subsequent requests in the
chat session must use this alias to resolve the host and port information from
the load-balancing servlet before invoking any method of the Chat API

(flow B).

Note: The same Chat Server is used for the whole chat session (see
“Life Cycle of a Chat Session” on page 72).

When your application makes a login, Logout, join, or refresh request, the
API servlet must connect to the Chat Server before it can forward your
application request (flow C). Chat Server sends a reply, with a chat transcript if
applicable. Then the servlet disconnects from Chat Server. Note that the

Web API connects to, and disconnects from, Chat Server for each login,
logout, join, or refresh method call.

Note: Figure 16 details the event flow between the Web API servlet and
Chat Server. It identifies certain sections of the event flow using the
labels A, B, and C. Figure 17 on page 74 and Figure 18 on page 75
abstract those sections of the diagram by referencing these labels.

Web API Client—Developer’s Guide 73

Chapter 4: Understanding and Using the Flex Chat Service Event Flow of a Chat Session

Client
(web browser)

JSP page with Web API
Java code server

Chat Server

asynchronous synchronous asynchronous
— Finds
@ request —Only for the first request of a chat session: get alias for Chat Server»| available Chat
for alias l¢——retumn alias for Chat Sever—— Server
++++ through
Solution
fe|§°|‘/te <——get host and ‘port for aliass ———— Control
alias to
host/port -t return host and port Server
Invoke one of the methods :
—login, logout, join or refresh—»|
detailed i r
method with (host, port, and so on) connect using host and port ———————p»|
di T | Update
iagram hat
detailed |4————connected chat
© |
method send one of appropriate requests : login, logout, join, refresh—# |-
\
l-———appropriate reply (chat session transcript if applicable)————

|
(——retumn result disconnect——————————————»

Figure 16: Request/Event Flow Between Multimedia Components for Chat Service

Client
(web browser

Figure 17 shows the event flow of a connect request. Your web application
sends an HTTP request containing a cmd = connect parameter to the servlet
(through the Web API server). The double-ended arrow between the

server page (labeled JSP) and the load-balancing servlet is an abstraction of the
event flows labeled “request for alias” and “resolve alias to host/port” in
Figure 16.

)

4——HTTP response

JSP page with Web API Load -balancing

Java code server servlet Chat Server

asynchronous

HTTP request:
connect (user info)

synchronous synchronous) asynchronous)

n
[tpeeemeeemeeeeee reqquest for alias , resolve|alias to host and port seeeesessesseeeeim- @ and

login (user info)———|
lareply (user id, transcript = null }—

connect, send request , receive reply, disconnect @

——join (user id}————m|
reply (user |d transcript,
position)

H

connect, send request , receive reply, disconnect @

W

Figure 17: Event Flow for Connect Request

74

Figure 18 on page 75 shows the event flow for an HTTP request with a
cmd = send or cmd = disconnect parameter. As with the cmd = disconnect
parameter, the Web API server must connect to Chat Server, forward the
request, and then disconnect from Chat Server. Note that a web client must
send the chat alias for each request.

Genesys Multimedia 7.6 @

Chapter 4: Understanding and Using the Flex Chat Service Transcripts

Client JSP page with Web API Load -balancing
(web browser) Java code server servlet Chat Server

| e —
asynchronous synchronous synchronous asynchronous
-V -V -V -V
HTTP request: X

I—send/disconnect(alias, user id | | -==-==-=-——--resolve alias to host and port E—

position, [message]) refresh/logout (alias, user id, N
position, [message]) connect, send request , receive reply, disconnect @
reply (user id, transcript,
«———HTTP response < position)

Figure 18: Event Flow for Send or Disconnect Request

Transcripts

A transcript is a set of ordered items from a chat session. Each item represents
an event in that session. Each reply from Chat Server in the Flex protocol,
except a reply for a connect request, contains such a transcript. (The reply for a

connect request contains no transcript because a chat session has not yet been
established.)

A transcript contains only recent events in the chat session (those generated
since the last refresh request). It can even be empty (that is, it can contain no
items) if no updates were made to the chat session since the previous refresh
request.

Transcript Description

A Flex transcript contains a header and a list of events.

The header contains the following data:

1. session_id (the same as interaction id)}—required for statistics inquiries.
2. start_at—timestamp showing when chat session was created.

3. last_position—the ordering number of the last transcript item. This value
is needed for subsequent refresh requests.

Each transcript item contains the following data:

1. event_type, which could be one of three types:

a. CONNECT specifies that a party (either a web client or an agent) joined a
chat session. A transcript always starts with an item of this type for the
client that requested the session creation.

b. MESSAGE specifies that a message was sent by someone already
participating in the chat session. (Therefore, a CONNECT item was
already specified for this party.)

c. ABANDON specifies that a participant left the chat session.

Web API Client—Developer’s Guide 75

Chapter 4: Understanding and Using the Flex Chat Service Transcripts

76

2.

time_offset is the number of seconds that elapsed from the time of session
creation.

user_nick represents user nickname information.

user_type, which is either AGENT or CLIENT. According to the current
implementation of the web samples, only one party of type CLIENT is
possible in one chat session. However, this restriction may be relaxed in
future releases.

party_id contains a unique identifier of a party in a chat session. However,
that identifier is not unique across different chat sessions.

msg_type is not currently used. msg_type is reserved for future specification
of the message content. However, this field could contain text, such as
TEXT.

event_body contains the message itself. Each transcript item (not just those
of type MESSAGE) may contain an event body.

API Representation

The _chat_transcript class in the Web API (see “Chat” on page 31) is a vector
of transcript items (objects). It contains members as described in
“Transcript Description,” above.

The transcript () method of the _chat_direct class (see “Chat” on page 31)
returns a transcript in the case of successful reply.

Note: No transcript can be requested immediately after a call to the Login

method.

Genesys Multimedia 7.6 @

S

N’

GENESYS

AN ALCATEL-LUCENT COMPANY

Chapter

Understanding and Using
the Callback Service

This chapter describes the Multimedia voice callback service, in the following
sections:

« Overview, page 77
+ Architecture, page 78
« Event Flow of a Callback Request, page 78

Overview

Genesys Voice Callback helps contact centers manage periods of high inbound
call volume, by providing an additional channel for customer contact when the
call load is heavy. This option allows callers to request a callback from an
agent instead of waiting on hold. Voice Callback supports two types of
callbacks:

* ASAP (as soon as possible) callback.
* Scheduled callback (for a specific date and time).

Multimedia’s callback service allows you to write software that takes
advantage of Voice Callback. This chapter explains the service’s architecture
and event flow. For more information on Voice Callback, consult Voice
Callback 7.6 Deployment Guide and Voice Callback 7.6 Reference Manual.

Web API Client—Developer’s Guide 77

Chapter 5: Understanding and Using the Callback Service Architecture

Architecture

The Multimedia callback service relies on the Universal Callback Server to
transmit callback requests to agents, as shown for web-submitted requests in
Figure 19.

Web Web Servlet Engine
Browser Server (Tomcat, Jrun)
T-Server
Callback .
Callback MCR oquest | Universal
Web Callback Agent
HTML API Server Deskt
N eskto
Form NG | Universal U P
N Contact ¢
Server

Figure 19: Web-Based Callback Service Architecture

Event Flow of a Callback Request

78

The upper part of Figure 20 on page 79 shows the event flow from the Web
sample, running on a browser, to the Callback Server.

After the Web sample connects to the Callback Server, it submits a callback
request. When the Callback Server receives the request, it optionally passes the
request to the Contact Server. It then sends an acknowledgement to the Web
sample. At this point, the sample disconnects from the Callback Server.

Note: Although Figure 20 shows interactions with a Contact Server, the
Contact Server is optional and is not used for handling callback
requests. Its only callback-related function is to receive copies of the
callback interactions, so it can place them in the contact history.

The lower section of Figure 20 shows the basic interactions among the
Callback Server, Contact Server, T-Server, Routing Server, and Agent Desktop,
after the Callback Server has received and acknowledged a callback request
from the Web sample.

First, the Callback Server sends the callback request to the Routing Server, in
the form of a T-Server event with attached data. The Routing Server selects an
appropriate agent and tells the Callback Server how to route the request. At
this point, the Callback Server sends the callback request to an agent.

When the agent accepts, the Callback Server optionally notifies the
Contact Server. When the agent has finished the callback, the Callback Server
may also notify the Contact Server.

Genesys Multimedia 7.6 @

Chapter 5: Understanding and Using the Callback Service Event Flow of a Callback Request

Other types of callback-related activity, such as a cancellation or a request for
information about a callback request, have the same structure as the upper
section of Figure 20.

Callback Callback Contact T-Server, Agent
Client Server Server Router Desktop

Connect(host, port)—E]

} REQUEST (Phone, UserDat

Callback request record-»

ooty {] Lonmiiod
Disconnect()—E] submited

EventRouteRequest(UserData, AttrMediaTyp
']
RequestRouteCall(DN
|
EventRouteUsed—E]

UserEvent(CALLBACK_REQUEST})

UserEvent(CALLBACK_ACCEPTED}

—

Update status—

{ UserEvent(CALLBACK_DONE}
Update status——p H

processed

—

Figure 20: Event Flow Between the Callback Server and Other Components

Web API Client—Developer’s Guide 79

Chapter 5: Understanding and Using the Callback Service Event Flow of a Callback Request

80 Genesys Multimedia 7.6 @

S

N’

GENESYS

AN ALCATEL-LUCENT COMPANY

Chapter

Understanding and Using
the Open Media Service

This chapter discusses the Multimedia Open Media service, in the following
sections:

« Overview, page 81
« Architecture, page 82
+ Event Flow of an Open Media Request, page 82

Overview

Genesys Open Media is designed to enable contact centers to manage all
communication channels in the same way, with the same pool of agents, and
with consistent reporting.

In the broadest sense, Open Media lets you define your own media types, such
as fax or customer-relationship management (CRM) cases. You can then pass
these media types to and from Interaction Server in much the same way that
you would use Multimedia’s built-in chat or e-mail types.

The Web API implementation of Open Media provides a more focused set of
capabilities. In particular, you can use the Web API to write customized server
pages that gather user input on a web form. This input is sent to the Web API
Server, which creates a new interaction and passes it on to Interaction Server
for further processing by the Genesys platform.

Web API Client—Developer’s Guide 81

Chapter 6: Understanding and Using the Open Media Service Architecture

Architecture

Multimedia’s implementation of Open Media relies on Interaction Server, as
shown in Figure 21. This simplified diagram indicates that an interaction can
be initiated from a web browser, created in a web server, and sent to Interaction
Server. From there, it can optionally be passed to another component—such as
the Genesys Classification Server or a custom application—for further
processing.

Web Web API Servlet Engine
Browser Server (Tomcat, Jrun)
,a ;e)gir; Interaction Interaction Interaction Custom
HTML Server Application
Form
Universal
Contact
Server

Figure 21: Web-Based Open Media Service Architecture

Event Flow of an Open Media Request

82

Figure 22 on page 83 shows the event flow from the Web sample, which is
running on a browser.

The Web sample’s advanced server page submits the web form to the Web API
Server. The Web API Server creates a new interaction based on the user input,
and submits it to Interaction Server.

When the Interaction Server receives the interaction, it may optionally pass the
interaction to a custom application for further processing. Otherwise, the
interaction is processed by the Genesys platform in the same way that other
interactions are processed.

When Interaction Server receives an interaction from the Web API Server, it
sends an acknowledgement. When the Web API Server receives that
acknowledgement, it in turn sends an acknowledgement to the browser.

Other types of interaction-related activity, such as an update or cancellation,
have the same structure as is shown in Figure 22 on page 83.

Genesys Multimedia 7.6 @

Chapter 6: Understanding and Using the Open Media Service Event Flow of an Open Media Request

Note: You must ensure that the interaction ID is unique in order for the
Genesys platform to process it correctly.

Client (Web Interaction Custom
Browser) Web API Server Server Application

I I I I

1 submitq) | | |
Interaction l I

‘ Interaction
Acknowledgement u
Acknowledgement
u I
1 I I I

Figure 22: Event Flow Between the Interaction Server and Other
Components

Web API Client—Developer’s Guide 83

Chapter 6: Understanding and Using the Open Media Service Event Flow of an Open Media Request

84 Genesys Multimedia 7.6 @

S

GENESYS

AN ALCATEL-LUCENT COMPANY

Chapter

Understanding and Using
the Web Collaboration
Service

This chapter explains the concept of web collaboration, and provides a high-
level view of Co-Browsing Server’s architecture. This server adds co-browse
capabilities to Multimedia web-based clients.

Note: Co-Browse samples are provided only for Java in this release.

The chapter contains the following sections:

« What is Co-Browsing?, page 85

« Architecture, page 86

« Web Collaboration Process, page 87

- Integrating Co-Browsing into Your Application, page 88

What is Co-Browsing?

Co-Browsing Server is a web-based application that enables agents and
customers to co-browse web pages: that is, to view the same web page
together, with one party’s actions on the page being instantly propagated to the
other party’s browser. For example, if you and another person are co-browsing
the Yahoo! home page, when you click the News link, your co-browsing partner
also sees the Yahoo! News page.

Web API Client—Developer’s Guide 85

Chapter 7: Understanding and Using the Web Collaboration Service Architecture

The actions that the participants in a co-browsing session can perform together
are:

* Navigating web sites.

* Conducting online transactions.

* Filling out web forms.

* Interacting with web-based software applications.

* Downloading files, playing audio, or watching video streams.

Architecture

Co-Browsing Server acts as a proxy between the clients and the site navigated.
Co-Browsing Server sits between the clients and the servers at the website.
Figure 23 shows Co-Browsing Server’s high-level architecture.

Customer Co-Browsing
O\ Server /
website A
e o
Agent
website B
website C

Figure 23: Co-Browsing Server Proxy Architecture

86 Genesys Multimedia 7.6 @

Chapter 7: Understanding and Using the Web Collaboration Service Web Collaboration Process

Web Collaboration Process

Figure 24 shows the typical sequence of steps in the web collaboration process
between an agent and a customer.

bzent

onavigation
logs in e

nitiated

EBroarser
Lamches

Figure 24: Web Collaboration Process

1. Agent logs in to Interaction Server through an agent desktop application.

2. Customer logs in to Co-Browsing Server. While communicating with the
agent, your application uses the Co-Browsing Server API to automatically
log the customer in to Co-Browsing Server and load the co-browse applet.
The applet is loaded in the background, in preparation for the co-browse
session.

3. Customer initiates a co-browse session: The customer application sends an
initiate co-browse command, and the customer’s co-browse ID, to the
agent application.

4. The agent browser launches when the agent application invokes the
Co-Browsing Server API method HBConnectTo (specifying the customer’s
co-browse ID). This connects the agent and customer, and launches shared
browsers on both computers.

5. Co-Browsing commences. The customer and agent co-browse.

6. Customer logs out of Co-Browsing Server. The co-browse client closes the
customer browser and logs the customer out. The agent is free to start
another session with a new customer.

Web API Client—Developer’s Guide 87

Chapter 7: Understanding and Using the Web Collaboration Service Integrating Co-Browsing into Your Application

Note: Co-Browsing Server sends a confirmation message when the customer
is logged out. The customer application or service can trap these events
by using the JavaScript calls provided in the Co-Browsing Server API.

Integrating Co-Browsing into Your
Application

In order to integrate co-browse into your client application, you must modify
your application to include some co-browse support files. These files contain
API calls that allow your client application to log customers in, initiate web
collaboration sessions, navigate to websites, and log customers out.

This section lists the files that your client must include, and describes how to
use the APIs to perform mandatory operations. It also provides example code
snippets that suggest ways to implement callback functions, how to create
initial and dynamic start pages, how to disable submit buttons, and how to take
account of other features and limitations for creating a client application.

Integration Support Files

* hbmessaging.js—JavaScript file containing Co-Browsing Server’s API.

* hbcallback.js—JavaScript file containing default callback API
implementations.

* gstring.js—JavaScript file containing a utility class.

* blank.html—default blank page for initializing empty frames used by the
APL

* hbapi.html—supports the client-side API and the co-browse applet.

* hbmessagingform.html—increases security by sending Agent login
information as a HTTP POST request instead of a GET request.

* hbmessage_to_var.html-—A messaging file that provides messages from the
co-browse frame to the web application frame.

* hbmessage_to_var.js—A messaging file that provides messages from the
co-browse frame to the web application frame.

Note: gstring.js, hbmessage_to_var.html, and hbmessage_to_var.js must
all reside in the same directory.

88 Genesys Multimedia 7.6 @

Chapter 7: Understanding and Using the Web Collaboration Service Integrating Co-Browsing into Your Application

Example Client Files

The following web HTML files come with the Co-Browsing Server
installation. The default installation puts them under the
{Co-browse server home)/clientapi/ directory.

* toplevelframeset.html—a frameset that holds the frames for callback and
co-browse messaging files.

* varExampleForm.html—a simple example client that captures and sends
events to Co-Browsing Server.

* example_callbacks.html—a sample implementation of client callbacks
provided by the co-browse applet.

Design, Deployment, and Configuration Details

For co-browsing application design, deployment, and configuration guidelines,
see the KANA Response Live documentation listed in “Related Resources” on
page 17. (Genesys licenses certain co-browsing components from KANA
Software, Inc.)

Creating a Co-Browse Session in a Separate Browser
Window

The Co-Browsing Server client API supports two different ways of creating
co-browse sessions:

¢ Within the embedded frame.

* In anew browser window. This is the only alternative supported on
Windows XP (SP2 and up), Windows 2003, or Windows Vista.
An example of this functionality is the Co-Browse sample that is described
in “Co-Browse Samples” on page 58.

You cannot use the HBInitEmbeddedFrame function when you have a Co-browse
session in a separate window. A new co-browse session window appears
immediately after invocation of the HBConavigateL ink function. If the client
invokes HBExitSession, the window disappears.

Sample Code Snippet

function CoBrowse()

{

var HBApiWindow = parent.hbapi;

var strUrl = new String(window. location.href);

var strProcessorUrl = strUrl.substring(@, strUrl.lastIndex0f("/"))+"
hbmessage_to_var.html";

var CobrowseHostName = “cobrowse.genesyslab.com";

var AttachedData = "acctSpecificData";

var ConavigationiChannelID = "Default";

Web API Client—Developer’s Guide 89

Chapter 7: Understanding and Using the Web Collaboration Service

HBApiWindow.HBInitializeAPI("EventHandlerFrame",
HBApiWindow.HBLoginGuest(ConavigationiChannelID,
}
//HB API Event Handler
function HBSessionStarted()
{
var StartPage = "http://www.genesyslab.com";
HBApiWindow.HBConavigateLink (StartPage, null);
}

90

Integrating Co-Browsing into Your Application

CobrowseHostName, strProcessorUrl);

, , false, AttachedData);

Genesys Multimedia 7.6 @

S

N’

GENESYS

AN ALCATEL-LUCENT COMPANY

Chapter

Understanding and Using
the FAQ Service

This chapter provides a brief description of the Frequently Asked Questions
(FAQ) service, the Genesys Knowledge Management features (which create
the category structure and standard responses), and the Genesys Content
Analyzer (which converts the categories and responses into the FAQ object).

Note: An FAQ sample is provided only for Java in this release.

This chapter contains the following sections:

+ Overview, page 91

+ Genesys Knowledge Management, page 92
« Genesys Content Analyzer, page 92

« FAQ Objects, page 93

« Sample FAQ jar File, page 93

Overview

The FAQ service allows customers to submit a question, then receive a list of
frequently asked questions (FAQs) that relate to their question. Along with the
list of FAQs, the response includes a number indicating the confidence with
which each FAQ is related to the customer’s question. Customers have two
search options:

* Search all the categories for FAQs related to their topic, in order to receive
a broad range of results.

* Search a specific category, in order to narrow down the results.

Web API Client—Developer’s Guide 91

Chapter 8: Understanding and Using the FAQ Service

Genesys Knowledge Management

However, a customer might not have a specific question. In this case, he or she
has two browse options:

* Browse through the entire list of FAQs for every category.
* Browse through the list of FAQs for a specified category.

The FAQ list is created by the Genesys Content Analyzer, which is an optional
enhancement to Knowledge Management. The remainder of this chapter gives
a brief description of Knowledge Management. For further details, see the
Multimedia 7.6 User s Guide.

Genesys Knowledge Management

Knowledge Manager functionalities fall into the following four groups:

* Categories/standard responses/field codes. A system of categories,
organized in a tree structure, provides the means of organizing
standard responses, which are pre-written responses to interactions.
Field codes provide a way to particularize the standard response to
individual interactions. Category trees are also integral to the classification
functionality of Genesys Content Analyzer (see the third item in this list).
You use Knowledge Manager to create category trees, and to create and
edit the standard responses and the field codes that they can contain.

* Screening rules. Screening rules perform pattern matching on incoming
interactions. The results of the pattern matching are then available for use
in subsequent steps in routing and in interaction workflows. You use
Knowledge Manager to create and edit the screening rules.

* Genesys Content Analyzer. This optional functionality uses natural-
language processing to analyze incoming interactions and assign them to
categories in a category tree. Content analysis uses models, which are
statistical representations of category trees. Models are produced by
training on a collection of pre-categorized e-mails. Knowledge Manager
controls the training process and displays information about models.

* FAQ. With Content Analyzer, you can convert your category structure and
standard responses into an FAQ list. You can either post the resulting FAQ
list as text on your web site, or use it as the source for an automatic
question-answering facility.

Genesys Content Analyzer

92

Models

Genesys Content Analyzer is an optional enhancement to Genesys E-mail,
requiring an additional license. It adds natural-language processing technology
to Genesys Knowledge Management.

Genesys Content Analyzer applies a classification model—a statistical
representation of a category tree—to an incoming e-mail and produces a list of

Genesys Multimedia 7.6 @

Chapter 8: Understanding and Using the FAQ Service FAQ Objects

the categories that the e-mail is most likely to belong to. Each likely category
is assigned a percentage rating, indicating the probability that the e-mail
belongs to this category.

Training Objects The process of creating a model is called ¢raining. Training operates on a
training object, which is a category tree plus a set of text objects. Each text
object is assigned to one category in the tree.

Import and Export You can import and export training objects and models.
Components Genesys Content Analyzer does not have components, as such. Rather, it adds
functionality to the components of Genesys Knowledge Management:

* Itactivates Training Server, which has no function in the basic
Genesys Knowledge Management, but is required for training models.

* It enables Classification Server to categorize incoming interactions, using
models.

* It enables Knowledge Manager to control the creation of training objects,
classification models, and FAQ objects.

FAQ Objects

From the FAQ object, you can produce a .j ar file, which can in turn be used to:

* Build a Web application that accepts written requests and, using content
analysis, returns a set of standard responses.

* Present the contents of the standard response library (or a selection from
those contents) as answers to frequently asked questions.

An FAQ object combines a category tree, a training object based on the tree, and
optionally, a model built from the training object. The model is required n
order to build a Web application.

Sample FAQ.jar File

The supplied, sample FAQ. jar file demonstrates how an FAQ object can present
a question/answer list.

Web API Client—Developer’s Guide 93

Chapter 8: Understanding and Using the FAQ Service Sample FAQ.jar File

94 Genesys Multimedia 7.6 @

S

N’

GENESYS

AN ALCATEL-LUCENT COMPANY

Chapter

Multimedia Simple Samples
for Java

This chapter examines Genesys Multimedia’s simple, web-based samples for
Java, and their code. (NET developers should instead see Chapter 10,
“Multimedia Simple Samples for .NET,” on page 169.) This chapter covers the
following topics:

- Overview, page 96

+ Shared Files, page 98

« Callback Sample, page 101

« Chat Sample, page 107

« Chat with Statistics Sample, page 117

« E-Mail Sample, page 120

« E-Mail with Attachment Sample, page 124

« E-Mail with Statistics Sample, page 132

« Co-Browse Samples Overview, page 137

« Co-Browse Sample, page 137

« Chat and Co-Browse Sample, page 143

« Co-Browse Meet Me, page 148

« Co-Browse Init Start Page, page 150

+ Co-Browse Dynamic Start Page, page 152

« FAQ, page 157

+ Open Media Sample, page 162

Web API Client—Developer’s Guide 95

Chapter 9: Multimedia Simple Samples for Java Overview

Overview

This chapter explains how to implement voice callback, chat, e-mail, web
collaboration, Open Media, and FAQ functions in your web application
through a review of the key functions in the respective samples. The samples
come with the Multimedia Interactive Management CD. See Chapter 2,
“About the Samples,” on page 51 for information on installing the samples.

Please note the following about the sample code presented and organized in
this chapter:

* The code is excerpted from the actual sample code, as the actual code is
too long to be displayed here.

* The excerpted code illustrates a point or calls attention to a particular
feature. You should refer to the actual code and to the Multimedia 7.6 Web
API Reference (Javadoc) for further information.

* Although this chapter reviews the different functions that the sample
performs, some of these functions and the excerpted code may not be
presented in the same order or layout as the sample.

Also note that Chapter 11 includes sections on customizing code. It identifies,
under the subheading “Customization Notes,” the areas in the Compound
Sample where you can modify your application. These sections may also be
helpful as you work with the Simple Samples.

Sample Overview

96

The Simple Samples discussed here are:

* Web-Based Voice Callback

* Web-Based Chat

* Web-Based Chat with Statistics

* Web-Based Chat and Co-Browse

* Web-Based E-mail

* Web-Based E-mail with Attachment

e Web-Based E-mail with Statistics

* Web-Based Open Media

* Web-Based Co-Browse

* Web-Based Co-Browse Dynamic Start Page
* Web-Based Co-Browse Initial Start Page
* Web-Based Co-Browse Meet Me

* Web-Based FAQ

Genesys Multimedia 7.6 @

Chapter 9: Multimedia Simple Samples for Java Overview

Web-Based Voice Callback

This sample demonstrates how to use the callback API (see “Callback™ on
page 28) to implement voice callback on a web form.

Web-Based Chat

This sample demonstrates how to use the chat API for the Flex Chat protocol
(see “Chat” on page 31) to implement a chat feature on a web form.

Web-Based Chat with Statistics

This sample demonstrates how to use the chat API for the Flex Chat protocol
(see “Chat” on page 31) and the statistics API (see “Statistics Packages” on
page 39) to implement a chat feature and present queue-related statistics on a
web form.

Web-Based E-Mail

This sample demonstrates how to use the e-mail API (see “E-Mail” on
page 35) to send e-mail using a web form.

Web-Based E-Mail with Attachment

This sample demonstrates how to use the e-mail API (see “E-Mail” on
page 35) to send an e-mail with an attachment via a web form.

Web-Based E-Mail with Statistics

This sample demonstrates how to use the e-mail API (see “E-Mail” on

page 35) to submit a web form to E-mail Server Java, and to use the statistics
API (see “Statistics Packages™ on page 39) to retrieve statistics about
interactions' queue length, distribution volume, and distribution time from Stat
Server.

Web-Based Co-Browse

This sample demonstrates how to use the Co-Browsing Server API to
implement co-browse on a web form.

Web-Based Chat and Co-Browse

This sample demonstrates how to use the chat API for the Flex Chat protocol
(see “Chat” on page 31) and the Co-Browsing Server API to implement a chat
feature with co-browse on a web form.

Web API Client—Developer’s Guide 97

Chapter 9: Multimedia Simple Samples for Java

Web-Based Co-Browse Dynamic Start Page

This sample demonstrates how to use the Co-Browsing Server API to
implement a dynamic start page for co-browse on a web form.

Web-Based Co-Browse Init Start Page

This sample demonstrates how to use the Co-Browsing Server API to
implement an initial start page for co-browse on a web form.

Web-Based Co-Browse Meet Me

This sample demonstrates how to use the Co-Browsing Server API to
implement the meet me feature for co-browse on a web form.

Web-Based FAQ

This sample demonstrates how to implement FAQ functionality on a web form.

Web-Based Open Media

This sample demonstrates how to use the Open Media API (see “Open Media”

on page 37) to submit and update an interaction using a web form.

Shared Files

98

The following files are used in the Java web samples. The subsections below

group these files into categories and explain them in detail.

* CommLib.js—see “Common JavaScript Functions” on page 99.
* Constants.js—see “Constants” on page 99.

* constants.jsp—see “Constants” on page 99.

* icc_start.jsp—see “Load Balancing” on page 100.

* icc_start_client.jsp—see “Load Balancing” on page 100.
* Security.jsp—see “Masking Text” on page 100.

* icc_style.css—see “Style Sheet” on page 101.

* index.html—see “Greetings Page” on page 100.

* arrow.gif—see “Graphics” on page 101.

* fon.gif—see “Graphics” on page 101.

* genesyslogo-trans.gif—see “Graphics” on page 101.

Genesys Multimedia 7.6 @

Shared Files

Chapter 9: Multimedia Simple Samples for Java

File Descriptions

Common JavaScript Functions

Shared Files

The CommLib.js file stores common functions that all the samples use. It

contains functions that:

* Identify a user’s web browser.

* Retrieve the handle to HTML frames or control objects.

e Perform basic string manipulation and encoding.

* Retrieve submitted form parameters and return the current time.

Constants

Two files contain constant values, Constants.js and constants.jsp. The client
uses the Constants. js file; the media servers use the constants. jsp file.

The Constants. js file contains values such as the virtual routing point for
e-mail and chat requests and the e-mail address for sending form requests.

The constants. jsp file (see Table 8 on page 99) contains values such as:

* An e-mail user’s first name, last name, phone number, and e-mail address.

¢ The timeframe window to call a user back.

* The media and routing information to use for a request.

* Load-balancing information.

¢ Chat-refresh timeout.

Table 8: Constant Values in constants.jsp

Variable Name

Default Value

Description

fldnPhoneNumber PhoneNumber User’s phone number

fldnFirstName FirstName User’s first name

fldnLastName LastName User’s last name

fldnEmailAddress EmailAddress User’s e-mail address

fldnFromAddress FromAddress E-mail’s from address

fldnStartTime StartTime Start time

fldnEndTime EndTime End time

fldnMedia Media The communication medium such as chat, callback, or

e-mail

Web API Client—Developer’s Guide

99

Chapter 9: Multimedia Simple Samples for Java

Table 8: Constant Values in constants.jsp (Continued)

Shared Files

Variable Name

Default Value

Description

fldnNow Now The current time
fldnRoutelnfo Routelnfo The routing point information
fldnSubject Subject The subject of an e-mail
fldnEmailBody EmailBody The body of an e-mail
fldnReplyFrom Mailbox The sender of an e-mail

app_root_url

(“/WebAPISamples761”)

The root directory of the Web API Samples

strTenant Tenant Name Value The name of the tenant

strEmailQueue Inbound queue The e-mail queue

strChatQueue Chat inbound queue The chat queue

strQueueKey “default” The queue key

strChatStatInterval «“ Chat statistics interval

strEmailStatInterval | “” E-mail statistics interval

chatRefreshTimeout | 10000 The frequency at which a chat session is refreshed
Load Balancing
The icc_start.jsp and icc_start_client.jsp files perform load balancing on
the server side.
Masking Text
The Security.jsp file contains a mask_html () method (with different
signatures) translates special characters like ", ', <, >, and & into HTML
abbreviations like ‘&1t;’, ‘8gt; ’, and ‘" .
Presentation
Greetings Page
The index.html file is the main or greeting page to access the web samples.
The file presents an HTML table menu with links to each of the samples.

100 Genesys Multimedia 7.6 @

Chapter 9: Multimedia Simple Samples for Java Callback Sample

Graphics

Arrow.gif, fon.gif, and genesyslogo-trans.gif are graphics files used in
index.html and various samples. Arrow.gif is a graphic of a forward
arrowhead. fon.gif is a graphic for background wallpaper design.
Genesyslogo-trans.gif contains the Genesys company logo.

Style Sheet

The cascading style sheet (CSS), icc_style.css, has instructions for adding the
bold font to header tags, adding tables, and other layout code. This guide does
not discuss CSS technologies. You should be able to easily find CSS tutorials
on the Web.

Callback Sample

Purpose

This section presents the purpose, functionality overview, and code
implementation for the Callback Sample.

The Callback Sample is a JSP file that shows how to:

¢ Connect to Universal Callback Server using the Callback API.
e Submit a callback request.

* Cancel a callback request.

* Get information about a request.

* View a list of the user’s callback requests.

Functionality Overview

Files

The following sections review the code used in implementing the different
callback functions:

¢ “Setting the Content Type and Character Encoding” on page 102
* “Loading Libraries and Importing Files” on page 102
* “Handling Content” on page 102

The .../Callback directory contains the Callback Sample. The sample consists
of a single file, Callback.jsp.

Web API Client—Developer’s Guide 101

Chapter 9: Multimedia Simple Samples for Java Callback Sample

Code Explanation

The following subsections explain the code in Cal Lback. j sp. They appear in
the same order as the code in the JSP. In some places, however, several lines of
code have been omitted in order to focus your attention on the most important
points. In these cases, the missing lines have been replaced with “...”.

Setting the Content Type and Character Encoding

The first line is a call to the response.setContentType () method. This sets the
content type or character encoding to use in the response to the client. The
code retrieves this value under the Options tab for the Universal Callback
Server Application object in Configuration Server:

{kresponse.setContentType ("text/html; charset=" + i18nsupport.GetCharSet()); %>

102

Loading Libraries and Importing Files
Then the sample code loads the following libraries into memory:

{%e page import="Genesys.webapi.system.loadbalancing.*" %>
{%e page import="Genesys.webapi.media.callback.direct.*" %>
{%e page import="Genesys.webapi.media.callback.protocol.*" %>
{%e page import="Genesys.webapi.media.common.*" %>

{%e page import="Genesys.webapi.utils.i18n.*" %>

{%e page import="Genesys.CfgLib.*" %)

The code needs to access other JSP files. It includes or imports the
constants.jsp and Security.jsp files:

<%e include file="../constants.jsp" %>
<%e include file="../Security.jsp" %>

Handling Content

Creating the HTML Header
Next the code writes some HTML header tags:

<html>
<head)
<{link rel="stylesheet" href="/WebAPISamples761/icc_style.css"
type="text/css">
{titledMCR 7.6.1 samples. Callback service</title>
{/head>
<body language="JavaScript" onload="return window_onload();
" background="/WebAPISamples761/fon.gif")

Genesys Multimedia 7.6 @

Chapter 9: Multimedia Simple Samples for Java Callback Sample

<h2 align="center")MCR 7.6.1 samples. Callback service.</h2)
{script language="JavaScript")

Retrieving Parameters

The Java code section retrieves the request parameters, such as the first and
last name of a customer, from the i 18nsupport.GetSubmitParametr () method
instead of the HTTPServ LetResponse.getParameter () method. This step is
necessary to support foreign languages. For more information, see
“International Language Support” on page 46.

<%
String action = i18nsupport.GetSubmitParametr (request, “cmd");
String first_name = i18nsupport.GetSubmitParametr(request, fldnFirstName);

Getting Load Balancer and Universal Callback Server Instance

This section of code creates a load balancer instance and returns an available
instance of Callback Server for each request. It may seem a bit odd to have this
step after the parameter retrieval step. This order occurs because the code
actually gets new load balancer and Callback Server instances for each request.
Hence, for every submission, the JSP gets the new objects.

Due to the simplicity of callback requests, which require only one pass to the
Callback Server, your code can disconnect from the load balancing servlet as
soon as it receives the new Callback Server instance:

// get callback server we are working with
String aliasCallback = i18nsupport.GetSubmitParametr (request, "aliasCallback");

String svcHost = null;
int svcPort = -1;

boolean form_shown = false;

// create load balancer instance

SvcDispatcher svcDispatcher = new SvcDispatcher();

// if callback server is not yet selected...

if(aliasCallback == null || aliasCallback.equals(""))

{

// ... select callback server
if(svcDispatcher == null || svcDispatcher.getErrorCode() 1= 0 ||
IsvcDispatcher.inqSrvcByType (CfgAppType.CFGUniversalCallbackServer, strTenant))
{

%>

<P align="center">We are sorry, callback service is unavailable at this time.
Please try again later.</P>

<
svcDispatcher = null;

Web API Client—Developer’s Guide 103

Chapter 9: Multimedia Simple Samples for Java Callback Sample

}
else
{
// remember server alias
aliasCallback = new String(svcDispatcher.getSrvcAlias());

}

}

else

{

// callback server has been already selected, we need to get the info by alias
if(svcDispatcher == null || svcDispatcher.getErrorCode() = 0 ||
IsvcDispatcher.inqSrvcByAlias(aliasCallback))

{

%

<P align="center")We are sorry, callback service is unavailable at this time.
Please try again later.</P)
<%
svcDispatcher = null;
}
}

if(svcDispatcher != null)

{
svcHost = new String(svcDispatcher.getSrvcHost().toLowerCase());
svcPort = svcDispatcher.getSrvcPort();

svcDispatcher = null; // free dispatcher

form_shown = true; // we are drawing the form
%

Constructing the HTML Body

Next, the code includes more HTML code to create input boxes and two types
of submit buttons, one for viewing a list of the user’s callback requests and the
other for sending a callback request:

<FORM id=frm_callback name="frm_callback" method="get"
action="Callback.jsp?aliasCallback=<%=mask_html(aliasCalLlback)%>">
{table border="1")
trd
{td colspan=6)Please enter your personal information:<{/td>
{td colspan="6" align="center")
C{INPUT TYPE="submit" NAME="cmd" VALUE="View List" onclick="return
on_view_Llist(); " >
C{INPUT TYPE="submit" NAME="cmd" VALUE=
"Request callback" language="JavaScript"
onclick="return on_request(); " >
{INPUT TYPE="reset" VALUE="Clear form")
/td>

104 Genesys Multimedia 7.6 @

Chapter 9: Multimedia Simple Samples for Java Callback Sample

/tr)
{/table)

<input type="hidden" id=<%=mask_html(fldnStartTime)
%> name="<%=mask_htmL (fLdnStartTime)%>">

<input type="hidden" id=<%=mask_html (fLldnEndTime)
%> name="<%=mask_html (f LdnEndTime)%>")

<{/FORM>

The Java code next, in the try-catch block, attempts to get a handle to the
Callback Server. If it is unsuccessful, the _callback_direct class returns an
error message:
<%
if(action != null &8 laction.equals(""))
{
_callback_direct callback = null;
try
{
callback = new _callback_direct(svcHost, svcPort);
}
catch(_communication_exception ex)
{
%y

{p align="center")We are sorry, callback service is unavailable at this time.
Please try again later. </P>
<%
out.write(ex.toString());

action = ""; // no more actions

Tracking States The JSP checks its own state after a submission, because the JSP calls itself in
and Submission response to the user events. This occurs in several places in Callback.jsp. By

way of example, here is what happens when a user requests a callback:

Note: The sample JSP keeps track of its own state based on user interaction.

if(action.equals("Request callback"))

{
_kvlist userdata = new _kvlist();
userdata.addElement (new _kvitem(fldnFirstName, first_name));
userdata.addElement (new _kvitem(fldnLastName, last_name));
userdata.addElement (new _kvitem(fldnEmailAddress, email_address));
userdata.addElement (new _kvitem(fldnRouteInfo, "default"));
if (media.equals("voice"))
userdata.addElement (new _kvitem("MediaType", "WebCall"));// just an example
else

Web API Client—Developer’s Guide

105

Chapter 9: Multimedia Simple Samples for Java Callback Sample

userdata.addE Lement (new _kvitem("MediaType", "WebCallIP"));// just an example
int rc;
if(now.equals("Immediate"))
{
// immediate callback, no times required
rc = callback.request(phone_number, media, userdata);

}
else
{
// scheduled callback
rc = callback.request(phone_number, media, request.getParameter(fldnStartTime),
request.getParameter (f LdnEndTime), userdata);
}
if(_callback_direct.__rc_ok == rc)
{
%>

<{p>Callback request has been successfully submitted.

Request identifier: <%=mask_html(callback.reqid())%><X/p>
<%
}

else

{

%>
{p>Failed to submit callback request. Reason:
<{%=mask_html (cal lback. lasterror())%></p>

<

}

// show List of callback requests with new request
action = "View List";

)

Handling User The following JavaScript functions handle user events:

Events ConvertTime (UTCtime)—Converts the specified UTC time to the equivalent

local date and time.

* window_onload()—Called every time the page is loaded. This function
currently sets the form’s default callback time to the time the page was
loaded, but you may also modify it to execute any other tasks that should
be carried out whenever the page is loaded.

e on_view_Llist()—Triggered by the View List Submit action. Returns false
if the user has not entered a contact number, thus preventing the
submission of the form.

* on_request()—Triggered by the Request Callback Submit action. Returns
false if the user has not entered a contact number, thus preventing the
submission of the form. Otherwise, it generates a start and end date for the
callback request.

106 Genesys Multimedia 7.6 @

Chapter 9: Multimedia Simple Samples for Java Chat Sample

* GetUTCTime(date)—Converts the specified date to the equivalent UTC
time.

* double_digit(vValue)—Ensures that the Value passed to the function
contains two digits.

* setSelection(objControl, Value)—Sets the selected value of a document
field (0bjControl) to Value.

* getSelectedOption(opt)—Takes a collection of options for a field and
returns the option that has been selected by the user.

e on_reset()—Resets the form to its default values.

Chat Sample

The .../WebAPISamp Lles761 directory contains files for the Chat (also known as
web-based chat), the Chat with Statistics, and the Chat and Co-Browse
Samples.

This section outlines the Chat Sample’s purpose, functionality, code
implementation, and customization options.

Purpose

The Chat Sample demonstrates how to add a simple chat feature to any web
form that supports Java libraries.

Functionality Overview

The following sections review the code used in implementing the different chat
functions:

* “Setting the Content Type and Character Encoding” on page 111
* “Loading the Required Libraries and Files” on page 111

¢ “Connecting to Chat Server” on page 111

¢ “Creating a Chat Session” on page 112

¢ “Handling Content” on page 113

* “Tracking State” on page 116

* “Closing the Connection” on page 117

Files

The .../Chat directory contains the HTML Chat Sample. The sample consists
of three files:

* HtmlChatCommand.jsp—A file that contains most of the chat logic.

Web API Client—Developer’s Guide 107

Chapter 9: Multimedia Simple Samples for Java Chat Sample

* HtmlChatFrameSet.jsp—A frameset that holds the HtmLChatCommand.jsp
and HtmlChatPanel.jsp files.

* HtmlChatPanel.jsp—A file that contains the code to create a chat panel
with input boxes for entering the chat message. All data is sent to the
parent form.

Code Explanation

The Chat Sample separates user interface and logic components. The
subsections below explain the specific functions and the code for each of these
components.

User Interface Implementation

The interface code demonstrates how to present form controls such as panels,
input boxes, buttons, and so on. The code resides in the HtmLChatPanel . j sp file.
The code is divided into these functions:

* “Setting the Content Type and Character Encoding”
* “Loading the Required Libraries and Files”
* “Handling Content”

Setting the Content Type and Character Encoding

First, the sample JSP sets the content type and character encoding:

{kresponse.setContentType ("text/html; charset=" + i18nsupport.GetCharSet()); %>

108

Loading the Required Libraries and Files

The JSP then loads the following library into memory:

{%e page import="Genesys.webapi.utils.i18n.*" %>

The code needs access to other common features like constants and security
checks, which are contained in these files:

<%e include file="../constants.jsp" %>
<%e include file="../Security.jsp" %>
Handling Content

This section covers these topics:
e “Writing HTML Headers”
* “Importing JavaScript Functions and Constants”

* “Handling User Events”

Genesys Multimedia 7.6 @

Chapter 9: Multimedia Simple Samples for Java Chat Sample

Writing HTML <html)
Headers <head)
<link rel="stylesheet" href="/WebAPISamples761/icc_style.css"
type="text/css">
{title>Compound sample 7.6.1 Chat service<{/title)
{/head>

Importing The code uses the common JavaScript functions and constants:
JavaScript

Functions and (SCRIPT LANGUAGE=javascript
Constants gpc="/WebAPISamples761/CommLib.js" ></SCRIPT)
{SCRIPT LANGUAGE=javascript
SRC="/WebAPISamples761/Constants.jsp" ></SCRIPT)

Handling User The HtmlChatPanel.jsp file’s body begins with a call to this function:

Events , ndow_onload ()—Sets the logic when the window is first loaded into

memory.

The HtmLChatCommand. j sp file resides in the frame named itf. You can invoke
these functions from that frame:

e on_connect ()—Calls the on_connect () function in the page residing in the
itf frame.

* on_disconnect ()—Calls the on_disconnect () function in the page residing
in the itf frame.

* on_send()—Calls the on_send () function in the page residing in the itf
frame. Also prevents new requests from being sent to Chat Server until the
response from the previous request has arrived.

* on_refresh()—Calls the on_refresh () function on the page residing in the
itf frame.

e CommandFrameReady ()—Boolean flag for making the frame ready to accept
a command.

* AddMessage ()—Appends new text to the chat transcript.
* show_message ()—Displays the latest chat transcript.
* SetSessionID()—Returns the session ID.

* message_onkeypress ()—The event processor for "user is typing"
notification. It sends a notification when the user starts typing into
"message" field.

{INPUT onkeypress="javascript:message_onkeypress();" TYPE="String"

size="60" id="message" NAME="message"></td>

These HtmlChatPanel.jsp functions currently have no implementation:

* window_onunload()

* clear_transcript()

* doNothing()

* disconnected()

* connected()

Web API Client—Developer’s Guide 109

Chapter 9: Multimedia Simple Samples for Java Chat Sample

110

Finally, the HTML code creates input boxes for users to fill in their personal
information and their message. The code also creates submit buttons so users
can send their new chat messages:

<FORM name="chat_form" id=chat_form onSubmit="javascript:on_send();
return false; ">
{table border="1"»
<trd
{td colspan=6>Personal information:</td>
/tr>
<tr)
{td)First name:</td)
{td><INPUT TYPE="String"
NAME="<%=mask_htmLl (f LdnF irstName) %>" ></td>
<{td>Last name:</td>
{td>}<INPUT TYPE="String"
NAME="<%=mask_htmL (f LdnLastName) %>" ></td>
{td>E-mail address:</td>
{td><INPUT TYPE="String"
NAME="<%=mask_htmLl (f LdnEmai LAddress) %>" ></td>
/tr>
<t
{td colspan=6 align="center")
Start chat<{/a)

Stop chat
/td>
/tr>
{tr)
{td colspan=6)
{textarea cols="80" rows="10" id="transcript"
NAME="transcript">{/textarea>
/td>
/tr>
{tr)
{td>Message:</td)
{td colspan="2">
<input onkeypress= "javascript:message_onkeypress();"
type="text"name="message" size="60"/>
/td>
(td>
{input type="submit" id="send" value="Send" name="send"/)
/td>
/). ..
<{/body>
{/html>

Genesys Multimedia 7.6 @

Chapter 9: Multimedia Simple Samples for Java Chat Sample

Logic Implementation

The HtmLChatCommand. j sp contains the main logic for the Chat Sample’s
functionality. The subsections below explain the code in the file.

Setting the Content Type and Character Encoding

The first line in the sample is a call to the response.setContentType () method.
This sets the content type or character encoding to use in the response to the
client. The code retrieves this value under the Options tab for the Chat Server
Application object in Configuration Server:

{%response.setContentType ("text/html; charset=" + i18nsupport.GetCharSet()); %>

Loading the Required Libraries and Files

The sample code then loads the following libraries into memory:

{%e page import="Genesys.webapi.system.loadbalancing.*" %)
{%e page import="Genesys.webapi.media.chat.direct.*" %)
{%e page import="Genesys.webapi.media.chat.protocol.*" %
{%e page import="Genesys.webapi.media.common.*" %>

{%e page import="Genesys.webapi.utils.i18n.*" 7>

{%e page import="Genesys.CfgLib.*" %)

The code also needs access to other JSP files. Here, it includes the
constants.jsp and Security.jsp files:

<%e include file="../constants.jsp" %>
<%e include file="../Security.jsp" %>

Connecting to Chat Server

Chat Server works differently from E-mail Server Java, whose behavior is
described in “E-Mail Sample” on page 120. The key difference is that

Chat Server must maintain a live connection between users. (In e-mail, users
fill out a form. Once they submit the form, the transaction is over. Chat Server,
however, must maintain each user’s identity until one party ends the session.)

The following HtmLChatCommand. j sp code snippet shows what happens after the
sample code has created an instance of SvcDispatcher—the load-balancing
servlet—and has tried to connect to a Chat Server. At this point, the JSP file
checks the user-name values. If those values are not available, the connection
cannot continue:

if(cmd.equals("connect")) {
if(first_name.equals("") || last_name.equals("")){
itf_response "USERNAMEREQUIRED";
itf_message "Please enter first and last names.";

Web API Client—Developer’s Guide 111

Chapter 9: Multimedia Simple Samples for Java Chat Sample

Likewise, if the load-balancing servlet cannot return an available Chat Server,
the sample code informs the user:

if(svcDispatcher == null || svcDispatcher.getErrorCode() != 0
|| 'svcDispatcher.ingSrvcByType (CfgAppType.CFGChatServer,
strTenant)) {
itf_response = "NOSERVICE";
itf_message = "Chat service is unavailable at this time, please
try again later.";

If the load balancer finds a Chat Server, the code returns an alias to that
Chat Server, then tries to connect and log the user in:

// we have a chat server at this point
chat_alias = svcDispatcher.getSrvcAlias();
try(
_chat_direct chat =
new _chat_direct(svcDispatcher.getSrvcHost(),
svcDispatcher.getSrvcPort());
_kvlist userdata = new _kvlist();
userdata.addElement (new _kvitem(fldnFirstName, first_name));
userdata.addElement (new _kvitem(fldnLastName, last_name));
userdata.addElement (new _kvitem(fldnEmailAddress,
email_address));

userdata.addElement (new _kvitem(fLldnVRP, vrp));
String strNickName = "";
if (last_name != null && last_name.length() > 0)
strNickName = first_name + last_name.charAt(0);
else
strNickName = first_name;

int rc = chat.login(strNickName, userdata, timeZoneOffset);

If Chat Server responds with an ok status, the code displays a welcome
message. Otherwise, it displays an error message:

if(_chat_direct.__rc_ok == rc){
if(chat.user_id() != null && chat.secure_key() != null){

secure_key = chat.secure_key();
user_id = chat.user_id();
itf_response = "CONNECTED";

itf_message = "Welcome to Genesys chat!";

Creating a Chat Session

Next, the code calls the join () method in an attempt to create a chat session. If
Chat Server returns an ok status, the user joins the new session successfully.
Otherwise, the JSP returns an error description received from Chat Server:

112 Genesys Multimedia 7.6 @

Chapter 9: Multimedia Simple Samples for Java Chat Sample

rc = chat.join(user_id, secure_key, "", "Some Subject");
if(_chat_direct.__rc_ok == rc && chat.user_id() != null &
chat.secure_key() != null && chat.transcript() != null){
clear_transcript = true;
transcript = chat.transcript();
script_pos = chat.script_pos();
itf_response = "CONNECTED";

Yelse(
itf_response = "DISCONNECTED";
if(chat.errdesc() != null)
itf_message = chat.errdesc();
else
itf_message = "Could not create a chat session.";
}

Handling Content

This section covers these topics:
* “Loading Parameters”

* “Handling User Requests”

* “Masking Data”

* “Processing Server Events”

* “Handling User Events”

Loading The HtmlChatCommand.jsp code loads the hidden parameters on each JSP
Parameters refresh. On the initial JSP launch, the hidden parameters have no values. After
the initial launch, the server returns values and they are stored in the hidden
parameters. See the topic “Tracking State” on page 116 for more information:

{script language="JavaScript")
<%
// server side processing
String cmd = i18nsupport.GetSubmitParametr (request, "“cmd");

String chat_alias = i18nsupport.GetSubmitParametr (request, “chat_alias");

if(chat_alias == null) chat_alias = ;

String first_name = i18nsupport.GetSubmitParametr (request, "first_name");

if(first_name == null) first_name = "

String last_name = i18nsupport.GetSubmitParametr(request, "last_name");

if(last_name == null) Llast_name = ";
String email_address = i18nsupport.GetSubmitParametr(request,
"email_address");

if(email_address == null) email_address = ;

// We maintain secureKey and userlId
String secure_key = i18nsupport.GetSubmitParametr (request, “secure_key");

Web API Client—Developer’s Guide 113

Chapter 9: Multimedia Simple Samples for Java Chat Sample

if(secure_key == null) secure_key = "";

String user_id = i18nsupport.GetSubmitParametr (request, "user_id");

|'F(USGP_id == null) USer‘_id - ||||;

String session_id = i18nsupport.GetSubmitParametr (request, "session_id");
if(session_id == null) session_id = "";

String timeZoneOffset = i18nsupport.GetSubmitParametr (request,
"timeZoneOffset");
if(timeZoneOffset == null) timeZoneOffset = "";

String script_pos = i18nsupport.GetSubmitParametr (request, "script_pos");
if(script_pos == null) script_pos = "1"

String msg2send = i18nsupport.GetSubmitParametr (request, "msg2send");

if(msg2send == null) msg2send = ";

The cmd variable reflects the action or button that the user clicked. If the user
clicked the Connect button, the code attempts to get a handle to the load
balancer:

if(ecmd != null) {
String svcHost = null;
int svcPort = -1;

if (svcDispatcher == null)
svcDispatcher = new SvcDispatcher();

Handling User This section reflects what the JSP does if the user is not requesting a
Requests connection to Chat Server. The possible requests are to disconnect from the
server, or to send a chat message. The code reacts differently to each request:

} else if(!chat_alias.equals("")){
try {
if(svcDispatcher.ingSrvcByAlias(chat_alias)) {
_chat_direct chat =
new _chat_direct(svcDispatcher.getSrvcHost(),
svcDispatcher.getSrvcPort());

if(cmd.equals("disconnect”)) {
chat. logout(user_id, secure_key);
itf_response "DISCONNECTED";
itf_message "Chat was finished";

}

if(cmd.equals("send")){

)

114 Genesys Multimedia 7.6 @

Chapter 9: Multimedia Simple Samples for Java Chat Sample

The send and user_typing commands are similar except for the last parameter
passed by user_typing. The value of the last parameter should be
_chat_packet.__attrv_treat_as_systenm, this will ensure that the message is
not displayed to the client’s side.

Masking Data The MaskSymbols () method filters out any characters deemed unacceptable by
the servers:

public String MaskSymbols (String strln){

String strOut = "7

int i;
int iLen;
char ch;

if (strIn != null){
iLen = strlIn.Llength();
for (i=0; i < iLen; i++){
ch = strin.charAt(i);
if (ch =="'\r")
strout += "\\r";
else if (ch == '\n")

)

return strOut;

Processing Server When the sample receives a server event, the code calls the event_type ()
Events method to check the current status of the chat packet. In the following code
snippet, the code checks for connection, abandonment, and message flags:

if (event.event_type().equals(
_chat_packet.__attrv_event_type_connect)) {

text2append = text2append + "New party ('" + event.user_nick() +
"') has joined the session";

Yelse if (event.event_type().equals(
_chat_packet.__attrv_event_type_message)) {
if (event.event_body() != null)
text2append = text2append + event.user_nick() + ": " +
event.event_body();
else
text2append = text2append + event.event_body() + ":";
} else if (event.event_type().equals(
_chat_packet.__attrv_event_type_abandon)) {

text2append = text2append + "Party ('" + event.user_nick() +

"') has left the session. Reason: " +
event.event_body();

Web API Client—Developer’s Guide 115

Chapter 9: Multimedia Simple Samples for Java Chat Sample

116

Handling User
Events

Five JavaScript functions handle user events:

* window_onload ()—calls either the connected() or disconnected() methods
in the main form, depending on the value of the itf_response variable.

* on_connect ()—sets the cmd variable to connect, sets the necessary data to
connect to Chat Server, and calls the HTML form submit () function.

e on_disconnect ()—sets the cmd variable to disconnect and calls the HTML
form submit () function.

* on_send()—sets the cmd variable to send, sets the message to send with the
value from the strMessage argument, and then calls the HTML form
submit () function.

* on_refresh()—sets the cmd variable to send and calls the HTML form
submit () function.

* on_user_typing ()—displays a system message on the agent’s desktop, but
does not display on the user's screen.

Tracking State
The sample has many hidden variables to help track the state of the JSP file:

{form method="post" action="HtmlChatCommand.jsp">
<input type="hidden" id="cmd" name="cmd")

<input type="hidden" id="chat_alias" name="chat_alias"
value="<%=mask_html (chat_alias)%>")

<input type="hidden" id="first_name" name="first_name"
value="<%=mask_htmL (first_name)%>">

<input type="hidden" id="last_name" name="last_name"
value="<%=mask_html (last_name)%>">

<input type="hidden" id="email_address" name="email_address"
value="<%=mask_html (emai l_address)%>">

<input type="hidden" id="msg2send" name="msg2send")
<input type="hidden" id="secure_key" name="secure_key"
value="<%=mask_html (secure_key)%>">

<input type="hidden" id="user_id" name="user_id"
value="<%=mask_html (user_id)%>">

<input type="hidden" id="script_pos" name="script_pos"
value="<%=mask_html (script_pos)%>">

<input type="hidden" id="session_id" name="session_id"
value="<%=mask_html (session_id)%>">

<input type="hidden" id="timeZoneOffset" name="timeZoneOffset"
value="<%=mask_html (timeZone0ffset) %>">

Some of these hidden variables are straightforward. Others require some
explanation:

* chat_alias is the name of the Chat Server.
* secure_key is a security measure for data transmission.

* script_pos refers to the position of a transcript character.

Genesys Multimedia 7.6 @

Chapter 9: Multimedia Simple Samples for Java Chat with Statistics Sample

Closing the Connection

When the user is ready to submit the form, your client application must close
the connection to the Chat Server and must reset the service dispatcher to nulL.
Otherwise, there will be orphan connections to the server that do not relinquish
their resources (principally network resources, like sockets, and memory):

if(chat = null){
chat.close();
chat = null;

)

In addition, before ending a chat by logging out of Chat Server, your client
application’s code must ensure that the application waits to receive a reply
from Chat Server to the browser’s Connect request. Otherwise, the logged-out
client will leave behind a pending interaction that Genesys Desktop will be
unable to delete.

Chat with Statistics Sample

This section presents the purpose, functionality overview, files, and code
explanation for the Chat with Statistics Sample.

Note: The difference between this sample and the Chat Sample is the
additional statistics feature. Therefore, this section discusses only the
statistics portions of the sample code. For shared code that provides the
chat features for both samples, see “Code Explanation” on page 108.

Purpose

The sample demonstrates how to add the following to a web form that supports
Java libraries:

* A simple chat feature

* A statistics feature that displays data such as queue position and estimated
wait time

Functionality Overview

The following sections review the implementation of the statistics functions:
e “Setting the Content Type and Character Encoding” on page 118

* “Loading the Required Libraries and Files” on page 118

* “Connecting to Stat Server” on page 119

e “Getting the Statistics” on page 119

Web API Client—Developer’s Guide 117

Chapter 9: Multimedia Simple Samples for Java Chat with Statistics Sample

Files

The .../ChatWithStatistic directory represents the HTML Chat with Statistics
Sample. The sample consists of five files:

* blank.jsp—A file used as a placeholder
* ChatStatInfo.jsp—A file that requests statistics using the statistics API
* HtmlChatCommand.jsp—A file that contains most of the chat logic

* HtmlChatFrameSet.jsp—A frameset that holds the HTMLChatCommand. j sp
and HTMLChatPanel.jsp files

* HtmlChatPanel.jsp—A file that contains the code to create a chat panel

Code Explanation

The ChatStatInfo.jsp file contains the main logic for the sample’s statistics
functionality. The rest of this section explains only the code from that file.
Note that blank. jsp is only a placeholder. The code is explained in these
subsections:

¢ “Setting the Content Type and Character Encoding”
* “Loading the Required Libraries and Files”

* “Connecting to Stat Server”

* “Getting the Statistics”

Setting the Content Type and Character Encoding

The first line in the sample is a call to the response.setContentType () method.
This sets the content type or character encoding to use in the response to the
client. The code retrieves this value under the Options tab for the Chat Server
Application object in Configuration Server:

{kresponse.setContentType ("text/html; charset=" + i18nsupport.GetCharSet()); %>

118

Loading the Required Libraries and Files

The sample then loads the following libraries into memory:

{%e page import="Genesys.webapi.system.loadbalancing.*"%>
{%e page import="Genesys.webapi.media.common.*"%)

{%e page import="Genesys.webapi.stat.direct.*"%>

{%e page import="Genesys.webapi.stat.protocol.*"%>

{%e page import="Genesys.webapi.utils.i18n.*"%>

{%e page import="Genesys.CfgLib.*"%)

Genesys Multimedia 7.6 @

Chapter 9: Multimedia Simple Samples for Java Chat with Statistics Sample

The code needs access to other JSP files. Here it includes constants. jsp:
<%e include file="../constants.jsp" %>

Connecting to Stat Server

The code loads and retrieves these parameters from the HTTPServLetRequest on
each JSP refresh:

String strAction = request.getParameter("action");
if(strAction == null) strAction = "";

’

String strdsWindow = request.getParameter ("jswindow");
if(strdsWindow == null || @ == strdsWindow. length()) strdsWindow = "parent.";

Next, the code checks its instance of SvcDispatcher—the load-balancing

servlet. If the load balancer finds a Stat Server and is able to connect to it, then
the JSP can proceed:

if (svcDispatcher != null && svcDispatcher.getErrorCode() == 0 3&
svcDispatcher.inqSrvcByType (CfgAppType.CFGStatServer, strTenant))
{

svcHost = new String(svcDispatcher.getSrvcHost().toLowerCase());
svcPort = svcDispatcher.getSrvcPort();

Getting the Statistics

If the requested action is getQueueStat, the JSP tries to retrieve the chat queue
length, the total distribution time, and the total number of distributed chat

sessions. The JSP then uses the total distribution time and the total distributed
sessions to calculate the estimated wait time:

if (strAction.equals ("getQueueStat"))
{

try
{

iQueueLength = Integer.parselnt(SD.getQueuveStat(svcHost, svcPort,
strTenant, strChatQueue, stat_direct._stat_chat_queuve_length,
strChatStatInterval));

iTotalDistributionTime = Integer.parselnt(SD.getQueueStat(svcHost,
svcPort, strTenant, strChatQueue,
stat_direct._stat_chat_total_distribution_time,
strChatStatInterval));

iTotalDestributed = Integer.parselnt(SD.getQueueStat
(svcHost, svcPort, strTenant, strChatQueue,
stat_direct._stat_chat_total_destributed, strChatStatInterval));

if (iTotalDestributed != 0)

iEWT = iTotalDistributionTime/iTotalDestributed;

Web API Client—Developer’s Guide 119

Chapter 9: Multimedia Simple Samples for Java E-Mail Sample

If an exception occurs, it is printed to a log file, and the JSP invokes some
error-handling routines:

catch (Exception e)

{
System.out.println (e.toString());
bError = true;
strError = e.toString();
%>
{scripty
{%=strdsWindow%>OnError ("<%=strError%>");
{/scripty
<%
}
}
if (bError == false)
{
%>
{script>
{%=strdsWindow%>0nQueueStatInfo ("<%=iQueuelLength%>",
"<%=ConvertSecondsToString (i EWT)%>");
{/script>
<%
}
}
%>

E-Mail Sample

Purpose

120

This section presents the purpose, functionality overview, and code
implementation for the E-mail Sample.

The E-mail Sample code demonstrates how a user can send an e-mail request
via a web form. The thing that sets this sample apart from an ordinary or
external e-mail is that the web form e-mail goes through E-mail Server Java,
which routes the e-mail to the appropriate agent using Genesys Universal
Routing Server.

The sample is a JSP file that shows how to:

* Connect to E-mail Server Java using the E-mail API.
¢ Submit an e-mail request to E-mail Server Java.

* Report any possible errors in the sample.

* Disconnect from E-mail Server Java.

e Gather submitted information.

Genesys Multimedia 7.6 @

Chapter 9: Multimedia Simple Samples for Java E-Mail Sample

¢ Communicate with the load-balancing service.
* Communicate with E-mail Server Java.

* Generate HTML responses and JavaScript code based on responses from
E-mail Server Java.

* Mask all potentially dangerous server-side data or symbols such as <, >, ",

and '.

Functionality Overview

The following sections review the code used in implementing the different
e-mail functions:

* “Setting the Content Type and Character Encoding” on page 121
* “Loading Libraries and Importing Files” on page 121
¢ “Handling Content” on page 122

¢ “Closing the Connection” on page 124

Files

The .../Emai L directory contains the E-mail Sample. The sample consists of a
single file, Email.jsp.

Code Explanation

The following subsections explain the code in Emai L. jsp.

Setting the Content Type and Character Encoding

The first line is a call to the response.setContentType () method. This sets the
content type or character encoding to use in the response to the client. The
code retrieves this value under the Options tab for the E-mail Server Java
Application object in Configuration Server:

{%response.setContentType (Ch. 9: UNIX; chg. "resource" warnings on pgs. 110, 117, 123
to match 170. charset=" + i18nsupport.GetCharSet()); %>

Loading Libraries and Importing Files

Then, the sample code loads the following libraries into memory:

{%e page import="Genesys.webapi.system.loadbalancing.*"%)
{%e page import="Genesys.webapi.media.irs.direct.*"%)

{%e page import="Genesys.webapi.media.irs.protocol.*"%)
{%e page import="Genesys.webapi.media.common.*"%>

{%e page import="Genesys.webapi.utils.i18n.*"%>

{%e page import="Genesys.CfgLib.*"%)

{%e page import="java.net.URLEncoder.*"%>

Web API Client—Developer’s Guide 121

Chapter 9: Multimedia Simple Samples for Java E-Mail Sample

The code needs to access other JSP files. It includes or imports the
constants.jsp and Security.jsp files:

<%e include file="../constants.jsp" %>
<%e include file="../Security.jsp" %>

Handling Content

Creating the Next the code writes some HTML header tags:
HTML Header

<htmL>

<head>

<link rel="stylesheet" href="/WebAPISamples761/icc_style.css" type="text/css")

<title>MCR 7.6.1 samples. E-mail over the Web sample</title>

{/head>

<body LANGUAGE="javascript" onload="window_onload();" onunload="window_onunload();"
background="/WebAPISamples761/fon.gif">

{SCRIPT LANGUAGE=javascript SRC="/WebAPISamples761/CommLib.js">{/SCRIPT)

<H2>MCR 7.6.1 samples. E-mail over the Web sample</H2)

Retrieving This Java code section retrieves the request parameters, such as the first and
Parameters ast name of a customer, from the i 18nsupport.GetSubmitParametr () method
instead of the HTTPServ LetResponse.getParameter () method. This step is
necessary to support foreign languages. For more information on language
support, see “International Language Support” on page 46:

<%
String action = i18nsupport.GetSubmitParametr (request, “action");
String first_name = i18nsupport.GetSubmitParametr(request, fldnFirstName);

Getting Load This section of code creates a load balancer instance and returns an available
Balancer and instance of E-mail Server Java for each request. It may seem a bit odd to have
E-Mail Server Java thjs step after the parameter retrieval step. This order occurs because the code
Instance actually gets new load balancer and E-mail Server Java instances for each
request. Hence, for every submission, the JSP gets the new objects:

SvcDispatcher svcDispatcher = new SvcDispatcher();
if(svcDispatcher != null && svcDispatcher.getErrorCode() ==
88 svcDispatcher.ingSrvcByTypel(
CfgAppType.CFGEmai LServer, strTenant)) {

String svcHost = new
String(svcDispatcher.getSrvcHost () .toLowerCase());
int svcPort = svcDispatcher.getSrvcPort();
%>

122 Genesys Multimedia 7.6 @

Chapter 9: Multimedia Simple Samples for Java E-Mail Sample

Constructing the Next, the code includes more HTML code to create input boxes:
HTML Body

<FORM id=frm_irs name="frm_irs" method="post" action="Email.jsp"
onSubmit="JavaScript:return Submit_onClick (1);">
{table border="1")
{tr)
<{td colspan=6>Please enter the interaction information:<{/td>
/tr)
{/table)

</FORM>

The Java code’s try-catch block now attempts to get a handle to E-mail Server
Java. If it does not succeed, the _irs_direct class returns an error message:

<%
if(action != null &8 laction.equals("")){
_irs_direct irs = null;
try {
irs = new _irs_direct(svcHost, svcPort);
Ycatch(_communication_exception cex) {

%>
We are sorry, E-mail Server is temporary down,
please try again later.<br)
<%
out.write(cex.toString());
action = ""; // no more actions
}

Tracking States The following Java code checks the state of the JSP file after a submission
and Submission because the JSP calls itself in response to the user events. Unlike in HTML, the
JSP file must be submitted back to the server to get changes even if the user is
not really ready to submit the form. Hence, the JSP submit is not the same as
an HTML submit. The Sun Microsystems website has tutorials that explain
how JSPs work:

Note: The sample JSP keeps track of the state of the file based on user
interaction.

if(action.equals("Submit")){
// submit the new interaction to E-mail server

)

Handling User Four JavaScript functions handle user events:

Events . indow_onload()—sets the request ID for this form. If the document is not

undefined, it sets the form ID value to the request ID value.

* window_onunload()—has no code. It is an empty function.

Web API Client—Developer’s Guide 123

Chapter 9: Multimedia Simple Samples for Java E-Mail with Attachment Sample

* Submit_onClick()—sets the action flag to Submit. Because this is a real
submission from the user and not a JSP workaround, the function must
verify that the e-mail address and sender data are in an acceptable format.
If the function finds invalid characters, it presents a dialog box and
requests that the user correct the problem. Once the data is acceptable, the
function calls the HTML form submit.

e Reset_onClick()—calls the form’s reset () method to clear out all the data
entered.

Closing the Connection

When the user is ready to submit the form, the connection to E-mail Server
Java must be closed and the service dispatcher must be reset to nul L.
Otherwise, you will have orphan connections to the server that do not
relinquish resources, principally network resources (like sockets) and memory.

if(irs != null){

irs.close();
irs = null;
}
}...
svcDispatcher = null; // free dispatcher
%y

E-Mail with Attachment Sample

Purpose

Files

124

This section presents the purpose, functionality overview, and code
implementation for the E-mail with Attachment Sample.

The E-mail with Attachment Sample code demonstrates how a user can send
an e-mail with an attachment via a web form.

The .../Emai LWithAttachment directory contains the E-mail with Attachment
Sample. The sample consists of a single file, Emai L. j sp.

Genesys Multimedia 7.6 @

Chapter 9: Multimedia Simple Samples for Java E-Mail with Attachment Sample

Code Explanation

The following subsections explain the code in Emai L. jsp.

Setting the Content Type and Character Encoding
The first line in the Emai L. jsp file sets the page content type:

{%e page contentType = "text/html; charset="windows-1252" %>

The second line is a call to the response.setContentType () method. This sets
the content type or character encoding to use in the response to the client:

{kresponse.setContentType("text/html; charset=" +
i 18nsupport.GetCharSet()); %>

Loading Libraries and Importing Files
Then, the sample code loads the following libraries into memory:

{%e page import="java.io.*"%>

{%e page import="java.util.*"%>

{%e page import="org.apache.commons.fileupload.*"%)

{%e page import="org.apache.commons.fileupload.disk.*"%)
{%e page import="org.apache.commons.fileupload.portlet.*"%)
{%e page import="org.apache.commons.fileupload.servlet.*"%>
{%e page import="org.apache.commons.io.*"%>

{%e page import="Genesys.webapi.system.loadbalancing.*"%>
{%e page import="Genesys.webapi.media.irs.direct.*"%)

{%e page import="Genesys.webapi.media.irs.protocol.*"%>

{%e page import="Genesys.webapi.media.common.*"%)

{%e page import="Genesys.webapi.utils.i18n.*"%>

{%e page import="Genesys.CfgLib.*"%)

{%e page import="java.net.URLEncoder.*"%>

Note: commons-fileuplaod-1.1.jar and commons-io-1.2.jar are used to help
handle attachments. You can download these two Java libraries from
the Apache website.

The code needs to access other JSP files. It includes or imports the
constants.jsp and Security.jsp files:

<%e include file="../constants.jsp" %>
<%e include file="../Security.jsp" %>

Web API Client—Developer’s Guide 125

Chapter 9: Multimedia Simple Samples for Java E-Mail with Attachment Sample

126

Handling Content

Creating the HTML Header

Next, the code writes some HTML header tags:

<html)

<head)

<link rel="stylesheet" href="/WebAPISamples761/icc_style.css"
type="text/css">

{title)MCR 7.6.1 samples. E-mail over the Web sample</title)
{/head)

{body LANGUAGE="javascript" onload="window_onload();"
onunload="window_onunload(); "
background="/WebAPISamples761/fon.gif")

{SCRIPT LANGUAGE=javascript
SRC="/WebAPISamples761/CommLib.js" ></SCRIPT>

{H2)MCR 7.6.1 samples. E-mail over the Web sample</H2)

Variables are declared:

String action ="
String first_name ="
String last_name ="
String email_address = "";
String subject ="
String body =""
String reply_from =""

String id =
byte[] attachment] = null;
byte[] attachment2 = null;

String filenamel ="
String filename2 ="
String contenttypel "

String contenttype2 ;

Getting Load Balancer and E-Mail Server Java Instance

This next section of code creates a load balancer instance and returns an
available instance of E-mail Server Java for each request:

// create load balancer instance
SvcDispatcher svcDispatcher = new SvcDispatcher();

// We select IRS server for each request(!)
if(svcDispatcher != null && svcDispatcher.getErrorCode() == 0 &&
svcDispatcher.inqSrvcByType (CfgAppType.CFGEmai LServer, strTenant)
)
{

Genesys Multimedia 7.6 @

Chapter 9: Multimedia Simple Samples for Java E-Mail with Attachment Sample

String svcHost = new
String(svcDispatcher.getSrvcHost () .toLowerCase());
int svcPort = svcDispatcher.getSrvcPort();

Constructing HTML Body

Next, the code includes more HTML code to create input boxes and buttons.
The first line of code sets the form’s enctype attribute to
multipart/form-data. The enctype attribute determines how the form will be
encoded, and setting it to multipart/form-data will enable file upload. There
are two fields at the bottom of the form where file names can be entered and
attached to the e-mail:

{FORM enctype="multipart/form-data" id=frm_irs name="frm_irs" method="post"
action="Email.jsp" onSubmit="JavaScript:return Submit_onClick (1);">
{table border="1"»
{tr)
<{td colspan=6)Please enter the interaction information:<{/td>
/tr>
{tr)
{td>First name:</td)
<td><INPUT TYPE="String" NAME="<Z=mask_html (fLdnFirstName)?%)"
VALUE="<%=mask_htmL (first_name)%>">
/td>
<{td)Last name:</td>
{td><INPUT TYPE="String" NAME="<%=mask_html (fLdnLastName)%>"
VALUE="<%=mask_html (Last_name)%>">
{/td>
{td>E-mail address:</td>
{td><INPUT TYPE="String" NAME="<%=mask_html (f LdnFromAddress)%>"
VALUE="<%=mask_html (emai l_address)%>">
/td>
/tr>
{tr)
<td>Reply from:</td)
<td colspan=2><INPUT TYPE="String" NAME="<%=mask_html (fLdnReplyFrom)%>"
VALUE="<%=mask_html (reply_from) %z>">
/td>
<{td>Interaction id:<{/td)
{td colspan=2><INPUT SIZE="40" TYPE="String" NAME="id"
VALUE="<%=mask_htmL (id)%>">
/td>
/tr>
{tr)
{td>Subject:</td)
<td colspan=5><INPUT SIZE="80" TYPE="String"
NAME="<%=mask _htmL (f LdnSubj ect) %>"
VALUE="<%=mask_html (subject)Z>">
/td>
/tr>

Web API Client—Developer’s Guide 127

Chapter 9: Multimedia Simple Samples for Java E-Mail with Attachment Sample

{tr)
{td colspan=6)
{textarea cols="100" rows="10"
NAME="<%=mask_html (f LdnEmai LBody) %>" >

{%=mask_html_for_textarea(body) %>

{/textarea)
{/td>
/e

<t
<{td colspan=2)> File to upload: </td>

<{td colspan=4)
<input type="file" name="attachment1")
/td>
/tr>

{tr)
<{td colspan=2> File to upload: </td)

<td colspan=4)
{input type="file" name="attachment2")
/td>
/tr)

<t
{td colspan="6" align="center")
<input type="hidden" name="action" value="")

Submit<{/A>
Reset

/td>
/tr>
{/table)
<{/FORM>

Upload the Multipart File
if (isMultipart)

{
List items = null;
try
{
items = upload.parseRequest(request);

Iterator itr = items.iterator();

while(itr.hasNext())

{
FileItem item = (Fileltem) itr.next();

// check if current item is form field or uploaded file

if(item.isFormField())

{
// get the name of the field

String fieldName = item.getFieldName();

String fieldValue =

Genesys Multimedia 7.6 @

128

Chapter 9: Multimedia Simple Samples for Java E-Mail with Attachment Sample

item.getString(i18nsupport.GetCodePage());
// if a name, we can set it in request to thank the user

if(fieldName.equals("action"))
action = fieldValue;
else if (fieldName.equals(fldnFirstName))
first_name = fieldValue;
else if (fieldName.equals(fldnLastName))
last_name = fieldValue;
else if (fieldName.equals(fldnFromAddress))
email_address = fieldValue;
else if (fieldName.equals(fldnSubject))
subject = fieldValue;
else if (fieldName.equals(fldnEmailBody))
body = fieldValue;
else if (fieldName.equals(fldnReplyFrom))
reply_from = fieldValue;
else if (fieldName.equals("id"))
id = fieldValue;
)
else
{
String fieldName = item.getFieldName();
String fileName = item.getName();
String contentType = item.getContentType();
boolean isInMemory = item.isInMemory();
long sizelnBytes = item.getSize();

Below, the Fi lenameUti Ls.getName () function is used to return the full
filename. Only the text after the last forward slash or backslash will be
returned. This function handles both UNIX and Windows filename formats.

if (fileName != null)
fileName = FilenameUtils.getName(fileName);
if (fieldName.equals ("attachment1"))

{
filenamel = fileName;
contenttypel = contentType;
attachment1 = item.get();
}
if (fieldName.equals ("attachment2"))
{
filename2 = fileName;
contenttype2 = contentType;
attachment2 = item.get();
}
}
)
}
catch (Exception e)
{

Web API Client—Developer’s Guide 129

Chapter 9: Multimedia Simple Samples for Java E-Mail with Attachment Sample

strFileUploaderError = "Can't process Web form submission.
Exception occured: <BR)" + e.toString();
Y.o..

Tracking States and Submission

The following Java code checks the state of the JSP file after a submission,
because the JSP calls itself in response to the user events. This code is very
similar to the code found in the E-mail Sample, except that additional code has
been added to include the attachments in the submission:

if(action.equals("Submit"))
{

// submit the new interaction to E-mail server
_kvlist userdata = new _kvlist();
userdata.addElement (new _kvitem(fldnFirstName, first_name));
userdata.addElement (new _kvitem(fldnLastName, last_name));
userdata.addElement (new _kvitem(fldnFromAddress, email_address));
userdata.addElement (new _kvitem(fldnSubject, subject));
userdata.addElement (new _kvitem(fldnEmailBody, body));
if (attachmentl != null || attachment2 != null)

{
_kvlist kvAttachments = new _kvlist();
if (attachment1 != null && attachment?.length>0)
{
_kvlist kvAttachment1 = new _kvlist();
kvAttachment1.addE lement (new _kvitem("Content”, attachment1));
kvAttachment1.addE Lement (new _kvitem("ContentType", contenttype1));
kvAttachments.addElement (new _kvitem(filenamel, kvAttachment?));
}
if (attachment2 I= null &8 attachment2.length>0)
{
_kvlist kvAttachment2 = new _kvlist();
kvAttachment2.addE lement (new _kvitem("Content”, attachment2));
kvAttachment2.addE Lement (new _kvitem("ContentType", contenttype2));
kvAttachments.addElement (new _kvitem(filename2, kvAttachment2));
}
userdata.addElement (new _kvitem("Attachments"”, kvAttachments));
}

if (reply_from != null && reply_from.equals("") == false)
userdata.addElement(new _kvitem(fldnReplyFrom, reply_from));

if(irs.submit(_media.__media_email, userdata) == irs.__rc_ok)

{

id = new String(irs.reqid()); ...

130 Genesys Multimedia 7.6 @

Chapter 9: Multimedia Simple Samples for Java E-Mail with Attachment Sample

An appropriate message will be displayed based on whether the submission
was successful or not:

Request (<Z=mask_html(id)%>) has been successfully submitted to

E-mail
Serve.
/>
<o
Yelse(
Y
<p>

Could not submit the e-mail to E-mail Server.

Reason: <%=mask_html(irs.Llasterror())%>
p>
<%
action = ""; // no more actions

)

Closing the Connection

When the user is ready to submit the form, the connection to E-mail Server
Java must be closed and the service dispatcher must be reset to nul L.
Otherwise, you will have orphan connections to the server that do not
relinquish resources, principally network resources (like sockets) and memory.

JifCirs I= null)

{
irs.close();
irs = null; // kill the IRS "representative" if any
}
}
Yelse(
%>
<P>
We are sorry, E-mail Server is unavailable at this time.
Please try
again Later.
/P
<%
}
svcDispatcher = null; // free dispatcher

Handling User Events

Four JavaScript functions handle user events:

* window_onload ()—Sets the request ID for this form. If the document is not
undefined, it sets the form ID value to the request ID value.

* window_onunload ()—Has no code. It is an empty function.

Web API Client—Developer’s Guide 131

Chapter 9: Multimedia Simple Samples for Java E-Mail with Statistics Sample

Submit_onCLick ()—Sets the action flag to Submit. Because this is a real
submission from the user, not a JSP workaround, the function must verify
that the e-mail address and sender data are in an acceptable format. If the
function finds invalid characters, it opens a dialog box and requests that the
user correct the problem. Once the data is acceptable, the function calls the
HTML form submit.

Reset_onCLlick ()—Calls the form’s reset () method to clear out all the data
that was entered.

E-Mail with Statistics Sample

This section presents the purpose, functionality overview, and code
implementation for the E-mail with Statistics Sample.

Note: The difference between this sample and “E-Mail Sample” on page 120

Purpose

1s the additional statistics feature. Therefore, this section discusses
only the statistics portions of the sample code. (These code portions are
similar to those in “Chat with Statistics Sample” on page 117.) For
shared code that provides e-mail features, see “Code Explanation” on
page 121.

The E-mail with Statistics Sample code demonstrates an application that
submits its user’s web-form input to E-mail Server Java, and also retrieves
statistics about the number of interactions in a queue (queue length),
distribution volume, and distribution time from Stat Server.

Files

The .../Emai lWithStatistic directory contains the E-mail with Statistics
Sample. The sample consists of a single file, Emai L. j sp.

Code Explanation

This section traces the statistics portions of the the Emai L. j sp file code in the
following subsections:

132

“Loading Required Libraries”

“Declaring and Initializing Variables”

“The GetQueueStatistic_onClick() Function”
“Connecting to Stat Server”

“Getting the Statistics”

Genesys Multimedia 7.6 @

Chapter 9: Multimedia Simple Samples for Java E-Mail with Statistics Sample

* “Supporting Functions”

Loading Required Libraries

To support its statistics features, this sample’s Emai L. j sp file loads two libraries
that the basic E-mail Sample’s Emai L. j sp file does not load:

{%e page import="Genesys.webapi.stat.direct.*"%>
{%e page import="Genesys.webapi.stat.protocol.*"%>

Declaring and Initializing Variables

This sample declares the following block of variables to receive or support
retrieved statistics:

String strError = "";

bError = false;

int iQueuelLength = 0; //double2int
int iTotalDistributionTime = 0; //minutes2int
int iTotalDestributed = 0; //double2int
int iEWT = 0;

stat_direct SD = new stat_direct ();

String svcHost = "
int svcPort = -1;

The GetQueuesStatistic_onClick() Function

At the end of the FORM definition, the following statement displays a link to the
GetQueueStatistic_onClick() function:

Get E-mail queue statistic

This function is defined later in the file, shortly above the page’s closing
{/script) and <{/body) tags. It defines and submits the following action:

function GetQueueStatistic_onClick()

{
document.forms[0].action.value = "get queue statistic";
document.forms[0].submit();

)

Connecting to Stat Server

The code executed in response to that action appears earlier in the file. It
checks the SvcDispatcher (load-balancing servlet) instance. If the load

Web API Client—Developer’s Guide 133

Chapter 9: Multimedia Simple Samples for Java E-Mail with Statistics Sample

balancer finds a Stat Server and is able to connect to it, then the JSP can
proceed:

if(action.equals("get queue statistic"))
{
if(svcDispatcher != null && svcDispatcher.getErrorCode() == 0 8&
svcDispatcher.inqSrvcByType (CfgAppType.CFGStatServer,
strTenant))

{
svcHost = new
String(svcDispatcher.getSrvcHost() . toLowerCase());
svcPort = svcDispatcher.getSrvcPort();

Getting the Statistics

The next code block attempts to retrieve the e-mail queue length, the total
distribution time, and the total number of distributed interactions. It then
divides the total distribution time by the total number of distributed
interactions to calculate the estimated wait time, iEWT:

try
{
SD.setLogServer (svcDispatcher.getLogServer());
iQueuelLength = Integer.parselnt(SD.getQueueStat(svcHost, svcPort,
strTenant, strEmailQueue,
stat_direct._stat_webform_queue_length,
strEmailStatInterval));
iTotalDistributionTime =
Integer.parselnt (SD.getQueueStat(svcHost, svcPort,
strTenant, strEmailQueue,
stat_direct._stat_webform_total_distribution_time,
strEmailStatInterval));
iTotalDestributed = Integer.parselnt(SD.getQueueStat (svcHost,
svcPort, strTenant, strEmailQueue,
stat_direct._stat_webform_total_destributed,
strEmai lStatInterval));
if (iTotalDestributed != 0)
iEWT = iTotalDistributionTime/iTotalDestributed;

If an exception occurs, the JSP prints the error to a log file and also displays it
on the page:

catch (Exception e)

{
System.out.println (e.toString());
bError = true;
strError = e.toString();

134 Genesys Multimedia 7.6 @

Chapter 9: Multimedia Simple Samples for Java E-Mail with Statistics Sample

%>
<p>
Could not get queue statistic from E-mail Server.<br)
Reason: <%=strErrori>
/p>
<%
}

Otherwise, the following code builds a table and displays the retrieved
statistics on the page:

if (bError == false)
{
%y
{table border=1>
<tr)
<td colspan=2>
Queue statistic
/td>
/tr>
{tr)
<td>
Queue size
/td>
<td>
<{%=iQueueLength%>
</td>
/trd
{tr)
<td>
Estimated waiting time
/td>
<{td>
{%=ConvertSecondsToString (iEWT) %)
/td>
/e
{/table>

Supporting Functions

The private ConvertSecondsToString() function, defined at the bottom of the
file, is used in the calculation of the estimated wait time. Just above the
ConvertSecondsToString() function is its own supporting function,
PositiveSub():

private int PositiveSub (int i1, int i2)

{
int i3 = 11-12;
if (i3>0)

Web API Client—Developer’s Guide 135

Chapter 9: Multimedia Simple Samples for Java

E-Mail with Statistics Sample

return i3;
return 0;
}
private String ConvertSecondsToString(int iSeconds)
{
int iDays=iSeconds/ (60%60%24);
iSeconds=PositiveSub (iSeconds, iDays*(60%60%24));
int iHours=iSeconds/ (60%60);
iSeconds=PositiveSub(iSeconds, iHours*(60%60));
int iMinutes=iSeconds/60;
iSeconds=PositiveSub(iSeconds, iMinutes#*60);
String strout = "";
if (iDays != 0)
{
strOut = strOut + iDays + " day";
if (iDays > 1)
strOut = strOut + "s";
strOut = strOut + " "
}
if (iHours != 0)
{
strOut = strOut + iHours + " hour";
if (iHours > 1)
strOut = strOut + "s";
strOut = strOut + " "
}
if (iMinutes 1= 0)
{
strOut = strOut + iMinutes + " minute";
if (iMinutes > 1)
strOut = strOut + "s";
strOut = strOut + " "
}
if (iSeconds != 0)
{
strOut = strOut + iSeconds + " second";
if (iSeconds > 1)
strOut = strOut + "s";
strOut = strOut + " '
}
if (strOut.equals(""))
strOut = "not calculated yet";
return strOut;
}

136

Genesys Multimedia 7.6 @

Chapter 9: Multimedia Simple Samples for Java Co-Browse Samples Overview

Co-Browse Samples Overview

This section outlines files common to all the Co-Browse Samples.

Common Files

The Co-Browse, the Co-Browse with Initial Start Page, the Co-Browse with
Meet Me, and the Chat and Co-Browse samples all use certain common files:

* hbmessaging.js—JavaScript file containing the API for Co-Browsing
Server.

* gstring.js—JavaScript file containing a utility class.

* hbmessage_to_var.js—Messaging file that provides messages from the co-
browse frame to the web application frame.

* blank.html—Default blank page for initializing empty frames used by the
APL

* hbapi.html—Supports the client-side API and the co-browse applet.

* hbmessagingform.html—Increases security by sending agent login
information as an HTTP POST request, instead of as a GET request.

* hbmessage_to_var.html—A messaging file that provides messages from
the co-browse frame to the web application frame.

Warning! The gstring.js, hbmessage_to_var.js, and
hbmessage_to_var.html files must all reside in the same directory.

For background information about the purposes of these common files, refer to
the KANA Response Live documentation listed in “Related Resources” on
page 17. Genesys licenses certain Response Live (formerly Hipbone)
co-browsing components from KANA Software, Inc.

Co-Browse Sample

This section outlines the purpose, functionality, and code implementation of
the basic Co-Browse Sample.

Purpose

The Co-Browse Sample code demonstrates basic co-browse functionality
using the Co-Browsing Server API. This sample includes two files beyond
those covered in “Common Files” above: CoBrowse.htm, which sets up the
display frame; and CoBrowseEventHandler.jsp, which contains the sample’s
logic.

Web API Client—Developer’s Guide 137

Chapter 9: Multimedia Simple Samples for Java Co-Browse Sample

The CoBrowseEventHandler.jsp File Explained

<html)

138

<head)

Getting Load Balancer and
Co-Browse Server Instances

The CoBrowseEventHandler. jsp file’s initial try-catch script block creates a
load-balancer instance and attempts to discover a Co-Browse Server host:

try{
SvcDispatcher svcDispatcher = new SvcDispatcher();
if(svcDispatcher == null || svcDispatcher.getErrorCode() !'= 0 ||

IsvcDispatcher.inqSrvcByType (CfgAppType.CFGCoBrowsingServer,
strTenant))
{
//No Server is found. Load balancing is disabled.
CoBrowseServerHost = null;
}
else{
//Cobrowse server found
CoBrowseServerHost = svcDispatcher.getSrvcHost();
}
Ycatch(Exception ex)
{
//Error load balancing is disabled.
CoBrowseServerHost = null;

)

Drawing the Form

Next, this HTML code block draws a page, defines a JavaScript function that
reports the Co-Browse Server host, and defines links to perform basic
co-browse functions:

<link rel="stylesheet" href="/WebAPISamples761/icc_style.css"

type="text/css"/>

{title)MCR 7.6.1 samples. Cobrowse "Meet Me" service</title)

{body onlLoad="javascript:window_onload();"

onunload= "javascript:window_onunload ();
background="/WebAPISamples761/fon.gif")

{script LANGUAGE=javascript type="text/javascript" >
var CobrowseHostName = null;

<%

if(CoBrowseServerHost != null)

{

Genesys Multimedia 7.6 @

Chapter 9: Multimedia Simple Samples for Java Co-Browse Sample

out.println("CobrowseHostName = \"" + CoBrowseServerHost + "\";");

Yelse{
out.println("CobrowseHostName = ConavigationServerUrl;");

{/scripty
<h2 align="center")>This sample demonstrates basic Cobrowse
functionality</h2)

{table border="1">
<trd
{td colspan="2">
{textarea style="width:600px" rows="10" id="Messages'
NAME="Messages" READONLY){/textarea)
/td>
VA
<trd
{td colspan="2">
Co-browse server host is :
{script LANGUAGE=javascript type="text/javascript")
document.write(CobrowseHostName); </script>
/td>
/tr>
<trd
<td width="50%">

Start Cobrowse
/td>
<{td width="50%">

End Cobrowse

Declarations

Next, this block of JavaScript declares and initializes core variables and
functions. The window_onload () and window_onunload () functions are declared
but not implemented.

{script LANGUAGE="javascript" type="text/javascript")
var HBApiWindow= null;

var HBUserID= "";

var IsFirstConavigation= true;

var IsAgentJoined= false;

var UserLoggedIn= false;

var ConnectTo =
var StartPage= "http://www.google.com";

function window_onload()

{

Web API Client—Developer’s Guide 139

Chapter 9: Multimedia Simple Samples for Java Co-Browse Sample

)

function window_onunload ()
{
}

The AddMessage () function is declared here, and is used throughout
“Event Handlers” on page 141 to display informational and diagnostic
messages.

function AddMessage (str)
{
document.forms[0].Messages.value =
document.forms[0] .Messages.value +
"\r\n" + str;
document.forms[0].Messages.scrollTop =
document.forms[0].Messages.scrollHeight;

The next block of code checks for redundant logins, then calls two functions:
HBInitializeAPI() to initialize the Co-Browse API, and HBLoginGuest () to
properly log in the user. These functions are defined in the hbmessaging. j s file.
For details about their internals, refer to the KANA Response Live
documentation listed in “Related Resources” on page 17.

//------ ALl about Cobrowse ---------------------
function CoBrowse_onclick()
{

if (UserLoggedIn == true)
{
alert("Please log out user "+HBUserID+" before starting a new
co-browse session.");
Yelse(

if (HBApiWindow == null)
{
HBApiWindow= parent.hbapi;
var strUrl= new String(window.location.href);
var strProcessorUrl= strUrl.substring(o,
strUrl. lastIndex0f ("/"))+"/hbmessage_to_var.html";

HBApiWindow.HBInitializeAPI("EventHandlerFrame",
CobrowseHostName, strProcessorUrl);

HBApiWindow.HBLoginGuest (ConavigationiChannelID, "", ConnectTo,
false, "acctSpecificData");

else

140 Genesys Multimedia 7.6 @

Chapter 9: Multimedia Simple Samples for Java Co-Browse Sample

HBApiWindow.HBLoginGuest (ConavigationiChannelID, "", ConnectTo,
false);
}
AddMessage ("Connecting to Cobrowse server...");

)

Note the calls to AddMessage () above, and also in the following calls to the
external HBLogout () function. HBLogout () is another function defined in the
hbmessaging.js file and described in the KANA Response Live
documentation.

function EndCoBrowse_onclick ()
{
if (HBApiWindow != null)
HBApiWindow.HBLogout ();
}

function doExitSession()
{
AddMessage ("Logging out...");

HBApiWindow.HBLogout ();
}

Event Handlers

This final section of code defines event handlers for co-browse requests. Each
of these event-handler functions typically calls a function of the same name in
the hbmessaging.js file. For details about those external functions, refer to the
KANA Response Live documentation listed in “Related Resources” on

page 17.

Each of these internal functions also calls the AddMessage () function
(defined earlier in this file) to display informational or diagnostic messages.

/**xx HB API Events handlers #*x*x/
function HBCouldNotConnect(sReasonID)

{

AddMessage ("Can't connect to Cobrowse server. Reason: "+sReasonID);
}
function HBLoginError(reasonID, description)
{

AddMessage ("Can't Llogin to Cobrowse server. Reason: " + reasonlID

+ " Description: " + description);

}

function HBJoinedSuccessfully()
{
IsAgentJoined = true;
AddMessage ("User joined.");

Web API Client—Developer’s Guide 141

Chapter 9: Multimedia Simple Samples for Java

142

}
function HBJoinRequested(sName)
{
AddMessage ("Event HBJoinRequested(" + sName + ")");
return true;
}
function HBSessionEnded()
{
AddMessage ("Conavigation session has ended.");
}
function HBLoggedIn(sHipbonelD)
{
HBUserID = sHipbonelD;
AddMessage ("CobrowseID : " + sHipboneID + ".");
UserLoggedIn = true;
HBApiWindow.HBCreateSession();
}
function HBLoggedOut (sReasonID)
{
AddMessage ("You have been logged out.");
UserLoggedIn = false;
HBUserID = "";
}
function HBSessionStarted()
{
AddMessage ("HBSessionStarted()");
HBApiWindow.HBConavigateLink (StartPage, null);
}

function HBLinkConavigated(sLink, sTarget, sUserName)
{

AddMessage ("Event HBLinkConavigated: " + sLink);
}

function HBUserExitedSession(name)

{

AddMessage ("Event HBUserExitedSession(" + name + ")");

if (HBUserID == name)
doExitSession();

Co-Browse Sample

Genesys Multimedia 7.6 @

Chapter 9: Multimedia Simple Samples for Java Chat and Co-Browse Sample

function HBUserEnteredSession(name)

{
AddMessage ("User with ID : " + name + " has joined to session.");
//HBApiWindow.HBRe Lload ("HB_HIPBONE"); // fix for join bug
}
{/scripty
{/body>
/html>

Chat and Co-Browse Sample

This section details the sample code that is unique to the Chat and Co-Browse

Sample.

Purpose
The Chat and Co-Browse Sample demonstrates how to use co-browsing
functionality during a chat session.

Files

The Chat and Co-Browse Sample resides in the .../ChatAndCoBroswe directory.
The sample consists of 11 files. Seven of these are common to all the
co-browse samples, and are described in “Co-Browse Samples Overview” on

page 137:
* blank.html
* hbapi.html

* hbmessage_to_var.html
* hbmessagingform.html
* hbmessage_to_var.js

* hbmessaging.js

e gstring.js

Three files are shared with the Chat Sample, and are detailed in “Chat Sample:
Files” on page 107:

* HtmlChatFrameSet.jsp—Virtually identical to its Chat Sample counterpart.
* HtmlChatCommand.jsp— Virtually identical to its Chat Sample counterpart.

* HtmlChatPanel.jsp—Contains added code (compared to its Chat Sample
counterpart) that provides co-browsing functionality. See the detailed code
explanation in the next section below.

The last file is this sample’s main frameset:
* ChatAndCoBrowse.htm

Web API Client—Developer’s Guide 143

Chapter 9: Multimedia Simple Samples for Java Chat and Co-Browse Sample

Code Explanation

144

The HtmIChatPanel.jsp File Explained

This section highlights ways in which the Chat and Co-Browse Sample’s
HtmlChatPanel.j sp file differs from the two sample files from which it is
basically constructed:

* The similarly-named HtmLChatPanel. jsp file in “Chat Sample” on
page 107. The two files share certain chat functions, plus the HTML code
that draws a chat form.

* The CoBrowseEventHandler.jsp file in “Co-Browse Sample” on page 137.
This sample’s HtmLChatPanel.jsp file adds co-browsing functions and
event handlers from that file. But some event handlers differ, in ways that
this section also identifies.

First, comparing this sample’s HtmLChatPanel.jsp file to the Chat Sample’s
HtmLChatPanel.jsp file: This sample’s file imports two packages that are
instead handled by the Chat Sample’s HtmLChatCommand. j sp file:

{%epage import="Genesys.webapi.system.loadbalancing.*"%>
{%epage import="Genesys.CfgLib.*"%)

Getting Load Balancer and Co-Browse Server Instances

The following try/catch block is also absent from the Chat Sample’s
HtmLChatPanel.jsp file. It corresponds instead to the Co-Browse Sample’s
CoBrowseEventHandler.jsp file. As in that sample, it creates a load-balancer
instance and attempts to discover a Co-Browse Server host:

try {
SvcDispatcher svcDispatcher = new SvcDispatcher();
if (svcDispatcher == null || svcDispatcher.getErrorCode() != 0

|| 'svcDispatcher.ingSrvcByType (CfgAppType.CFGCoBrowsingServer,
strTenant))
{
//No Server is found. Load balancing is disabled.
CoBrowseServerHost = null;
}
else {
//Cobrowse server found
CoBrowseServerHost = svcDispatcher.getSrvcHost();
}
}
catch (Exception ex) {
//Error load balancing is disabled.
CoBrowseServerHost = null;
}
%y

Genesys Multimedia 7.6 @

Chapter 9: Multimedia Simple Samples for Java Chat and Co-Browse Sample

Declarations

The HtmLChatPanel.jsp file’s body section omits the corresponding Chat
Sample file’s reference to Commlib.js. However, it declares and initializes
some extra variables to support co-browsing functions. Again, these
declarations match those in the Co-Browse Sample’s
CoBrowseEventHandler.j sp file:

var HBApiWindow= null;

var HBUserID= "7;
var IsFirstConavigation= true;

var UserLoggedIn= false;

var ConnectTo =
var StartPage= "http://www.google.com";

Functions and Event Handlers

Like the Chat Sample’s HtmLChatPanel.j sp file, this file includes a
show_message () function. Elsewhere in this file, co-browsing event handlers
will call show_message () to write messages to the chat frame:

function show_message (strMessage)
{
document.forms[0].transcript.value =
document.forms[0].transcript.value + "\r\n" + strMessage;
document.forms[0].transcript.scrollTop =
document.forms[0].transcript.scrollHeight;

Like the Co-Browse Sample’s CoBrowseEventHandler . j sp file, this version of
HtmLChatPanel.jsp also includes additional logic, functions, and event handlers
to support interactions with the Co-Browsing Server. You will find these code
blocks under the comment reproduced just below:

var CobrowseHostName = null;
<
i f (CoBrowseServerHost != null)
{

out.println("CobrowseHostName = \"" +

CoBrowseServerHost + "\";");

Yelse(

out.println("CobrowseHostName = ConavigationServerUrl;");

%>

function CoBrowse_onclick()

{

Web API Client—Developer’s Guide 145

Chapter 9: Multimedia Simple Samples for Java Chat and Co-Browse Sample

146

i f (UserLoggedIn == true)
{
alert("Please log out user "+HBUserID+" before starting
a new co-browse session.");
Yelse(

The first three event handlers are similar to identically-named event handlers
in the Co-Browse Sample’s CoBrowseEventHandler. jsp file. But where that
file’s event handlers call an AddMessage () function, this file’s event handlers
instead call its show_message () function (see “Functions and Event Handlers”
on page 145) so as to write their messages to the chat frame:

/**x%x HB API Events handlers #*x%x/
function HBCouldNotConnect(sReasonID)

{
show_message (“Can't connect to Cobrowse server.
Reason: "+sReasonlID);
}
function HBLoginError(reasonlID, description)
{
show_message("Can't login to Cobrowse server. Reason: " +
reasonID + " Description: " + description);
}
function HBJoinedSuccessfully()
{
IsAgentJoined = true;
show_message ("Agent joined.");
}

This file’s HBJoinRequested () event handler differs in the same way from that
in the Co-Browse Sample: Rather than calling the AddMessage (), it calls
show_message () to identify the agent to the caller:

function HBJoinRequested(sName)

{
show_message ("Your agent is : " + sName + ".");
return true;

This file’s HBLoggedIn () event handler differs in two ways from its counterpart
in the Co-Browse Sample. First, it calls show_message () instead of

AddMessage () . Second, upon verifying the customer’s login and connection, it
writes the customer’s co-browse ID to the chat frame before calling
HBCreateSession():

function HBLoggedIn(sHipbonelD)

Genesys Multimedia 7.6 @

Chapter 9: Multimedia Simple Samples for Java Chat and Co-Browse Sample

HBUserID = sHipbonelD;
show_message (“CobrowseID : " + sHipboneID + ".");

UserLoggedIn = true;

Specifically, this next code block sends the encoded message to the agent via
chat. This way, the agent will know where to connect to begin co-browsing
with the customer:

if (bConnected == true)
{
document.forms[0].message.value =
"$$CUSTOMER_COBROWSING_ID=" + HBUserID;
on_send();

)

HBApiWindow.HBCreateSession();
}

Finally, this file’s remaining event handlers each differ from their Co-Browse
Sample counterparts by internally calling show_message () instead of
AddMessage () :

* HBLoggedOut()

* HBSessionStarted()

* HBLinkConavigated()

* HBUserExitedSession()

* HBUserEnteredSession()

Drawing the Chat Form and Co-Browse Links

Along with the HTML code that creates the traditional chat form, the code also
displays the Co-Browsing Server host’s name, and displays links to start and
stop a co-browse session:

{td colspan="6">
Co-browse server host is :
{script LANGUAGE=javascript type="text/javascript")
document.write (CobrowseHostName); <{/script>

/td>

{td colspan=3 align="center")
Start Cobrowse</a»

Stop Cobrowse</a)
/td>

Web API Client—Developer’s Guide 147

Chapter 9: Multimedia Simple Samples for Java Co-Browse Meet Me

Co-Browse Meet Me

The section details the sample code that is unique to the Co-Browse Meet Me

Sample.

Purpose
The Co-Browse Meet Me Sample code demonstrates how to set up a
co-browse session with a specific other person whose co-browse ID the user
knows.

Files

The .../CoBrosweMeetMe directory contains nine files; eight of these are

documented in “Co-Browse Samples Overview” on page 137. This section
focuses on code unique to this sample’s CoBrowseEventHandler.jsp file (as
compared to the corresponding file in “Co-Browse Sample” on page 137).

The CoBrowseEventHandler.jsp File Explained

Entering the Other Party’s Co-Browse ID

Compared to the Co-Browse Sample’s CoBrowseEventHandler. jsp file, this
sample adds an input box and a link by which the user can specify the
co-browse ID of the person he or she wants to browse with:

<tr)
{td colspan="2">
Connect to:
{input type="text" ID=ConnectTo value="" name="ConnectTo"/)
/td>
/tr>
{tr)

<(td width="50%")

Cobrowse with other person

/td>

“Meeting” the Other Party

The above code captures a ConnectTo value, which represents the target
co-browse ID. Below, this sample’s CoBrowse_onclick () function includes
some additional logic that attempts to connect to this ID, and notifies the user

if the ConnectTo value is empty:

function CoBrowse_onclick()

148 Genesys Multimedia 7.6 @

Chapter 9: Multimedia Simple Samples for Java Co-Browse Meet Me

ConnectTo = document.forms[0].ConnectTo.value;

if (UserLoggedIn == true)
{
alert("Please log out user "+HBUserID+" before starting a new
co-browse session.");
Yelse if(ConnectTo == ""){
alert("Please enter customer id you're trying to connect to");

Event Handlers

Most of this file’s event handlers correspond to those in the Co-Browse
Sample’s CoBrowseEventHandler . j sp file. But there are some minor differences.

This file’s HBLoggedIn () event handler omits the internal call to
HBApiWindow.HBCreateSession() found in the Co-Browse Sample’s
HBLoggedIn () event handler, because we can assume that the other party has
already created the session:

function HBLoggedIn(sHipbonelD)
{
HBUserID = sHipbonelD;
AddMessage ("CobrowselD :
UserLoggedIn = true;

)

+ sHipboneID + ".");

Similarly, this file’s HBSessionStarted () event handler differs from its
Co-Browse Sample counterpart by omitting an internal call to
HBApiWindow.HBConavigatel ink (StartPage, null). Again, we can assume that
the other party has already established the URL to co-browse:

function HBSessionStarted()
{

AddMessage ("HBSessionStarted()");
}

For similar reasons, this file’s HBUserEnteredSession() event handler omits its
Co-Browse Sample counterpart’s internal call to
HBApiWindow.HBConavigatel ink (StartPage, null):

function HBUserEnteredSession(name)
{
AddMessage ("User with ID : " + name + " has joined to
session.");
//HBApiWindow.HBRe Lload ("HB_HIPBONE"); // fix for join bug
}

Web API Client—Developer’s Guide 149

Chapter 9: Multimedia Simple Samples for Java Co-Browse Init Start Page

Co-Browse Init Start Page

Purpose

Files

This section details the sample code that is unique to the Co-Browse
Init Start Page Sample.

The Co-Browse Init Start Page Sample code demonstrates basic co-browsing
with a specified initial start page.

This section focuses on code that is unique to this sample, as compared to the
basic “Co-Browse Sample” on page 137. The .../CoBroswelnitStartPage
directory contains nine files; seven of these are common files already
described in “Co-Browse Samples Overview” on page 137. Two files
differentiate this sample:

* InitialStartPageExample.html—Replaces the basic Co-Browse Sample’s

CoBrowse.htm file, but serves a similar function: sets up the basic display
frame as a container for imported logic.

* CoBrowseEventHandler.jsp—Contains some additional logic, compared to
the Co-Browse Sample’s file of the same name. For details, see the
following section.

The CoBrowseEventHandler.jsp File Explained

150

Specifying the Start Page

Compared to its counterpart in the Co-Browse Sample, this sample’s
CoBrowseEventHandler.jsp file contains one additional code block that:
* Provides an input box to specify the other party’s co-browse ID.

* Provides an input box to confirm or override the initial URL that both
users will co-browse

* Provides a link to open that page.
Here is the added code:

<h2 align="center")MCR 7.6.1 samples. Cobrowse start page
sample.</h2>

Connect to:

{input type="text" ID=ConnectTo value="" name="ConnectTo"/>
/td>
{td>

Initial Start Page :

Genesys Multimedia 7.6 @

Chapter 9: Multimedia Simple Samples for Java Co-Browse Init Start Page

<input type="text" ID=StartPage value="http://www.yahoo.com"
name="StartPage"/)
/td>

<td>
Cobrowse with other

person
/td>

Event Handlers

Most of this file’s event handlers correspond to those in the Co-Browse
Sample’s CoBrowseEventHandler . jsp file. This section identifies the minor
differences.

In this file’s version of the HBLoggedIn () event handler, the internal call to
HBApiWindow.HBCreateSession() is embedded in an if branch. This if branch
verifies a connection to the other party before creating a session:

function HBLoggedIn(sHipbonelD)

{
HBUserID = sHipbonelD;
AddMessage ("CobrowselD :

+ sHipboneID + ".");
UserLoggedIn = true;

if(ConnectTo == "")
{
HBApiWindow.HBCreateSession();
}
}

This file’s HBSessionStarted () event handler differs from its Co-Browse
Sample counterpart by omitting an internal call to
HBApiWindow.HBConavigatelLink (StartPage, null). We assume that the other
party has already established a co-browse session and established the URL to
co-browse:

function HBSessionStarted()
{

AddMessage ("HBSessionStarted()");
}

That HBApiWindow.HBConavigateLink (StartPage, null) call instead occurs in
this file’s HBUserEnteredSession () event handler. (The Co-Browse Sample’s
version of that event handler makes no such call). The call is embedded in an
i f branch that first verifies the other party’s co-browse ID. It co-navigates to a
start page only if the party has newly entered the session:

Web API Client—Developer’s Guide 151

Chapter 9: Multimedia Simple Samples for Java Co-Browse Dynamic Start Page

function HBUserEnteredSession(name)
{
AddMessage ("User with ID : " + name + " has joined to
session.");
//HBApiWindow.HBRe Lload ("HB_HIPBONE"); // fix for join bug

i f (HBUserID == name)
{

HBApiWindow.HBConavigatelLink (StartPage, null);
}

Co-Browse Dynamic Start Page

The section describes the Co-Browse Dynamic Start Page Sample’s code.

Purpose
The Co-Browse Dynamic Start Page Sample demonstrates how one party can
click a co-browse control on an HTML page containing a form. When
co-browse begins, all the form data already entered is dynamically prefilled in
the other party’s co-browse window. So a customer and agent can dynamically
access each other’s form data.

Files

The .../CoBrosweDynamicStartPage directory contains five files. For the sample
to work properly, place all the files together into a public web directory.

Four of these files (listed in “Co-Browse Dynamic Start Page” on page 59)
should not be modified.

This section focuses on the file that you can modify—the sample’s main file,
Examp Le0OfDynamicStartPage. jsp. This file serves some of the same purposes as
the CoBrowseEventHandler.j sp file in “Co-Browse Sample” on page 137;
therefore, this discussion focuses on the unique code that it provides.

The co-browse session starts from the Examp Le0fDynamicStartPage.jsp page,
where it collects user input. To check the sample, enter arbitrary information
into this page’s form fields, then click the Live Help link. You will see a KANA
co-browse window specific to the dynamic start page.

Code Explanation
This sample’s Examp LeOfDynamicStartPage. j sp file begins with statements

similar to those in the samples described above: import and include
statements, and a try-catch block that seeks to obtain a load balancer instance.

152 Genesys Multimedia 7.6 @

Chapter 9: Multimedia Simple Samples for Java Co-Browse Dynamic Start Page

Next, the <htmL) section calls the file’s supporting stylesheet, JavaScript, and
constants files:

<html>
<head>
<link rel="stylesheet" href="/WebAPISamples761/icc_style.css"
type="text/css"/>

{script LANGUAGE=javascript type="text/javascript"
SRC="responseLive.js">/script)
{script LANGUAGE=javascript type="text/javascript"
src="/WebAPISamples761/Constants.js" >{/script>
{/head>

Next, the sample calls its window_onload () function (defined later in the file),
then reports any discovered Co-Browse Server host:

<body onload="return window_onload();"
background="/WebAPISamples761/fon.gif")
{script type="text/javascript")
var CobrowseHostName = null;

<%
if (CoBrowseServerHost I= null)
{
out.println("CobrowseHostName = \"" + CoBrowseServerHost +
"\ ");
Yelse(
out.println("CobrowseHostName = ConavigationServerUrl;");
}
%>

The code next defines an openLiveHelp () function. This function opens the
Dynamic Start Page API window when the user clicks the Live Help link:

function openLiveHelp()

{
var customerName = window.document.forms[0].fullName.value;
startDSPMeetMe (ConavigationiChannelID, null, customerName,
null, CobrowseHostName)

Next, the code defines a link to the Live Help functionality, which is provided
by the other files in the sample’s installed directory:

. ive Help</a)

Web API Client—Developer’s Guide 153

Chapter 9: Multimedia Simple Samples for Java Co-Browse Dynamic Start Page

The remainder of the file builds the form that solicits the user’s input of
personal information. Two text boxes prompt for the user’s name and e-mail

address:
{form name="checkout_form" action="" method="post")
{table width="760" border="0" cellspacing="0" cellpadding="0">
{tr)
<td valign="middle" align="left" width="525">Full Name</td)
(td>
{input type=text class="body" style="width: 215px"
size="18" maxlength="16" value="" name="fullName"/>
/td>
/tr>
<tr)
{td valign="middle" align="left" width="525">
E-Mail Address</td)
{td)
{input type=text class="body" style="width: 215px"
size="18" maxlength="16" value=""
name="emai LAddress"/>
/td>
VA

A very basic drop-down list offers three State/Province options; then another
text box prompts for the user’s password:

{td)
{select name="state")
<option value="")State/Province</option)
{option value="CA">CA{/option)
<option value="NY"DNY<{/option)
{option value="TX">TX<{/option)

{/select)
<td>
<input type="password" style="width: 215px" size="18"
maxlength="16" value="" name="password"/>
/td>

Next, a radio-button panel prompts the user to select a credit-card type:

{tr)
{td valign="middle" align="left" width="525">
Credit Card Type</td)
{td>
<input type="radio" value="Visa" checked
name="creditCardType"/>
Visa
{input type="radio" value="MasterCard"
name="creditCardType"/>
Master Card

154 Genesys Multimedia 7.6 @

Chapter 9: Multimedia Simple Samples for Java Co-Browse Dynamic Start Page

<input type="radio" value="AmericanExpress"
name="creditCardType"/>
American Express
{input type="radio" value="Discover"
name="creditCardType"/>
Discover
/td>
/tr>
<trd

Finally, a multiple-selection box allows the user to specify one or more
preferred callback times:

{td valign="middle" align="left" width="525">Preferred cal lback
time</td>
{td
{select multiple name=selectbox1 size=3>
{option value="Morning">Morning</option>
{option value="Day time">Day time</option>
<option value="Evening">Evening</option)
{/select)

Build Your Own Dynamic Start Page Example

To add dynamic start page functionality to your own custom page, first import
these libraries:

{%e page import="Genesys.webapi.system.loadbalancing.*" %>
{%e page import="Genesys.CfgLib.*" %)

Next, load this JavaScript file that provides the co-browse API:

{script LANGUAGE=javascript type="text/javascript"
SRC="responselLive.js">/script

Then insert the following script:

<
String CoBrowseServerHost = null;

try{
SvcDispatcher svcDispatcher = new SvcDispatcher();
if(svcDispatcher == null || svcDispatcher.getErrorCode() != 0 ||

IsvcDispatcher.inqSrvcByType (CfgAppType.CFGCoBrowsingServer,
strTenant))
{
//No Server is found. Load balancing is disabled.
CoBrowseServerHost = null;

Web API Client—Developer’s Guide 155

Chapter 9: Multimedia Simple Samples for Java Co-Browse Dynamic Start Page

Settings

156

Yelse(
//Cobrowse server found
CoBrowseServerHost = svcDispatcher.getSrvcHost();
}
Ycatch(Exception ex)
{
//Error load balancing is disabled.
CoBrowseServerHost = null;

}
%>

{script type="text/javascript")

var CobrowseHostName = "<your_co-browse_server_host-name>";

<%

if (CoBrowseServerHost I= null)

{

out.println("CobrowseHostName = \"" + CoBrowseServerHost +

II\II; II)i

%>

function openLiveHelp()
{
startDSPMeetMe (ConavigationiChannelID, null, "guest”, null,
CobrowseHostName) ;

To each page that will incorporate dynamic start page functionality, add a
reference that starts the openLiveHelp () function :

. ive Help</a)

To ensure that your dynamic start page application will work, observe these
recommended settings:

e Ifyou are using a test certificate for the HTTPS connection to your
dynamically browsed page, you must place the certificate authority file
into Co-Browse Server’s .. ./hbroot/certs/ folder.

* The dynamic start page uses cookies to transfer information about the
page. Therefore, users must enable cookies in their browser settings. Your
application should warn users about this requirement and, if possible, run a
diagnostic test of whether cookies can be set in the user’s browser.

Genesys Multimedia 7.6 @

Chapter 9: Multimedia Simple Samples for Java FAQ

Limitations of the Dynamic Start Page

* IP Checks—The dynamic start page does not work if your web site
associates identification and cookies with the IP address of the customer's
computer. This is a very unusual circumstance, and usually means that
your site does not work with AOL browsers or certain corporate firewalls.

* POST Submissions—You must perform special custom work to enable
the start page to re-appear after a POST submission.

* Cookies—The dynamic start page feature only traps the cookies that are
accessible from the domain and path at which the He Lp button is located.

* Large Cookies—The dynamic start page feature cannot support cookies
greater than 1K in size.

* Frames in Different Domains—Pages with frames with different domains
or protocols must be supported on a custom basis.

* Start Pages within Frames—Not supported.

* Multiple Submissions—If your web site does not reload URLs, the start
page feature may not function properly.

FAQ

The section explains the FAQ Sample’s code.

Purpose

The FAQ Sample code demonstrates a basic FAQ Service.

Files

The .../FAQ directory contains the FAQ Sample. The sample consists of a single
file, FAQ.j sp.

Code Explanation
The first line in the FAQ.jsp file sets the page content type:

{%e page contentType = "text/html; charset="windows-1252" %>

The second line is a call to the response.setContentType () method. This sets
the content type or character encoding to use in the response to the client:

{kresponse.setContentType("text/html; charset=" +
i 18nsupport.GetCharSet()); %>

Web API Client—Developer’s Guide 157

Chapter 9: Multimedia Simple Samples for Java FAQ

158

Then the sample code loads the following libraries into memory:

{%e page import="Genesys.webapi.media.faq.direct.*" %>
{%e page import="java.io.*" %>

{%e page import="java.util.*" %>

{%e page import="java.text.*" %>

{%e page import="Genesys.webapi.utils.i18n.*" %>

The file contains six functions:

* buildCategoryList()—Builds a list of all categories.

* getCategoryList()—Gets a category list for the provided category and list.

* getCategoryDescription()—Gets a category description for the provided
category.

* getResponse ()—QGets a response using the list of all categories.

* getCategory)—Gets a category using the list of all categories.

* getByName ()—Gets a child from of the Root Category by name.

The remaining code creates a form with a drop down list of categories to
choose from and a button to retrieve the FAQs related to the selected category.
The form also provides an input box for your direct questions, and a button to
submit your questions. This button will retrieve all the FAQs in the selected
category that relate to your question. In addition to the list of FAQs, it will also
provide a number that represents the confidence score (ranging from 0 to 100)
that the FAQ relates to your direct question. Once you make a selection from
this list, you are presented with the answer, and also a group of radio buttons
that you can used to provide feedback about the accuracy of the answer:

try
{
wss = Genesys.webapi.media.faq.direct._faq_init.get_fag_root();
_faq_root wss =
Genesys.webapi.media.faq.direct._faq_init.get_faq_root();
buildCategoryList();

String id= i18nsupport.GetSubmitParametr (request, "id");

String typeOfRequest= i18nsupport.GetSubmitParametr (request,
"submit_type");

String ctgName= i18nsupport.GetSubmitParametr (request, "ctg");

String question= i18nsupport.GetSubmitParametr (request,
“question");

String accuracy= i18nsupport.GetSubmitParametr (request,
"accuracy");

if (accuracy != null 8& accuracy.equals("") == false)

{
_faq_category ctg = getCategory(id);
double ac = Double.parseDouble(accuracy);

Genesys Multimedia 7.6 @

Chapter 9: Multimedia Simple Samples for Java FAQ

This code processes the accuracy feedback. The FAQ API updates the
accuracy rating of the answer to the original question, based on the selected
accuracy radio button:

if (ctg !'= null)
wss.add_feedback (question, ctg, ac);

//Lets show the initial screen after rating
id = IIII;
typeOfRequest = "";

}

if ((id == null || id.equals("")) && (typeOfRequest == null ||
typeOfRequest.equals("")))
{
%>
<h2 align="center"MWeb Self Service example</h2>
{FORM method="post" action="FAQ.jsp" >
<hr width="100%" align="center")
<h2>Select the Scope</h2)
{SELECT name="ctg")
<OPTION selected)AlLLl Categories
<%
List ct = wss.get_root_category().get_subcategory_List();
for (Iterator i = ct.iterator(); i.hasNext();)
{
_faq_category item = (_faq_category)i.next();
out.println("<OPTION > " + item.get_name());
}
%>
<{/SELECT

<h2>Get the List of ALL FAQK/h2)

{INPUT type= "submit" value="Get FAQ" name="submit_type")
<%
if (wss.is_model_available())
{
%y
<hr width="100%" align="center")
<h2>Get the Answer to the Question<{/h2)

{TEXTAREA name="question" rows="3" cols="40">{/TEXTAREA)

INPUT type= "submit" value="Get Answer" name="submit_type">
</FORM>
<%

Web API Client—Developer’s Guide 159

Chapter 9: Multimedia Simple Samples for Java FAQ

}
Yelse if (id != null 83 id.equals("") == false){
_fag_response r = getResponse(id);
%y
<h1> Text of the Answer </h1>
<%
if (r !=null)
out.println(r.get_text());
out.printLn("

<br)

Return</a)");
if (question != null && question.equals ("") == false)
{
out.println("
BRMriginal question:
");
out.println("<FORM method=\"post\" action=\"FAQ.jsp\">");
out.println("<TEXTAREA readonly name=\"question\"
rows=\"3\"
cols=\"40\">"+question+"</TEXTAREA>");
out.println("<INPUT type= \"hidden\" value=\"" + id + "\"
name=\"id\">");
%>

This code displayes the accuracy radio buttons:

{BR>

Please rate the accuracy level of the answer for your question:

<{BR>

<input type="radio" value="-1" name="accuracy"
onclick="document.forms[0].submit();">-10

<input type="radio" value="-0.5" name="accuracy"
onclick="document.forms[@].submit(); ">-5

<input type="radio" value="-0" name="accuracy"
onclick="document.forms[@].submit(); " >0

<input type="radio" value="0.5" name="accuracy"
onclick="document.forms[@].submit(); ")5

<input type="radio" value="1" name="accuracy"
onclick="document.forms[0].submit(); ">10

<
out.println("</FORM>");

}

Yelse
{
if (question == null)

question =
current_ctg = getByName (ctgName);

// Request for classification
if (("Get Answer".equalsIgnoreCase(typeOfRequest)) &&

160 Genesys Multimedia 7.6 @

Chapter 9: Multimedia Simple Samples for Java FAQ

(question.trim().Llength()>@))

DecimalFormat format = new DecimalFormat("00.");
out.println("<h1>Answers List</h1>");
List faq = wss.get_classification_Llist(current_ctg,
guestion, 0.1);
out.println("");
for (Iterator i = faq.iterator(); i.hasNext();)
{
_faq_result item = (_faq_result) i.next();
out.println("
<a href=\"javascript:document.forms[0].id.value=""+
ctglist.index0f (item.get_category())+
"'; document.forms[0].submit (); \">" +
getCategoryDescription(item.get_category()) + " ("+
format.format (item.get_confidence_level()) + ") </

a>");
}

It is important to note that because the original question is entered on the first

page of the web form, and the answer is rated on the third page, we have to

pass the original question in either a hidden form field or a read-only text area.

This complicates our example slightly. If you do not want to implement the

feedback feature, simply remove the code that relates to this functionality. The
following code shows an example of how the original question is passed from

one page to the next in a read-only text-area:

out.println("");
out.println("Return<bd");
out.println("<BRY><BRMOriginal question:
");

out.println("<FORM method=\"post\" action=\"FAQ.jsp\">");
out.println("<TEXTAREA readonly name=\"question\" rows=\"3\"

cols=\"40\")>"+question+"</TEXTAREA)");

out.println("<INPUT type= \"hidden\" value=\"\" name=\"id\">");

out.println("</FORM>");
Yelse
{ // Request for FAQ List
out.println("<h1>FAQ List</h1>");
List faq = wss.get_faq_Llist(current_ctg, 0);
out.println("<ol)>");
for (Iterator i = faq.iterator(); i.hasNext();)
{
_faq_result item = (_faq_result) i.next();
out.println("<LIX<a href=\"FAQ.jsp?id=" +
ctglist.index0f (item.get_category()) + "\">" +
getCategoryDescription(item.get_category()) +
item.get_frequency () + ") </ad");

}
out.println("");

out.println("Return</a)");

Web API Client—Developer’s Guide

161

Chapter 9: Multimedia Simple Samples for Java Open Media Sample

Open Media Sample

Purpose

This sample uses a JSP to present a web form from which you can enter
information to create, update, and cancel a new interaction. This web form
allows you to enter information for Interaction Server, the Interaction ID, and
the media type. It also lets you enter data to be attached to the interaction, such
as first and last name, and three key-value pairs. Fields such as host, port ID,
and workflow queue are automatically filled into the form for you. The
information for these fields is provided by Configuration Server.

Warning! For this sample to work reliably, your custom application’s code
must ensure that each interaction generated and submitted by the
application has a unique InteractionID. Neither the sample code
nor Interaction Server error-check for this requirement, so meeting
it is your code’s responsibility.

You could choose to allow Interaction Server to generate a unique
interaction identifier. In this case, you would design your
application to pass an empty InteractionID, so that Interaction
Server will assign its own InteractionID and return that generated
ID in the Ack event.

The Open Media Sample is a JSP file that shows how to:

* Connect to Interaction Server using the Interaction API.
e Submit an interaction.

* Update an interaction

¢ (Cancel an interaction.

Functionality Overview

Files

162

The following sections review the code used in implementing the different
Open Media functions:

¢ “Setting the Content Type and Character Encoding” on page 163
* “Loading Libraries and Importing Files” on page 163
* “Handling Content” on page 163

The .../ItxSubmit directory contains the Open Media Sample. The sample
consists of a single file, ItxSubmit.jsp.

Genesys Multimedia 7.6 @

Chapter 9: Multimedia Simple Samples for Java Open Media Sample

Code Explanation

The following subsections explain the code in ItxSubmit.jsp. They appear in
the same order as the code in the JSP. In some places, however, several lines of
code have been omitted in order to focus your attention on the most important
points. In these cases, the missing lines have been replaced with “...”.

Setting the Content Type and Character Encoding

The first line is a call to the response.setContentType () method. This sets the
content type or character encoding to use in the response to the client. The
code retrieves this value under the Options tab for the Universal Callback
Server Application object in Configuration Server:

{kresponse.setContentType("text/html; charset=" +
i 18nsupport.GetCharSet()); %>

Loading Libraries and Importing Files
Then the sample code loads the following libraries into memory:

{%e page import="Genesys.webapi.system.loadbalancing.*" %>

{%e page import="Genesys.webapi.utils.i18n.*" 7>

{%e page import="Genesys.webapi.media.common.*" %>

{%e page import="Genesys.webapi.media.interaction.direct.*" %)

{%e page import=
"Genesys._workflow_engine.protocols._workflow_engine_protocol.*"

%>

{%e page import="Genesys._workflow_engine.protocols.common.*" %>

{%e page import="com.genesyslab.list.*" %)

{%e page import="java.io.*" %>

{%e page import="java.net.*" %>

{%e page import="java.lang.System" %)

The code also needs to access the constants. jsp file:
<%e include file="../constants.jsp" %>
Handling Content

Creating the HTML Header
Next the code writes some HTML header tags:

<html)
<head)

Web API Client—Developer’s Guide 163

Chapter 9: Multimedia Simple Samples for Java Open Media Sample

<link rel="stylesheet href="/WebAPISamples761/icc_style.css"

type="text/css">

{title>MCR Samples 7.6.1 Interactions Server<{/title>

{/head)

{body LANGUAGE=javascript onload="return window_onload();"
background="/WebAPISamples761/fon.gif">

Retrieving Parameters

Now the Java code section retrieves the request parameters, such as the host
and port name, first and last name, and so on.

Note: The following technique is for demonstration purposes only. Do not
use this technique in a production application.If you do not send host
and port information directly to the browser, you can reduce the risk of
security breaches.

<h
String strError = "";
boolean bError = false;
int rc = 0;

String strHost = request.getParameter ("host");
if(strHost == null || strHost.equals("")) strHost = "";

String strPort = request.getParameter ("port");
if(strPort == null || strPort.equals("")) strPort = "";

Creating a New Instance

This section of code declares a new instance of _interaction_direct for
communicating with Interaction Server. If the user has chosen an action, the
code then instantiates the new instance using the host and port IDs of
Interaction Server. It also registers the user with the Interaction Server. If there
are any errors or exceptions, the code now handles them.

_interaction_direct itx = null;
if (strAction != null && IstrAction.equals(""))
{
try
{
itx = new _interaction_direct (strHost,
Integer.parselnt(strPort));
rc = itx.register ("JSPSample");
if (rc != _interaction_direct.__rc_ok)
{
strError = itx.lasterror();
bError = true;

)

Genesys Multimedia 7.6 @

Chapter 9: Multimedia Simple Samples for Java Open Media Sample

}
catch (_communication_exception iex)
{
strError = iex.toString();
bError = true;
}
catch (_we_pack_exception iex)
{
strError = iex.toString();
bError = true;
}

Getting Load Balancer and Processing Your Request

This section of code checks to see whether you have selected the Send action. If
so, it collects the parameter data sent from the browser into a TKVList for
transmission to Interaction Server. Then it creates a load balancer instance and
submits the data. In case the server generated the interaction ID, the code sets
its interaction ID variable to the value stored on the server. If the interaction ID
is not generated by the server you must ensure its uniqueness. After the action
has been processed, the load balancer instance is set to nulLl to avoid leaving an
orphaned connection.

if (strAction != null 88 strAction.equals("Send") && bError == false)
{
try
{
com.genesyslab. list.TKVList user_data = new com.genesyslab.Llist.TKVList();
user_data.addString (attachDataName1l, attachDataValuel);
user_data.addString (attachDataName2, attachDataValue2);
user_data.addString (attachDataName3, attachDataValue3);
user_data.addString ("FirstName", strFirstName);
user_data.addString ("LastName", strLastName);
if (bAgree)
user_data.addInt ("Agree", 1);
else
user_data.addInt ("Agree", 0);
user_data.addInt ("Gender", iGender);

SvcDispatchersvcDispatcher= new SvcDispatcher();
Long LlongTenantID= svcDispatcher.getTenantId(strTenant);
int iTenantID= -1;

if (longTenantID != null)
iTenantID = longTenantID.intValue();

rc = itx.submit(strMediaType, strlteractionID, strScriptName, iTenantID,
user_data);

Web API Client—Developer’s Guide 165

Chapter 9: Multimedia Simple Samples for Java Open Media Sample

if (rc != _interaction_direct.__rc_ok)
{
strError = itx. lasterror();
bError = true;
}
//1f lteractionID was generated by server.
striteractionID = itx.get_interaction_id();

svcDispatcher= null;

)

If you have selected Update, the JSP will delete the third key-value pair from
the interaction that you specify, using the change_properties method.

else if (strAction != null &8 strAction.equals("Update") &8 bError == false)
{
try
{
com.genesyslab.list.TKVList deleted_user_data = new
com.genesyslab.list.TKVList(); //Remove only one KV pair
deleted_user_data.addString (attachDataName3, attachDataValue3);

com.genesyslab. list.TKVList user_data = new com.genesyslab.list.TKVList();
user_data.addString (attachDataName1, attachDataValuel);
user_data.addString (attachDataName2, attachDataValue2);
user_data.addString ("FirstName", strFirstName);

user_data.addString ("LastName", strLastName);

if (bAgree)
user_data.addInt ("Agree", 1);
else
user_data.addInt ("Agree", 0);
user_data.addInt ("Gender", iGender);
rc = itx.change_properties(striteractionID, user_data, deleted_user_data);

If you have chosen to cancel the interaction, your instance of
_interaction_direct will issue the stop_processing method, which cancels the
interaction.

else if (strAction != null &8 strAction.equals("Cancel") &8 bError == false)
{
try
{

rc = itx.stop_processing(striteractionID, 12345, "Put your reason here");

Finally, the JSP closes the connection to Interaction Server. If your action was
successful, you will receive a message to that effect in the Response from
Server section of your browser window.

166 Genesys Multimedia 7.6 @

Chapter 9: Multimedia Simple Samples for Java Open Media Sample

try
{

if (itx != null)

itx.close();

itx = null;
)
catch (_communication_exception iex)
{

strError = iex.toString();

bError = true;

)

if (bError == false &8 strAction != null && !strAction.equals(""))
strError = "Interaction succesfully submitted to Interaction server. Please check
Interaction Server log for details.";
%>

Constructing the HTML Body

Next, the code includes the HTML code to create the input boxes, the Send,
Update, and Cancel buttons, and the field that holds messages from the server:

{form method="post" action="ItxSubmit.jsp">
{H2 align="center")MCR 7.6.1 samples. Custom Web Form Submit.</H2><BR)>

{table border="1">»
<t

{td colspan=2 align="center">{H2)Enter information for Interaction Server<{/H2><{/td>
/tr>
{tr)

{td>Interaction Server host<{/td)

{td>}<INPUT TYPE="String" NAME="host" value="<%=strHost%>"></td>
/tr>

Handling User Events

Four JavaScript functions handle user events:

* window_onload()—Called every time the page is loaded. This function
currently sets the form’s default media type, but you may also modify it to
execute any other tasks that should be carried out whenever the page is
loaded.

* selMedia_onChange ()—Sets the media type to the value selected by the
user.

* getSelectedOption(opt)—Takes a collection of options for a field and
returns the option that has been selected by the user.

* setSelection(objControl, Value)—Sets the value of a document field
(ObjControl) to Value.

Web API Client—Developer’s Guide 167

Chapter 9: Multimedia Simple Samples for Java Open Media Sample

168 Genesys Multimedia 7.6 @

S

N’

GENESYS

AN ALCATEL-LUCENT COMPANY

Chapter

1 0 Multimedia Simple Samples
for .NET

This chapter examines Genesys Multimedia’s simple, web-based samples for
.NET, and their code. (Java developers should instead see Chapter 9,
“Multimedia Simple Samples for Java,” on page 95.) This chapter covers the
following topics:

« Overview, page 169

+ Shared Files, page 171

« Callback Sample, page 173

« Chat Sample, page 179

« Chat with AJAX Sample, page 192

« E-Mail Sample, page 202

« Open Media Sample, page 207

« Stat Server Sample, page 217

« Universal Contact Server Sample, page 226

Note: The font size for the code in this chapter has been reduced to display
long code lines.

Overview

This chapter explains how to implement voice callback, chat, e-mail, statistics,
history, and Open Media submission functions in your web application, by
reviewing the key functions in the respective samples. The samples come with
the Multimedia Interactive Management CD. For information on installing the
samples, see Chapter 2, “About the Samples,” on page 51.

Web API Client—Developer’s Guide 169

Chapter 10: Multimedia Simple Samples for .NET Overview

Please note the following about the sample code presented and organized in
this chapter:

* The code is excerpted from the actual sample code, as the actual code is
too long to be displayed here.

* The excerpted code illustrates a point, or calls attention to a particular
feature. You should refer to the actual code and to the appropriate Web API
reference(s) for further information.

* Although this chapter reviews the different functions that each sample
performs, some of these functions, and the excerpted code, may not be
presented in the same order or layout as in the sample.

Note: The LoadBalancer.GetServiceInfo(ConfServerClientType, String)
method has been deprecated. It has been replaced by the
LoadBalancer.GetServiceInfo (CfgAppType, String) method.

Samples Included

The Simple Samples discussed here are:

* Web-Based Voice Callback

* Web-Based Chat

* Web-Based Chat with AJAX

* Web-Based E-mail

* Web-Based Open Media Interaction Submission
* Web-Based Stat Server

* Web-Based Universal Contact Server

Web-Based Voice Callback

This sample demonstrates how to use the callback API (see “Callback™ on
page 28) to implement voice callback on a web form.

Web-Based Chat

This sample demonstrates how to use the chat API for the Flex Chat protocol
(see “Chat” on page 31) to implement a chat feature on a web form.

Web-Based Chat with AJAX

This sample demonstrates how to use the chat API for the Flex Chat protocol
(see “Chat” on page 31) to implement a chat feature on a web form.

170 Genesys Multimedia 7.6 @

Chapter 10: Multimedia Simple Samples for .NET Shared Files

Web-Based E-Mail

This sample demonstrates how to use the e-mail API (see “E-Mail” on
page 35) to send e-mail using a web form.

Web-Based Open Media

This sample demonstrates how to use the Open Media API (see “Open Media”
on page 37) to submit and update an interaction using a web form.

Web-Based Stat Server

This sample demonstrates how to use the Stat Server API (see “Statistics
Packages” on page 39) to select predefined statistics and retrieve their current
value using a web form.

Web-Based Universal Contact Server

This sample demonstrates how to use the Universal Contact Server API (see
“Universal Contact Server” on page 39) to access a contact’s interaction
history using a web form.

Files Included: .ASPX Versus .ASPX.CS

Each Simple Sample includes at least one pair of files named and organized
according to the following pattern:

* <SampleName).aspx.cs: C# source file that provides core package
inheritance statements, declarations, and functions. The sample
descriptions in this chapter focus on these C# files.

* <SampleName>.aspx: Controls the presentation of the C# code on a
generated server page. Defines the basic form design, including some
JavaScript functions. Also provides certain directives for IIS
(Internet Information Server), as in this example:

{%e Page Language="C#" AutoEventWireup="true"
CodeFile="Callback.aspx.cs" Inherits="Callback_Callback" %>

Shared Files

The files listed below are used in the web samples. The following subsections
group the substantive files into categories and explain them in detail.

* CommLib.js—see “Common Functions” below.

* App_Code\Constants.cs—see “Constants” on page 172.
* Global.asax—see “Startup Shutdown, and Load Balancing” on page 172.

Web API Client—Developer’s Guide 171

Chapter 10: Multimedia Simple Samples for .NET Shared Files

* icc_style.css—see “Style Sheets” on page 173.
* index.htm—see “Greetings Page” on page 173.

* ip_description.xml—XML describing the installation package.
* mcr_style.css—see “Style Sheets” on page 173.
* read_me.html—HTML describing the installation package.

* Web.Config—see “Licensing, Authentication, and Error Reporting” on
page 172.

* arrow.gif—see “Graphics” on page 173.

* fon.gif—see “Graphics” on page 173.

* genesyslogo-trans.gif—see “Graphics” on page 173.

* Ims\webapiserverdotnet. Lms—provides log messages for these samples.

File Descriptions

172

Common Functions

The CommLib.js file stores common functions that all the samples use. It
contains functions that:

* Identify a user’s web browser.
* Retrieve the handle to HTML frames or control objects.
e Perform basic string manipulation and encoding.

* Retrieve submitted form parameters and return the current time.

Constants

The constants.cs file defines one private and one public constant, which
together identify the tenant:

private string strTenantName = “<YOUR_TENANT_NAME_HERE)";
public string TenantName

Startup Shutdown, and Load Balancing

The Global.asax file handles initiation and shutdown for the applications,
sessions, server-side load balancing, and pertinent system tables and variables.

Licensing, Authentication, and Error Reporting

The Web . Config file inherits most of its contents from Microsoft’s NET
Framework, with the addition of Genesys licensing parameters. Other editable
parameters here control ASP.NET’s authentication mode, and enable you to
substitute custom error pages for generic HTML error pages (403, 404, and so
on).

Genesys Multimedia 7.6 @

Chapter 10: Multimedia Simple Samples for .NET Callback Sample

Presentation

Greetings Page

The index.htm file is the main or greeting page to access the web samples. The
file presents an HTML table menu with links to each of the samples.

Graphics

Arrow.gif, fon.gif, and genesyslogo-trans.gif are graphics files used in
index.htm and in various samples. The Arrow.gif graphic displays a forward
arrowhead. The fon.gif graphic is tiled as background wallpaper. The
Genesyslogo-trans.gif graphic displays the Genesys company logo.

Style Sheets

The cascading style sheet (CSS) files, icc_style.css and mer_style.css,
contain instructions for adding the bold font to header tags, adding tables, and
other layout code. This guide does not discuss CSS technologies. You should
be able to easily find CSS tutorials on the Web.

Callback Sample

Purpose

This section presents the purpose, functionality overview and code
implementation for the Callback Sample.

The Callback Sample shows how to:

* Collect user data from a form submission.

* Mask potentially dangerous server-side data or symbols such as <, >, and ".
* Connect to Universal Callback Server using the Callback API.

e Submit a callback request.

* Cancel a callback request.

* Get information about a request.

* Analyze the server’s responses to requests, handling errors.

* View a list of the user’s callback requests.

* Display request results in a table.

Web API Client—Developer’s Guide 173

Chapter 10: Multimedia Simple Samples for .NET Callback Sample

Functionality Overview

Files

The following sections review the code used in implementing the different
callback functions:

* “Converting Time Data and Drawing the Form” on page 174
* “Declaring and Importing Packages” on page 175

* “Declaring Variables” on page 175

e “Trapping HTML Characters” on page 176

* “Retrieving Form Data” on page 176

* “Processing the Request” on page 176

The .. \Callback directory contains the Callback Sample. The sample consists
of two files, Callback.aspx and Callback.aspx.cs.

Code Explanation

174

Handling User
Events

The following subsections explain the code in the Cal lback.aspx and
Callback.aspx.cs files. They appear in the same order as the code in the
respective files. In some places, however, code snippets omit several lines of
code in order to focus your attention on the most important points. In these
cases, the missing lines have been replaced with “...”.

User Interface Implementation

The Cal Lback.aspx file contains most of the code that presents information to
the user.

Converting Time Data and Drawing the Form

The Cal lback.aspx page begins with a ConvertTime (UTCtime) function that
converts UTC (Universal Time, Coordinated; formerly Greenwich Mean Time)
time values into the local date and time.

Next, some HTML code defines a user input form, including drop-down lists
enabling the user to select the local time and date.

The Cal Lback.aspx file also includes several JavaScript functions to ensure that
mandatory fields are filled, to gather the user’s input, and to process this input:

* window_onload()—called every time the page is loaded. This function
currently sets the form’s default callback time to the time the page was
loaded, but you may also modify it to execute any other tasks that should
be carried out whenever the page is loaded.

Genesys Multimedia 7.6 @

Chapter 10: Multimedia Simple Samples for .NET Callback Sample

* on_view_Llist()—triggered by the View List Submit action. Returns false
if the user has not entered a contact number, thus preventing the
submission of the form.

* on_request ()—triggered by the Request Callback Submit action. Returns
false if the user has not entered a contact number, thus preventing the
submission of the form. Otherwise, it generates a start and end date for the
callback request.

* GetUTCTime(date)—converts the specified date to the equivalent UTC
time.

* double_digit(Value)—ensures that the Value passed to the function
contains two digits.

* setSelection(objControl, Value)—sets the selected value of a document
field (0bjControl) to Value.

e getSelectedOption(opt)—takes a collection of options for a field and
returns the option that has been selected by the user.

* on_reset()—resets the form to its default values.

Logic Implementation

The Callback.aspx.cs file contains most of the Callback Sample’s logic. The
subsections below explain the code in that file.

Declaring and Importing Packages

The Callback.aspx.cs file begins by declaring external packages:

using Genesyslab.Platform.Commons.Collections;

using Genesyslab.Platform.Commons.Protocols;

using Genesyslab.Platform.WebMedia.Protocols;

using Genesyslab.Platform.WebMedia.Protocols.Callback;

using Genesyslab.Platform.WebMedia.Protocols.Callback.Events;
using Genesyslab.Platform.WebMedia.Protocols.Callback.Requests;
using Genesyslab.WebApi.Core.ConfigServer;

using Genesyslab.WebApi.Core;

using Genesyslab.Platform.Configuration.Protocols.ConfServer;

Declaring Variables

Next, the Cal Lback.aspx.cs file’s Callback_Cal lback class declares internal
variables. These variables represent data that the user enters in the form drawn
by Callback.aspx:

public partial class Callback_Callback : System.Web.UI.Page
{

string svcHost;

int svcPort;

string strAction;

Web API Client—Developer’s Guide 175

Chapter 10: Multimedia Simple Samples for .NET Callback Sample

string strFirstName;

string strLastName;

string strPhoneNumber;

string strEmailAddress;

string strMedia;

MediaType mtMedia = MediaType.Voice;

Trapping HTML Characters

Next, the Callback.aspx.cs file’s mask_html () function defines HTML-safe
transformations of certain characters. Later functions in the file call this
function on user-entered data.

Retrieving Form Data

The Page_Load () function executes when the application displays pages or the
user submits form data. It first defines some hidden fields on these pages, using
statements like these:

ClientScript.RegisterHiddenField("StartTime", "");
StartTime.Visible = false;
ClientScript.RegisterHiddenField("EndTime", "");
EndTime.Visible = false;

Next, it defines a query-string collection, and collects user data from the
submitted form into the variables declared above:

NameValueCollection gs = Request.QueryString;
strAction = cmd. Text;
strFirstName = FirstName.Text;
strLastName = LastName.Text;
strPhoneNumber = PhoneNumber.Text;
strEmai LAddress = Emai lAddress.Text;
strMedia = Media.Text;

This statement searches the query string for an strAction (command) value, if
that information was not posted with the form data:

if (strAction == "")
strAction = gs.Get("cmd"); //try to get it from Query String

Processing the Request

The following statement accesses global constants:

SimpleSamplesConstants ssc = new SimpleSamplesConstants();

176 Genesys Multimedia 7.6 @

Chapter 10: Multimedia Simple Samples for .NET Callback Sample

This branch tests for an empty strAlias, as an indicator that no
Universal Callback Server instance is already dedicated to the pending request:

if (strAlias == "")
{

Getting Load The next code block creates a load-balancer instance, and seeks a new instance
Balancer and of Universal Callback Server for this request.

Universal Callback

Server Instance

try

{
ServiceInfo si = LoadBalancer.GetServicelInfo

(CfgAppType.CFGUniversalCallbackServer, ssc.TenantName);

svcHost = si.Host;
svcPort = si.Port;
bServiceAvailable = true;
strAlias = si.Alias;

}

catch (LoadBalancerException e1)

{

strErrorMessage +=
“Callback service is not available at this time.
lease try it later.";

This alternative branch seeks to reuse an existing Universal Callback Server
instance that has already been dispatched:

else
{
try
{
ServiceInfo si = LoadBalancer.GetServiceInfo(strAlias);
svcHost = si.Host;
svcPort = si.Port;
bServiceAvailable = true;
}
catch (LoadBalancerException el)
{
strErrorMessage +=
"Callback service is not available at this time.
Please try it later.";
}

)

Preparing Classes This code block prepares classes for request submissions:
for Requests

if (bServiceAvailable)
{

IMessage imResponse = null;

Web API Client—Developer’s Guide 177

Chapter 10: Multimedia Simple Samples for .NET Callback Sample

178

Submitting
Requests

Cleaning Up

Uri callbackServerURI = new
Uri("tcp://" + svcHost + ":" + svcPort.ToString());
Endpoint callbackEndPoint = new Endpoint(callbackServerURI);
Genesyslab.Platform.WebMedia.Protocols.CallbackProtocol
callback = new CallbackProtocol(callbackEndPoint);
//callback.EnableLogging(new TracelLogger());
cal lback.Open(); ...

The remaining body of the Callback.aspx.cs file consists of several branches
like the snippet below. Each branch attempts to execute a specified request by:

1. Filling a collection with user-entered data.

2. Submitting the resulting request to the Universal Callback Server.
3. Analyzing the response.
4

Relaying any returned error messages.
if (strAction == "Request callback")

KeyValueCollection userdata = new KeyValueCollection();
userdata.Add ("FirstName", strFirstName);

userdata.Add ("LastName", strLastName);

userdata.Add ("Emai LAddress", strEmailAddress);

RequestCal lback reqCallback =
RequestCal lback.Create (strPhoneNumber,
mtMedia, false, strStartTime, strEndTime, "new", userdata);
imResponse = callback.Request(reqCallback,
new TimeSpan(@, 0, 30));
if (imResponse != null &3 imResponse.Name
== EventAck.MessageName)
{
EventAck eventAck = imResponse as EventAck;
strRequestId = eventAck.Requestld;
strAction = "View List";
}
else if (imResponse != null && imResponse.Name ==
EventError.MessageName)
{
EventError eventError = imResponse as EventError;
}
}

The Callback.aspx.cs file ends by disconnecting from the Universal Callback
Server—an important step to avoid leaking system resources:

callback.Close();

Genesys Multimedia 7.6 @

Chapter 10: Multimedia Simple Samples for .NET Chat Sample

Chat Sample

This section presents the sample’s purpose, functionality overview, code
implementation, and customization information.

Purpose

The Chat Sample demonstrates how to add a simple chat feature to any web
form that supports .NET Active Server Pages functionality.

Functionality Overview

The following sections review the code used in implementing the different chat
functions:

Files

“Declaring and Importing Packages” on page 182
“Declaring Variables” on page 183

“Retrieving Form Data” on page 183
“Connecting to Chat Server” on page 184
“Creating a Chat Session” on page 185
“Handling Content” on page 187

“Closing the Connection” on page 191

The ...\Chat directory contains the HTML Chat Sample. The sample consists
of five files:

ChatCommand.aspx and ChatCommand.aspx.cs—files that contain most of the
chat logic.

ChatFrameSet.htm—a frameset that holds the ChatCommand.aspx and
ChatPanel.aspx files.

ChatPanel.aspx and ChatPanel.aspx.cs—files that contain the code to
create a chat panel with input boxes for entering the chat message. All data
is sent to the parent form.

Code Explanation

The Chat Sample separates user interface and logic components. The
subsections below explain the specific functions and the code for each of these
components.

Web API Client—Developer’s Guide 179

Chapter 10: Multimedia Simple Samples for .NET Chat Sample

User Interface Implementation

The interface code demonstrates how to present form controls such as panels,
input boxes, buttons, and so on. The user initially accesses these controls
through the ChatFrameset.htm page, but the code resides primarily in the
ChatPanel.aspx and, to a lesser extent, ChatPanel.aspx.cs files. The code is
divided into these functions:

* “Drawing the Form”
e “Handling Content”
Drawing the Form

The ChatPanel.aspx file contains several JavaScript functions to handle
connection state when the page is loaded or unloaded:

function window_onload ()

{
bCommandFrameReady= false;
disconnected();

Next, the ChatPanel.aspx file provides HTML that draws the page, gathers
user information, provides buttons to call the functions that start and stop chat,
and displays the chat transcript:

{td)First name:</td)
<{tdX<input type="text" name="FirstName" value=""/><{/td>
{td>Last name:</td>
<td><input type="text" name="LastName"/ value=""/></td>

{td colspan="4" align="center")
Start chat<{/a>

{a href="javascript:on_disconnect();" >Stop chat</a)

{td colspan="4")
{textarea cols="80" rows="10" id="transcript"

name="transcript">{/textarea)

tdy. ..

The ChatPanel.aspx.cs file contains a single class (ChatSample_ChatPanel)
containing the single Page_Load () function:

protected void Page_Load(object sender, EventArgs e)

180 Genesys Multimedia 7.6 @

Chapter 10: Multimedia Simple Samples for .NET Chat Sample

Declarations and
Header

Handling Content

The ChatPanel.aspx file presents and gathers most of the information
exchanged with the user. This section includes these subtopics:

¢ “Declarations and Header”
¢ “Indirect Functions for User Events”

¢ “Functions to Handle User Events”

The ChatPanel.aspx file begins by presenting an IIS directive, a DTD
declaration, and an HTML header:

{%e Page Language="C#" AutoEventWireup="true" CodeFile="ChatCommand.aspx.cs"
Inherits="ChatSample_ChatCommand" validateRequest="false" %>

<IDOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http=//www.w3.or‘g/TR/
xhtml1/DTD/xhtml1-transitional.dtd")

<html xmlns="http://www.w3.0rg/1999/xhtml" >

<head)

<link rel="stylesheet" href="../../mcr_style.css" type="text/css"/>
{title>MCR Samples 7.6.1 Chat</title)

{/head)

Indirect Functions
for User Events

Next, the ChatPanel.aspx file contains this basic function:

* window_onload()—sets the logic when the window is first loaded into
memory.

The chat panel resides in the frame named itf. You can invoke these functions

from that frame:

* on_connect ()—calls the on_connect () function in the page residing in the
itf frame.

* on_disconnect ()—calls the on_disconnect () function in the page residing
in the itf frame.

* on_send()—calls the on_send () function in the page residing in the itf
frame. Also prevents new requests from being sent to Chat Server until the
response from the previous request has arrived.

* on_refresh()—calls the on_refresh() function on the page residing in the
itf frame.

* parent.main.CommandFrameReady ()—boolean flag for making the frame
ready to accept a command.

* message_onkeypress ()—sets the bCommandFrameReady variable to false and
calls the on_user_typing () function on the page residing in the itf frame.

Finally, the HTML code creates input boxes for users to fill in their personal
information and their message:

{form method="post" action="ChatCommand.aspx" runat="server")
{asp:TextBox ID="cmd" AutoPostBack="false" Text="" runat="server" />

Web API Client—Developer’s Guide 181

Chapter 10: Multimedia Simple Samples for .NET Chat Sample

{asp:TextBox ID="chat_alias" AutoPostBack="false" Text="" runat="server" /)
Casp:TextBox ID="first_name" AutoPostBack="false" Text="" runat="server" /)
{asp:TextBox ID="last_name" AutoPostBack="false" Text="" runat="server" /)

Functions to
Handle User
Events

182

The separate ChatCommand. aspx file contains five JavaScript functions to handle
user events:

window_onload ()—calls either the connected () or disconnected() methods
in the main form, depending on the value of the itf_response variable.

on_connect ()—sets the cmd variable to connect, sets the necessary data to
connect to Chat Server, and calls the HTML form submit () function.

on_disconnect ()—sets the cmd variable to disconnect and calls the HTML
form submit () function.

on_send ()—sets the cmd variable to send, sets the message to send with the
value from the strMessage argument, and then calls the HTML form
submit () function.

on_refresh ()—sets the cmd variable to send and calls the HTML form
submit () function.

on_user_typing()—calls the parent.main.CommandFrameReady ()
function.Sets the cmd variable to user_typing, the msg2send variable to "",
and calls the HTML form submit () function.

Logic Implementation

The ChatCommand.aspx.cs file contains the Chat Sample’s main logic. The
subsections below explain the code in this file.

Declaring and Importing Packages

The ChatCommand. aspx.cs file begins by declaring external packages:

using Genesyslab.Platform.Commons.Collections;

using Genesyslab.Platform.Commons.Protocols;

using Genesyslab.Platform.WebMedia.Protocols;

using Genesyslab.Platform.WebMedia.Protocols.FlexChat;

using Genesyslab.Platform.WebMedia.Protocols.FlexChat.Events;
using Genesyslab.Platform.WebMedia.Protocols.FlexChat.Requests;
using Genesyslab.WebApi.Core.ConfigServer;

using Genesyslab.WebApi.Core;

using Genesyslab.Platform.Configuration.Protocols.ConfServer;

Genesys Multimedia 7.6 @

Chapter 10: Multimedia Simple Samples for .NET

Declaring Variables

Next, the ChatCommand. aspx.cs file

Chat Sample

’s ChatSamp Le_ChatCommand class declares

internal variables. These variables represent data that the user enters in the

form drawn by ChatCommand.aspx:

public partial class ChatSampl
{

str_cmd
str_chat_alias
str_first_name
str_last_name
str_email_address
str_secure_key
str_user_id
str_session_id
str_timeZoneOffset
str_script_pos
str_msg2send
str_subject
str_itf_response
string str_itf_message
string str_QueueKey
FlexTranscript transcript
bool clear_transcript
string svcHost

int svcPort

bool bServiceAvailable
SimpleSamplesConstants ssc

string
string
string
string
string
string
string
string
string
string
string
string
string

Retrieving Form Data

The Page_Load () function executes

e_ChatCommand : System.Web.UI.Page

nn
i
nn
i
nn
i
nn
i
nn
i
nn
i
nn
i
nn
i
nn
i
nn
i
nn
i
nn

"UNDEFINED";

"Chat inbound queue";
null;

false;

nn
i

_'I;
false;
new SimpleSamplesConstants();

when the application displays pages or the

user submits form data. It collects user data from the submitted form into the

variables declared above:

protected void Page_Load(o

{
str_cmd
str_chat_alias
str_first_name
str_Llast_name
str_email_address
str_secure_key
str_user_id
str_session_id
str_timeZoneOffset
str_script_pos
str_msg2send
str_subject
IMessage imResponse

Web API Client—Developer’s Guide

bject sender, EventArgs e)

cmd. Text;
chat_alias.Text;
first_name.Text;
Llast_name.Text;
email_address.Text;
secure_key.Text;
user_id.Text;
session_id. Text;
timeZoneOffset.Text;
script_pos.Text;
msg2send. Text;
subject.Text;

null;

183

Chapter 10: Multimedia Simple Samples for .NET Chat Sample

Identifying the
Chat Party

Enabling Custom

184

Logging

Within the subsequent try block, this branch ensures that the first- and last-
name fields are filled, so that Chat Server will be able to identify this user:

if (str_first_name == "" || str_last_name == "")
{
str_itf_response = "USERNAMEREQUIRED";
str_itf_message = "Please enter first and last names.";

This statement logs subsequent requests into a Genesys log file. It is an
example of how to enable custom log messages:

LoadBalancer.LogMessage (LogLevel.Trace, "Starting new
chat session.");

Connecting to Chat Server

Chat Server must maintain a live connection between users. This is unlike
e-mail interactions, in which users fill out a form, submit the form, and thereby
end the transaction.

If the load-balancing servlet cannot return an available Chat Server, the sample
code informs the user:

try
{
bServiceAvailable = false;
Servicelnfo si = LoadBalancer.GetServicelnfo
(CfgAppType.CFGChatServer, ssc.TenantName);
svcHost = si.Host;
svcPort = si.WebApiPort;
str_chat_alias = si.Alias;
bServiceAvailable = true;
}
catch (LoadBalancerException el)
{
str_itf_response = "ERROR";
str_itf_message = "Chat service is not available at this time.
Please try it later.";
LoadBalancer.LogMessage(LogLevel.Trace, str_itf_message);

If the load balancer finds a Chat Server, the code returns an alias to that Chat
Server and tries to connect and log the user in:

if (bServiceAvailable == true)
{
Uri chatServerURI = new Uri("tcp://" + svcHost + ":" +
svcPort.ToString());
new Endpoint(chatServerURI);
new FlexChatProtocol (chatEndPoint);

Endpoint chatEndPoint
FlexChatProtocol chat
chat.0Open();

Genesys Multimedia 7.6 @

Chapter 10: Multimedia Simple Samples for .NET Chat Sample

KeyValueCollection userdata = new KeyValueCollection();
userdata.Add("FirstName", str_first_name);

userdata.Add ("LastName", str_last_name);

if (str_email_address != null && str_email_address != "")
userdata.Add ("Emai LAddress", str_email_address);

string strNickName = str_first_name;

if (str_last_name != null && str_last_name.Length > 0)
strNickName = str_first_name + str_last_name.Substring(0, 1);
RequestLogin rl = RequestlLogin.Create(strNickName, 8, userdata);
rL.TimezoneOffset = int.Parse(str_timeZoneOffset);

LoadBalancer.LogMessage (LogLevel.Trace, "Sending RequestLogin to
chat server.");

Analyzing the If Chat Server accepts the connection request, the code displays a welcome
Response message:

if (imResponse != null &3 imResponse.Name ==

EventStatus.MessageName)

{
EventStatus status = imResponse as EventStatus;
if (status.Id != 0 88 status.SecureKey != "")
{

LoadBalancer.LogMessage (LogLevel.Trace,
"Logged to chat server.USERID=" + status.Userld);
str_secure_key = status.SecureKey;
str_user_id = status.Userld;
str_itf_response = "CONNECTED";
str_itf_message = "Welcome to Genesys chat!";

Creating a Chat Session

Joining and The next block attempts to join a chat session. If this request succeeds, the user
Transcribing the joins the session, and the application begins collecting the chat transcript for
Chat Session [ater processing. (This deferred processing differs from the linear processing in
the corresponding Java “Chat Sample” on page 107.)

LoadBalancer.LogMessage (LogLevel.Trace, "Trying to Join to session
for user with USERID=
" + str_user_id); RequestJoin rj = RequestJoin.Create(str_user_id,
str_secure_key, "", ssc.TenantName + ":" +

str_QueueKey, str_subject);

imResponse = chat.Request(rj, new TimeSpan(0, @, 30));

EventStatus es = imResponse as EventStatus;
if (es != null &% es.RequestResult == RequestResult.Success)

{

LoadBalancer.LogMessage (LogLevel.Trace,

Web API Client—Developer’s Guide 185

Chapter 10: Multimedia Simple Samples for .NET Chat Sample

"Joined to session for user with
USERID=" + str_user_id + " and SESSIONID=" +
es.FlexTranscript.Sessionld);

clear_transcript = true;

transcript = es.FlexTranscript;

str_script_pos = es.FlexTranscript.LastPosition.ToString();

str_itf_response = "CONNECTED";

}

Handling If Chat Server fails to accommodate the connection or the join-session
Connection and requests, the following code relays and logs Chat Server’s error messages.
Session Errors The first (inner) branch handles chat-session errors, and the second (outer)
branch connection handles errors:

else
{
str_itf_response = "DISCONNECTED";

if (es.Description != null)

{
str_itf_message = es.Description.Text;
LoadBalancer.LogMessage (LogLevel.Trace, "Can't join to
session for user with USERID=" + str_user_id + ". Reason
"+ str_itf_message);
}
else
{
str_itf_message = "Could not create chat session.";
LoadBalancer.LogMessage (LogLevel.Trace, "Can't join to
session for user with USERID=" + str_user_id);
}
}
}
else
{
str_itf_response = "DISCONNECTED";
if (status.Description != null)
{

str_itf_message = status.Description.Text;
LoadBalancer.LogMessage (LogLevel.Trace, "Can't connect to chat server.

Reason " + str_itf_message);
}
else
{
str_itf_message = "Not connected to chat server, unexpected error.";
LoadBalancer.LogMessage (LogLevel.Trace, "Can't connect to chat server.");
}
}
}
else

186 Genesys Multimedia 7.6 @

Chapter 10: Multimedia Simple Samples for .NET Chat Sample

{
str_itf_response = "ERROR";
str_itf_message = "chat.lasterror()";
}
if (chat != null)
{
chat.Close();
chat = null;
}
}
}
catch (Exception cex)
{

// failed to connect to chat server

str_itf_response = "NOSERVER";

str_itf_message = "Failed to establish Chat ('" + cex.ToString() + "")";
LoadBalancer.LogMessage(LogLevel.Exception, cex.ToString());

Handling Content

This section covers these topics:
* “Handling User Requests”

* “Processing Server Events”
¢ “Masking Data”

Handling User The cmd variable reflects the action or button the user clicked. If the user
Requests clicked the Connect button, then the code attempts to get a handle to the load
balancer:

if (str_chat_alias != "" 8& str_cmd != "connect")
{
try
{
bServiceAvailable = false;
ServiceInfo si = LoadBalancer.GetServiceInfo(str_chat_alias);
svcHost = si.Host;
svcPort = si.WebApiPort;
bServiceAvailable = true;

}

catch (LoadBalancerException el)...
Other possible requests are to disconnect from the server or to send a chat
message. The application provides code to submit, and to respond to
exceptions from, each type of request. Here is the code for a disconnect
request:

if (str_cmd == "disconnect")

{
LoadBalancer.LogMessage (LogLevel.Trace, "Sending
Request Logout for user with USERID=" + str_user_id);

Web API Client—Developer’s Guide 187

Chapter 10: Multimedia Simple Samples for .NET Chat Sample

RequestlLogout rlo = RequestLogout.Create(str_user_id,

str_secure_key, 0);
imResponse = chat.Request(rlo, new TimeSpan (0, 0, 30));
EventStatus es = imResponse as EventStatus;

str_itf_response = "DISCONNECTED";
str_itf_message = "Chat was finished";

Yoo
Here is the code to handle a user_typing request:
else if (str_cmd == "user_typing")
{
EventStatus es = null;
try
{

LoadBalancer.LogMessage (LogLevel.Trace,
"Sending RequestRefresh with
\"user typing notification\" for user with USERID="
+ str_user_id);

RequestRefresh rr =
RequestRefresh.Create(str_user_id, str_secure_key,
int.Parse(str_script_pos) + 1, MessageText.Create
("text", TreatAs.SYSTEM, "user is typing"));

imResponse = chat.Request(rr, new TimeSpan(0, @, 30));

es = imResponse as EventStatus;

transcript = es.FlexTranscript;

str_script_pos = es.FlexTranscript.LastPosition.ToString();

str_itf_response = "TRANSCRIPT";

}
catch (Exception ex)
{

str_itf_response = "SENDFAILED";

if (es != null 83 es.Description.Text != null)
str_itf_message = es.Description.Text;

else
str_itf_message = "Can't get chat transript
from incoming packet. "+ ex.ToString();
LoadBalancer.LogMessage

(LogLevel.Exception, str_itf_message);
}
}
Here is the code to handle a send request:
else if (str_cmd == "send")
{
EventStatus es = null;
try
{

LoadBalancer.LogMessage (LogLevel.Trace, "Sending
RequestRefresh for user with USERID=" + str_user_id);
RequestRefresh rr = RequestRefresh.Create(str_user_id,

188 Genesys Multimedia 7.6 @

Chapter 10: Multimedia Simple Samples for .NET Chat Sample

str_secure_key, int.Parse(str_script_pos) + 1,
MessageText.Create ("text", str_msg2send == "" ? null :
(str_msg2send));

imResponse = chat.Request(rr, new TimeSpan(0, 0, 30));
es = imResponse as EventStatus;

transcript = es.FlexTranscript;
str_script_pos =(es.FlexTranscript.LastPosition.ToString();

str_itf_response = "TRANSCRIPT";

}
catch (Exception ex)
{
str_itf_response = "SENDFAILED";
if (es = null &8 es.Description.Text != null)
str_itf_message = es.Description.Text;
else
str_itf_message = "Can't get chat transript from
incoming packet. " + ex.ToString();
LoadBalancer.LogMessage (LogLevel.Exception,
str_itf_message);
...

Processing Server When the sample receives a server event, the code uses EventType values to
Events check the current status of the chat packet. In the following code snippet, the
code checks for connection, abandonment, and message flags:

if (chat_event.EventType == EventType.Connect)

{
if (chat_event.UserType != UserType.External)
{
text2append = text2append + "New party ('" + chat_event.UserNickname + "')
has joined the session";
if (chat_event.Text !="")
text2append = text2append + ": " + chat_event.Text;
}
}
else if (chat_event.EventType == EventType.Message)
{
if (chat_event.Text != null)
text2append = text2append + chat_event.UserNickname + ": " + chat_event.Text;
else
text2append = text2append + chat_event.UserNickname + ":";
}
else if (chat_event.EventType == EventType.Abandon)
{

text2append = text2append + "Party ('" + chat_event.UserNickname+"")
has left the session.";}

Web API Client—Developer’s Guide 189

Chapter 10: Multimedia Simple Samples for .NET Chat Sample

Masking Data The MaskSymbols () function filters out any characters that are potentially
dangerous, or that cannot be processed by JavaScript, in the client’s browser:

public string MaskSymbols (string strln)

{
string strout = "";
int i;
string ch = "";
if (strIn != null)
{
for (i = 0; i < strIn.Length; i++)
{
ch = strin.Substring (i, 1);
if (ch =="\r")
strout += "\\r";
else if (ch == "\n")
strout += "\\n";
else if (ch == "\t")
strout += "\\t";
else if (ch == "\"")
strout += "\\\"";
else if (ch == "\\")
strout += "\\\\'}
else if (ch == "<")
{
if (i !'= (strIn.Length - 1))
strout += "\" + \"A\" + \"";
else
strout += "\" + \"<";
}
else if (ch == ">")
{
if (i !'= (strln.Length - 1))
strout += "\" + \")\" + \"";
else
strout += "\" + \")";
}
else
strOut += ch;
}
}
return strOut;
}

The mask_html () function similarly traps and converts HTML-safe characters:

public string mask_html (string strln)
{

string strout = ™7,
int i;

190 Genesys Multimedia 7.6 @

Chapter 10: Multimedia Simple Samples for .NET Chat Sample

string ch;
if (strIn != pull)
{
for (i=0; i < strIn.Length; i++)
{
ch = strin.Substring (i, 1);
if (ch =="¢")
strout += "≪ ";
else if (ch == ">")

strout += "> ";
else if (ch == "\r")

strout += " ";
else if (ch == "\n")
strout += " "

else if (ch == "\"")
strout += "" ";

else if (ch == "&")
strout += "& ";

else
strOut += ch;

}

}

return strOut;

Closing the Connection

When the processing is done and the server is ready to send back its response,
the connection to the Chat Server must end and the service dispatcher must be
reset to nul L. Otherwise, you will have orphan connections to the server that do
not relinquish resources, principally network resources (like sockets) and
memory. This connection-release code occurs in the else block of “Creating a
Chat Session” on page 185:

if(chat != null)
{
chat.close();
chat = null;

In addition, before ending a chat by logging out of Chat Server, your client
application’s code must ensure that the application waits to receive a reply
from Chat Server to the browser’s Connect request. Otherwise, the logged-out
client will leave behind a pending interaction that Genesys Desktop will be
unable to delete.

Web API Client—Developer’s Guide 191

Chapter 10: Multimedia Simple Samples for .NET Chat with AJAX Sample

Chat with AJAX Sample

Purpose

This section presents the sample’s purpose, functionality overview, code
implementation, and customization information.

The Chat with AJAX Sample demonstrates how to add a simple chat feature to
any web form using AJAX technology.

Functionality Overview

Files

The following sections review the code used in implementing the different chat
functions:

¢ “Declaring and Importing Packages” on page 194
* “Declaring Variables” on page 195

* “Retrieving Form Data” on page 195

¢ “Connecting to Chat Server” on page 196

¢ “Creating a Chat Session” on page 197

¢ “Handling Content” on page 199

* “Closing the Connection” on page 201

The ...\ChatAjax directory contains the Chat with AJAX Sample. The sample
consists of four files:

e ChatCommand.aspx and ChatCommand.aspx.cs—files that contain most of the
chat logic.

* ChatPanel.aspx and ChatPanel.aspx.cs—files that contain the code to
create a chat panel with input boxes for entering the chat message. All data
is sent to the hidden object that passes this data to the server.

Code Explanation

192

The Chat with AJAX Sample separates user interface and logic components.
The subsections below explain the specific functions and the code for each of
these components. The code used to create this example is similar to the basic
“Chat Sample” on page 179. The most notable difference being that this
sample returns a JSON object instead of JavaScript code.

Genesys Multimedia 7.6 @

Chapter 10: Multimedia Simple Samples for .NET Chat with AJAX Sample

User Interface Implementation

The interface code demonstrates how to present form controls such as panels,
input boxes, and buttons. The code resides in the ChatPanel.aspx and, to a
lesser extent, ChatPanel.aspx.cs files. The code is divided into these functions:

* “Drawing the Form”
* “Handling Content”
Drawing the Form

The ChatPanel.aspx file contains several JavaScript functions to handle
connection state when the page is loaded or unloaded:

function window_onload ()
{
disconnected();

)

Next, the ChatPanel.aspx file provides HTML that draws the page, gathers
user information, provides buttons to call the functions that start and stop chat,
and displays the chat transcript:

{td>First name:</td)

<td)<input type="text" name="FirstName" value=""/></td>
{td>Last name:</td>

<td)<input type="text" name="LastName"/ value=""/></td>...

{td colspan="4" align="center")
Start chat</a)

Stop chat</a)..
{td colspan="4")
{textarea cols="80" rows="10" id="transcript"
name="transcript">{/textarea)
td>. ..

The ChatPanel.aspx.cs file contains a single class (ChatSample_ChatPanel)
containing the single Page_Load () function:

protected void Page_Load(object sender, EventArgs e)

Handling Content

The ChatPanel.aspx file presents and gathers most of the information
exchanged with the user. This section includes these subtopics:

¢ “Declarations and Header”

¢ “Functions to Handle User Events”

Web API Client—Developer’s Guide 193

Chapter 10: Multimedia Simple Samples for .NET Chat with AJAX Sample

Declarations and The ChatPanel.aspx file begins by presenting an IIS directive, a DTD
Header declaration, and an HTML header:

{%e Page Language="C#" AutoEventWireup="true" CodeFile="ChatCommand.aspx.cs"
Inherits="ChatSample_ChatPanel" %)

<IDOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http=//www.w3.org/TR/
xhtml1/DTD/xhtml1-transitional.dtd")

<html xmlns="http://www.w3.0rg/1999/xhtml" >

<head)

<link rel="stylesheet" href="../../mcr_style.css" type="text/css"/>
<(title>MCR Samples 7.6.1 Chat with AJAX{/title)

{/head>

Functionsto The ChatPanel.aspx file contains these basic function to handle events:
Handle User

e window_onload()—calls the disconnected () method.
Events

* on_connect ()—sets the str_cmd variable to connect, initializes the date,
time, first name, Llast name, email address, and subject variables, and
calls the httpRequest () function.

* on_disconnect ()—sets the str_cmd variable to disconnect and calls the
httpRequest () function.

* on_send()—sets the str_cmd variable to send, sets the str_msg2send
variable with the value from the form’s message field, and then calls the
httpRequest () function.

* on_refresh()—sets the str_cmd variable to send, sets the str_msg2send
variable to blank, and calls the httpRequest () function.

Logic Implementation

The ChatCommand.aspx.cs file contains the Chat with AJAX Sample’s main
logic. The subsections below explain the code in this file.

Declaring and Importing Packages

The ChatCommand.aspx.cs file begins by declaring external packages:

using System;

using System.Data;

using System.Configuration;

using System.Collections;

using System.Web;

using System.Web.Security;

using System.Web.UI;

using System.Web.UI.WebControls;

using System.Web.UI.WebControls.WebParts;
using System.Web.UI.HtmlControls;

using Genesyslab.Platform.Commons.Collections;
using Genesyslab.Platform.Commons.Protocols;

194 Genesys Multimedia 7.6 @

Chapter 10: Multimedia Simple Samples for .NET

Chat with AJAX Sample

Genesyslab.Platform.WebMedia.Protocols;

Genesyslab.Platform.WebMedia.Protocols.FlexChat.Events;
Genesyslab.Platform.WebMedia.Protocols.FlexChat.Requests;

Genesyslab.Platform.Configuration.Protocols.ConfServer;

using

using Genesyslab.Platform.WebMedia.Protocols.FlexChat;
using

using

using Genesyslab.WebApi.Core.ConfigServer;

using Genesyslab.WebApi.Core;

using

using System.Collections.Specialized;

Declaring Variables

Next, the ChatCommand.aspx.cs file’s ChatSample_ChatCommand class declares
internal variables. These variables represent data that the user enters in the

form drawn by ChatCommand. aspx:

public partial class ChatSample_ChatCommand :

{

str_cmd
str_chat_alias
str_first_name
str_Llast_name
str_email_address
str_secure_key
str_user_id
str_session_id
str_timeZoneOffset
str_script_pos
str_msg2send
str_subject
str_itf_response
string str_itf_message
string str_QueueKey
FlexTranscript transcript
bool clear_transcript
string svcHost

int svcPort

bool bServiceAvailable
SimpleSamplesConstants ssc

string
string
string
string
string
string
string
string
string
string
string
string
string

Retrieving Form Data

System.Web.UI.Page

nn
i
nn
i
nn
i
nn
i
nn
i
nn
i
nn
i
nn
i
nn
i
nn
i
nn
i
nn

"UNDEFINED";

"Chat inbound queue";
null;

false;

nn
i

-1;
false;
new SimpleSamplesConstants();

The Page_Load () function executes when the application displays pages or the
user submits form data. It collects user data from the submitted form into the

variables declared above:

protected void Page_Load(object sender, EventArgs e)

{
NameValueCollection gs
if (gs.Count == 0)

= Request.Form;

gs = Request.QueryString;

Web API Client—Developer’s Guide

195

Chapter 10: Multimedia Simple Samples for .NET

196

Identifying the
Chat Party

str_cmd
str_chat_alias
str_first_name
str_last_name
str_email_address
str_secure_key
str_user_id
str_session_id
str_timeZoneOffset
str_script_pos
str_msg2send
str_subject
IMessage imResponse

Chat with AJAX Sample

gs.Get("cmd");

(
gs.Get("chat_alias");
gs.Get("first_name");
gs.Get ("last_name");
gs.Get("email_address");

gs.Get ("secure_key");
gs.Get ("user_id");

gs.Get ("session_id");
gs.Get("timeZoneOffset");
gs.Get ("script_pos");
gs.Get ("msg2send");
gs.Get("subject");

null;

Within the subsequent try block, this branch ensures that the first- and last-
name fields are filled, so that Chat Server will be able to identify this user:

if (str_first_name ==
{
str_itf_response =
str_itf_message =

Connecting to Chat Server

|| str_last_name == "")

"USERNAMEREQUIRED";
"Please enter first and last names.";...

Chat Server must maintain a live connection between users. This is unlike
e-mail interactions, in which users fill out a form, submit the form, and thereby

end the transaction.

If the load-balancing servlet cannot return an available Chat Server, the sample

code informs the user:

try
{

bServiceAvailable = false;
= LoadBalancer.GetServicelnfo

Servicelnfo si

(CfgAppType.CFGChatServer, ssc.TenantName);

svcHost = si.Host;
svcPort = si.WebApiPort;

str_chat_alias = si.Alias;
bServiceAvailable = true;

)

catch (LoadBalancerException e1)

{
str_itf_response =
str_itf_message =
Please try it later.";

"ERROR";
“Chat service is not available at this time.

If the load balancer finds a Chat Server, the code returns an alias to that Chat
Server and tries to connect and log the user in:

if (bServiceAvailable == true)

{

Genesys Multimedia 7.6 @

Chapter 10: Multimedia Simple Samples for .NET Chat with AJAX Sample

Uri chatServerURI = new Uri("tcp://" + svcHost + ":" +
svcPort.ToString());

Endpoint chatEndPoint = new Endpoint(chatServerURI);

FlexChatProtocol chat = new FlexChatProtocol (chatEndPoint);

chat.Open();

KeyValueCollection userdata = new KeyValueCollection();
userdata.Add("FirstName", str_first_name);
userdata.Add("LastName", str_last_name);

if (str_email_address != null && str_email_address I= "")
userdata.Add ("Emai LAddress", str_email_address);

string strNickName = str_first_name;

if (str_last_name != null 8& str_last_name.Length > 0)
strNickName = str_first_name + str_last_name.Substring(0, 1);
RequestLogin rl = RequestLogin.Create(strNickName, 8, userdata);
rl.TimezoneOffset = int.Parse(str_timeZoneOffset);

imResponse = chat.Request(rl, new TimeSpan (@, 0, 30));

Analyzing the If Chat Server accepts the connection request, the code displays a welcome
Response message:

if (imResponse != null &3 imResponse.Name ==
EventStatus.MessageName)
{

EventStatus status = imResponse as EventStatus;

if (status.Id != 0 &8 status.SecureKey != "")
{
str_secure_key = status.SecureKey;
str_user_id = status.Userld;
str_itf_response = "CONNECTED";
str_itf_message = "Welcome to Genesys chat!"; ...

Creating a Chat Session

Joining and The next block attempts to join a chat session. If this request succeeds, the user
Transcribing the joins the session, and the application begins collecting the chat transcript for
Chat Session [ater processing. (This deferred processing differs from the linear processing in
the corresponding Java “Chat Sample” on page 107.)

Requestdoin rj = Requestdoin.Create

(str_user_id, str_secure_key, "",

ssc.TenantName + ":" + str_QueueKey, str_subject);
imResponse = chat.Request(rj, new TimeSpan(0, @, 30));

EventStatus es = imResponse as EventStatus;

if (es != null &% es.RequestResult == RequestResult.Success)
{

clear_transcript = true;

transcript = es.FlexTranscript;

Web API Client—Developer’s Guide 197

Chapter 10: Multimedia Simple Samples for .NET Chat with AJAX Sample

str_script_pos = es.FlexTranscript.LastPosition.ToString();
str_itf_response = "CONNECTED";
}

Handling If Chat Server fails to accommodate the connection or the join-session
Connection and requests, the following code relays and logs Chat Server’s error messages.
Session Errors The first (inner) branch handles chat-session errors, and the second (outer)
branch connection handles errors:

else
{
str_itf_response = "DISCONNECTED";
if (es.Description != null)
{
str_itf_message = es.Description.Text;
else
{
str_itf_message = "Could not create chat session.";
}
}
}
else
{
str_itf_response = "DISCONNECTED";
if (status.Description != null)
{
str_itf_message = status.Description.Text;
else
{
str_itf_message = "Not connected to chat server, unexpected
error."; ...
}
else
{

str_itf_response = "ERROR";
str_itf_message = "chat.lasterror()";

}

if (chat I= null)

{
chat.Close();
chat = null;

}

catch (Exception cex)

{
// failed to connect to chat server
str_itf_response = "NOSERVER";
str_itf_message = "Failed to establish Chat
("" + cex.ToString() + "")";

198 Genesys Multimedia 7.6 @

Chapter 10: Multimedia Simple Samples for .NET Chat with AJAX Sample

Handling User
Requests

Handling Content

This section covers these topics:
¢ “Handling User Requests”

* “Processing Server Events”
¢ “Masking Data”

The cmd variable reflects the action or button the user clicked. If the user
clicked the Connect button, then the code attempts to get a handle to the load
balancer:

if (str_chat_alias != "" 8& str_cmd != "connect")
{
try
{
bServiceAvailable = false;
ServiceInfo si = LoadBalancer.GetServiceInfo(str_chat_alias);
svcHost = si.Host;
svcPort = si.WebApiPort;
bServiceAvailable = true;

)

catch (LoadBalancerException el)...

Other possible requests are to disconnect from the server or to send a chat
message. This sample does not support user_typing notification, but it can be
easily implemented. The application provides code to submit, and to respond
to exceptions from, each type of request. Here is the code for a disconnect
request:

if (str_cmd == "disconnect")
{
RequestlLogout rlo = RequestLogout.Create(str_user_id,
str_secure_key, 0);
imResponse = chat.Request(rlo, new TimeSpan (0, 0, 30));
EventStatus es = imResponse as EventStatus;

str_itf_response = "DISCONNECTED";
str_itf_message = "Chat was finished";

Here is the code to handle a send request:

else if (str_cmd == "“send")
{
EventStatus es = null;
try
{

Web API Client—Developer’s Guide 199

Chapter 10: Multimedia Simple Samples for .NET Chat with AJAX Sample

RequestRefresh rr = RequestRefresh.Create(str_user_id,
str_secure_key, int.Parse(str_script_pos) + 1,
MessageText.Create("text", str_msg2send == "" ? null :
str_msg2send));

imResponse = chat.Request(rr, new TimeSpan(0, 0, 30));
es = imResponse as EventStatus;

transcript = es.FlexTranscript;

str_script_pos =
es.FlexTranscript.LastPosition.ToString();

str_itf_response = "TRANSCRIPT";

}
catch (Exception ex)
{
str_itf_response = "SENDFAILED";
if (es = null &3 es.Description.Text != null)
str_itf_message = es.Description.Text;
else
str_itf_message = "Can't get chat transript from
incoming packet. " + ex.ToString();
...

Processing Server When the sample receives a server event, the code uses EventType values to
Events check the current status of the chat packet. In the following code snippet, the
code checks for connection, abandonment, and message flags:

if (chat_event.EventType == EventType.Connect)

{
if (chat_event.UserType != UserType.External)
{
strText2Add = "\"New party ('" + MaskSymbols
(chat_event.UserNickname) + "')has joined the session\"";
}
}
else if (chat_event.EventType == EventType.Message)
{
if (chat_event.Text != null)
strText2Add = "\"" + chat_event.UserNickname + ": " +
MaskSymbols(chat_event.Text) + "\"";
else
strText2Add = "\"" + MaskSymbols(chat_event.UserNickname)
+ U\"Y
}
else if (chat_event.EventType == EventType.Abandon)
{

strText2Add = "\"Party ('" + MaskSymbols
(chat_event.UserNickname) + "') has left the session.\"";

}
if (strText2Add != null)

{

200 Genesys Multimedia 7.6 @

Chapter 10: Multimedia Simple Samples for .NET Chat with AJAX Sample

Masking Data

strOut += strText2Add;
if (iCount != transcript.EventInfolList.Count - 1)
strout += ", \r\n";
}

The MaskSymbols () function filters out any characters that are potentially
dangerous, or that cannot be processed by JavaScript, in the client’s browser:

public string MaskSymbols (string strln)
{

string strout = "";

int i;

string ch = "";

if (strIn != null)

{
for (i = 0; i < strin.Length; i++)
{
ch = strin.Substring (i, 1);
if(ch == "\r") strout += "\\r";
else if (ch == "\n") strout += "\\n";
else if (ch == "\t") strout += "\\t";
else if (ch == "\"") strOut += "\\\"";
else if (ch == "\\") strout += "\\\\'}
else if (ch == "¢")
{
if (i != (strIn.Length - 1))
strout += "\" + \"A\" + \"";
else
strout += "\" + \"<";
}
else if (ch == ">")
{
if (i !'= (strIn.Length - 1))
strout += "\" + \"D)\" + \"";
else
strout += "\" + \")";
}
else
strQut += ch;
}
}
return strout;
}

Closing the Connection

When the processing is done and the server is ready to send back its response,
the connection to the Chat Server must end and the service dispatcher must be
reset to nul L. Otherwise, you will have orphan connections to the server that do
not relinquish resources, principally network resources (like sockets) and

Web API Client—Developer’s Guide 201

Chapter 10: Multimedia Simple Samples for .NET E-Mail Sample

memory. This connection-release code occurs in the else block of “Creating a
Chat Session” on page 197:

if(chat != null)
{
chat.close();
chat = null;

)

In addition, before ending a chat by logging out of Chat Server, your client
application’s code must ensure that the application waits to receive a reply
from Chat Server to the browser’s Connect request. Otherwise, the logged-out
client will leave behind a pending interaction that Genesys Desktop will be
unable to delete.

E-Mail Sample

This section presents the purpose, functionality overview, and code
implementation for the E-mail Sample.

Purpose

The E-mail Sample code demonstrates how a user can send an e-mail request
via a web form. The web form e-mail goes through E-mail Server Java, which
routes the e-mail to the appropriate agent using Genesys Universal Routing
Server.

The sample files show how to:

* Fill basic e-mail fields via a web form, error-checking for valid user input.
* Connect to E-mail Server Java using the E-mail API.

e Submit an e-mail request to E-mail Server Java.

* Report any possible errors in the sample.

* Disconnect from E-mail Server Java.

* Gather submitted information.

¢ Communicate with the load-balancing service.

¢ Communicate with E-mail Server Java.

* Generate HTML responses and JavaScript code based on responses from
E-mail Server Java.

Functionality Overview

The following sections review the code used in implementing the different
e-mail functions:

* “Drawing the Form” on page 203

202 Genesys Multimedia 7.6 @

Chapter 10: Multimedia Simple Samples for .NET E-Mail Sample

* “Declaring and Importing Packages” on page 204
¢ “Retrieving Form Data and Constants” on page 205

* “Processing the Request” on page 205

Files

The ..\Emai L directory contains the E-mail Sample. The sample consists of two
files, Email.aspx and Emai | .aspx.cs.

Code Explanation

The following subsections explain the code in Emai L.aspx and Emai L.aspx.cs.
As in the other .NET samples, the .aspx file handles most of the page
presentation to the user, while the .aspx.cs file contains most of the logic.

User Interface Implementation

The following section outline the contents of the Emai L.aspx file.

Drawing the Form

Creating the The Emai L.aspx file’s code begins by writing some HTML header tags:
HTML Header
<html xmlns="http://www.w3.0rg/1999/xhtml" >
<head>
<link rel="stylesheet" href="../../mcr_style.css" type="text/css"/>
{title>MCR Samples 7.6.1 Email</title>
{/head>

Handling User The Emai L.aspx file next provides these JavaScript functions to handle user
Events events:

* window_onload ()—has no code. This is an empty function that you can
implement.

* Submit_onClick()—sets the action flag to Submit. This function verifies
that the E-mail address and Reply from fields are populated and contain
acceptable (ASCII) characters. If these conditions are not met, the function
presents a dialog box and requests that the user correct the problem. Once
the data is acceptable, the function calls the HTML form submit.

e Reset_onClick()—calls the form’s reset () method to clear out all the data
entered.

Web API Client—Developer’s Guide 203

Chapter 10: Multimedia Simple Samples for .NET E-Mail Sample

Constructing the

204

HTML Body

Next, the Emai L.aspx code provides some more HTML code to create input
boxes. The form enctype="multipart/form-data" statement directly below is
important to enable the handling of file attachments from the client:

{form enctype="multipart/form-data" id="email_form" method="post"
action="Email.aspx" onsubmit="JavaScript:return Submit_onClick (1);"
runat="server")
{table border="1")
<trd
{td colspan="6">Please enter the interaction information:</td>
/tr>
<t
<td)First name:</td>
<td>
{asp:TextBox ID="FirstName" AutoPostBack="false" Text=""
runat="server" />
/td>
{td)Last name:<{/td>
<td)
{asp:TextBox ID="LastName" AutoPostBack="false" Text=""
runat="server" /)
/td>
{td>E-mail address:</td>
<td>
{asp:TextBox ID="FromAddress" AutoPostBack="false" Text=""
runat="server" />
/td>
/ey ..

Logic Implementation

The following subsections describe the sample application’s logic, which
resides primarily in the Emai L.aspx.cs file.

Declaring and Importing Packages

The Emai L.aspx.cs file begins by declaring external packages:

using Genesyslab.Platform.Commons.Collections;

using Genesyslab.Platform.Commons.Protocols;

using Genesyslab.Platform.WebMedia.Protocols;

using Genesyslab.Platform.WebMedia.Protocols.Email;

using Genesyslab.Platform.WebMedia.Protocols.Email.Events;
using Genesyslab.Platform.WebMedia.Protocols.Email.Requests;
using Genesyslab.WebApi.Core.ConfigServer;

using Genesyslab.WebApi.Core;

using Genesyslab.Platform.Configuration.Protocols.ConfServer;

Genesys Multimedia 7.6 @

Chapter 10: Multimedia Simple Samples for .NET E-Mail Sample

Retrieving Form Data and Constants

The Emai L.aspx.cs file’s Page_Load () function executes when the application
displays pages or the user submits form data. It first defines some hidden fields
on these pages, using statements like these:

protected void Page_Load(object sender, EventArgs e)

{
ClientScript.RegisterHiddenField ("Action”, "");
Action.Visible = false;
strFirstName = FirstName.Text;
strLastName = LastName.Text;
strFromAddress = FromAddress.Text;
strMai LBox = Mailbox.Text;

The following statement accesses global constants:

SimpleSamplesConstants ssc = new SimpleSamplesConstants ();

Processing the Request

Getting Load This section of the Emai L.aspx.cs code creates a load balancer instance and
Balancer and returns an available instance of E-mail Server Java for each request. Because
E-Mail Server Java ¢_majl interactions are asynchronous, there is no requirement to tie a particular
Instance ser 0 a particular instance of either service. So the instances in this sample
are not aliased. The sample code gets new instances of the load balancer and
E-mail Server Java upon the submission of each request.

try
{
ServiceInfo si = LoadBalancer.GetServicelInfo
(CfgAppType.CFGEmai LServer, ssc.TenantName);
svcHost = si.Host;
svcPort = si.WebApiPort;
bServiceAvailable = true;

If the try-catch block is unsuccessful in getting a handle to E-mail Server
Java, it returns an error message:

catch (LoadBalancerException el)

{
strErrorMessage = "E-Mail service is not available at this time.
Please try it later.";

)

Preparing the The following code block prepares the request. Note the commented-out
Request logging trigger, which is available for you to implement:

if (strAction == "Submit" && bServiceAvailable == true)
{

Web API Client—Developer’s Guide 205

Chapter 10: Multimedia Simple Samples for .NET

Uri emailServerURI = new Uri("tcp://" + svcHost +

svcPort.ToString());

E-Mail Sample

Endpoint emailEndPoint = new Endpoint(emailServerURI);
Genesyslab.Platform.WebMedia.Protocols.EmailProtocol email = new

Emai LProtocol (emai LEndPoint);

//email.EnableLogging(new TracelLogger());

Filling in the The following code block fills in a collection with the user data submitted via

Collection the form:

email.Open();

EmailProperties mProperties = new EmailProperties();

mProperties.FirstName = strFirstName;
mProperties.LastName = strLastName;
mProperties.FromAddress = strFromAddress;

if (strMailBox != null && strMailBox I= "")

mProperties.Mailbox = strMailBox; //was ReplyFrom

mProperties.Emai LBody = strEmailBody;
mProperties.Subject = strSubject;

Preparing the The following code block prepares an attachment, if the abAttachment variable
Attachment s not empty. The Convert.ToBase64String(abAttachment) function is
particularly important—it encapsulates the attachment’s binary data in

BASE64 format that E-mail Server Java understands.

if (abAttachment != null && abAttachment.Length > 0)

{

mProperties.Attachments = new AttachmentsCollection();

Genesyslab.Platform.WebMedia.Protocols.Email.Attachment attach =
new Genesyslab.Platform.WebMedia.Protocols.Email.Attachment();

attach.Content = Convert.ToBase64String(abAttachment);

// setting string value to KVlist

attach.Name = AttachmentField.FileName;

mProperties.Attachments.Add(attach);
}

Submitting the This statement submits the data to the server:
Data

RequestSubmit reqSubmit = RequestSubmit.Create("email",

mProperties); //was .GetAsKeyValueCollection()

Analyzing the Finally, this code block analyzes the server’s response, and then reports either

Response a success flag or any error message returned:

IMessage im = email.Request(reqSubmit, new TimeSpan(@, 0, 30));
if (im != pull &% im.Id == EventAck.Messageld)
{

206

Genesys Multimedia 7.6 @

Chapter 10: Multimedia Simple Samples for .NET Open Media Sample

EventAck eventAck = im as EventAck;
Interaction_Id.Text = eventAck.Requestld;
strErrorMessage = "Request " + eventAck.RequestId + " has been successfully
submitted to E-mail Server.";
}
else if (im != null && im.Id ==
Genesyslab.Platform.WebMedia.Protocols.Email.Events.EventError.Messageld)

{
Genesyslab.Platform.WebMedia.Protocols.Email.Events.EventError eventError =
im as EventError;
strErrorMessage = eventError.Description;
}

Open Media Sample

This sample demonstrates a web form through which users can create and
submit interactions involving attached Open Media data (faxes, video, SMS,
and so on). The web form provides fields where the user can enter a first name,
last name, and three key-value pairs; a drop-down list box where the user can
identify the attached media type; and fields that automatically identify the
Interaction Server host and port, the Interaction ID, and the workflow queue,
as configured for Web API Server .NET’s application in Configuration Server.

Warning! For this sample to work reliably, your custom application’s code
must ensure that each interaction generated and submitted by the
application has a unique InteractionID. Neither the sample code
nor Interaction Server error-check for this requirement, so meeting
it is your code’s responsibility.

You could choose to allow Interaction Server to generate a unique
interaction identifier. In this case, you would design your
application to pass an empty InteractionID, so that Interaction
Server will assign its own InteractionID and return that generated
ID in the Ack event.

Purpose

The Open Media Sample shows how to:

* Connect to Interaction Server using the Interaction API.
* Specify and submit an interaction.

* Update an interaction

¢ (Cancel an interaction.

Web API Client—Developer’s Guide 207

Chapter 10: Multimedia Simple Samples for .NET Open Media Sample

Functionality Overview

The following sections outline the code used to implement the Open Media
Sample:

* “Creating the HTML Header” on page 209

¢ “Constructing the HTML Body” on page 209

* “Handling User Events” on page 210

* “Declaring and Importing Packages” on page 210

* “Declaring Variables and Importing Constants” on page 211
e “Collecting User Data” on page 211

* “Drawing the Form and Submitting User Data” on page 212
* “Processing the Request” on page 212

* “Spare Event-Handler Prototypes” on page 213

¢ “Connecting to Interaction Server” on page 214

* “Interaction Event Handlers” on page 215

¢ “Qetting Load Balancer and Interaction Server Instance” on page 212
¢ “Submitting Requests” on page 215

* “Analyzing Responses” on page 217

* “Closing Connections” on page 217

Files

The ...\ItxSubmit directory contains the Open Media Sample. The sample
consists of two files, ItxSubmit.aspx and ItxSubmit.aspx.cs.

Code Explanation

Like the other .NET samples, the Open Media Sample separates user interface
and logic components. The following subsections explain the code in
ItxSubmit.aspx and ItxSubmit.aspx.cs files.

208 Genesys Multimedia 7.6 @

Chapter 10: Multimedia Simple Samples for .NET Open Media Sample

User Interface Implementation

The ItxSubmit.aspx file controls most of the page presentation to the user.
The following subsections explain the code in that file.

Creating the HTML The ItxSubmit.aspx file begins by building an HTML header:
Header
<head)
{title>Interaction Submit Sample</title)
{meta http-equiv="Content-Type" content="text/html" />
{link rel="stylesheet" href="../../mcr_style.css" type="text/css" />
{/head>

Constructing the Next, the code includes the HTML code to create the input fields; the Send,
HTML Body Update, and Cancel buttons; and the field that holds messages from the server:

{body style="background-image:url(../../fon.gif)" onload="javascript:window_onload(); ")
{form id="Form2" action="ItxSubmit.aspx" method="post" runat="server")

{td colspan="2" align="center"><h2>Enter information for Interaction Server</h2)

<t
{td>Interaction Server host<{/td)
{td><asp:TextBox ID="tbServerName" AutoPostBack="false" MaxLength="30" Text=""
runat="server" />/td>

/tr>

<trd
<{td>Interaction Server port</td>
{td><asp:TextBox ID="tbPort" AutoPostBack="false" MaxLength="5" Text=""
runat="server" /><{/td>

/tr>

{(td)Media type:<{/td>

{td)<asp:TextBox ID="tbMediaType" runat="server"/>

{asp:DropDownList ID="selMedia" width="155px" onchange="selMedia_onChange();"

runat="server")
Casp:ListItememail<{/asp:ListItem)
Casp:ListItem)chat{/asp:ListItem)
Casp:ListItem)callback<{/asp:ListItem)
Casp:ListItem)>sms</asp:ListItem)
Casp:ListItem>fax</asp:ListIltem)
Casp:ListItem)imchat<{/asp:ListItem)
{asp:ListItem)video</asp:ListItem)
{asp:ListItem)voice</asp:ListItem)
Casp:ListItem)voip</asp:ListItem)
{asp:ListItemdwebform<{/asp:ListItem)

{/asp:DropDownList>

/td>

PRI

Web API Client—Developer’s Guide 209

Chapter 10: Multimedia Simple Samples for .NET Open Media Sample

{td colspan="2">

<input id="btnSubmitInteraction" type="Submit" value="Submit Interaction"
onserverclick="SubmitInteraction_onClick" runat="server" />

<input id="btnStopProcessing" type="Submit" value="Stop processing"
onserverclick="StopProcessing_onClick" runat="server" />

<input id="btnUpdateInteraction” type="Submit" value="Update Interaction"
onserverclick="UpdateInteraction_onClick" runat="server" /)

/td>

/tr)

{tr)

{td colspan="2"><asp:TextBox ID="tbMessages" AutoPostBack="false" Columns="100"
Rows="10" TextMode="Multiline" runat="server" /></td>

/tr)
Handling User

using
using
using
using
using
using
using
using
using

using

210

Events

Genesyslab.
Genesyslab.
Genesyslab
Genesyslab
Genesyslab.
Genesyslab.
Genesyslab.
Genesyslab.
Genesyslab.

CfgConnecti

Four JavaScript functions handle user events:

window_onload ()—called every time the page is loaded. This function
currently sets the form’s default media type, but you may also modify it to
execute any other tasks that should be carried out whenever the page is
loaded.

* selMedia_onChange ()—sets the media type to the value selected by the
user.

* getSelectedOption(opt)—takes a collection of options for a field and
returns the option that has been selected by the user.

* setSelection(objControl, Value)—sets the value of a document field
(0bjControl) to Value.

Logic Implementation

The ItxSubmit.aspx.cs file contains most of the Open Media Sample’s logic.
The following subsections explain the code in that file.

Declaring and Importing Packages

The ItxSubmit.aspx.cs file begins by loading external packages into memory:

Platform.Commons.Collections;
Platform.Commons.Protocols;

.WebApi.Core.ConfigServer;
.WebApi.Core;

Platform.Configuration.Protocols.ConfServer;
Platform.OpenMedia.Protocols;
Platform.OpenMedia.Protocols.InteractionServer;
Platform.OpenMedia.Protocols.InteractionServer.Events;
Platform.OpenMedia.Protocols.InteractionServer.Requests;

ons; //TracelLogger is here

Genesys Multimedia 7.6 @

Chapter 10: Multimedia Simple Samples for .NET

Declaring Variables and Importing Constants

Open Media Sample

Next, the ItxSubmit.aspx.cs file declares variables and accesses external

constants:

public partial class ItxSubmit_ItxSubmit :

{
string strHost
int iPort
string strinteractionID
string strMediaType
string strQueue
int iTenandID
string strFirstName
string strLastName
bool bAgreeWithRules
int iGender
string AttachDataKey1
string AttachDataValuel
string AttachDataKey2
string AttachDataValue2
string AttachDataKey3
string AttachDataValue3
string strMessages
bool bConnected

InteractionServerProtocol itxProtocol =
SimpleSamplesConstants ssc =

Collecting User Data

un
i

= -1,
mni
j
mni
j
mni
j

= -1
mnin
j
mnin
j

= false;

= -1
nn
i
nn
i
nn
i
nn
i
mnin
j
mnin
j
mnin
j

= false;

null;

System.Web.UI.Page

new SimpleSamplesConstants();

The Open Media Sample consolidates data collection and submission into a
discrete function called CollectSubmitData(). This function gets invoked by
the event handlers that correspond to the three buttons on the Ul form
(Submit Interaction, Stop Processing, and Update Interaction). This
approach avoids duplication of the data collection/submission code.

Here is the code block that performs data collection:

protected bool CollectSubmitDatal()

{

try

{
strHost =
strinteractionlID =
strMediaType =
strQueue =
strFirstName =
strLastName =

AttachDataKey3 =
AttachDataValue3 =

Web API Client—Developer’s Guide

tbServerName.Text;
tbInteractionID.Text;
tbMediaType. Text;
selScriptName.Text;
tbFirstName. Text;
tbLastName. Text;

tbAttachDataName1. Text;
tbAttachDataValuel.Text;

211

Chapter 10: Multimedia Simple Samples for .NET Open Media Sample

strMessages =
//Try to collect as much as possible. Parse may throw an exception.

iPort = int.Parse(tbPort.Text);
iTenandID = int.Parse(tbTenantID.Text);

}

catch (Exception e)

{
strMessages = "Error during submit: \r\n" + e.ToString();
return false;

}

return true;

Drawing the Form and Submitting User Data

Next, the Page_Load () function initializes the onscreen form by calling the
CollectSubmitData() function discussed in “Collecting User Data,” above:

protected void Page_Load(object sender, EventArgs e)
{

CollectSubmitDatal();

if (strHost == "" [| iPort == -1)

{...

Processing the Request

Getting Load The next section of code attempts to get instances of the load balancer and
Balancer and [nteraction Server. If it succeeds, it captures the Interaction Server host and

Interactloln Server port information, and the tenant name, to variables:
nstance

try
{
Servicelnfo si = LoadBalancer.GetServicelInfo(CfgAppType.CFGInteractionServer,
ssc.TenantName);
tbServerName.Text = si.Host;
tbPort.Text = si.Port.ToString();

}
catch (LoadBalancerException e1)
{
tbMessages.Text = "Intraction server is not available at this time.
Please try it later.";
}
try
{
tbTenantName.Text = ssc.TenantName;
tbTenantID.Text = LoadBalancer.getTenantId(ssc.TenantName);
}
catch (LoadBalancerException e1)
{

tbMessages.Text = "Can't find DBID for tenant " + ssc.TenantName + "."; ...

212 Genesys Multimedia 7.6 @

Chapter 10: Multimedia Simple Samples for .NET Open Media Sample

Loading Endpoints This next section of ItxSubmit.aspx.cs seeks to load information about
Information interaction-queue endpoints from Configuration Server. This information
pertains to the Web API Server application itself, and must be filled in:

try

{
ConfigServerApp ownApp = LoadBalancer.getOwnApp();
SortedList slOptions = ownApp.Options;

int iSectionPos = slOptions.Index0fKey("endpoints:" + tbTenantID.Text);
if (iSectionPos != -1)

{
SortedList slSection = (SortedList) (slOptions.GetByIndex(iSectionPos));
if (slSection != null)
{
for (int i = 0; i < slSection.Count; i++)
{
string strReturnKey = (string) (slSection.GetKey(i));
string strReturnvValue = (string) (slSection.GetByIndex(i));
selScriptName.Items.Add(new ListItem(strReturnKey, strReturnValue));
else
{
selScriptName.Items.Add(new ListItem("No 'enpoints' section.",
"bad_configuration"));
}

catch (LoadBalancerException e1)
{
tbMessages.Text = "Can't get settings from LoadBalancer.
Please check your configuration.";

Spare Event- The next code block defines event handlers that the sample application does
Handler not use. These are prototypes for your custom event handlers:

Prototypes
private void conn_Opened(object sender, EventArgs e)
{
bConnected = true;
}
private void conn_Closed(object sender, EventArgs e)
{
bConnected = false;
}

private void conn_Error(object sender, EventArgs e)
{
/* remove comments when ErrorEventArgs could be resolved
ErrorEventArgs el = null;
if (e is ErrorEventArgs)
el = (ErrorEventArgs)e;

Web API Client—Developer’s Guide 213

Chapter 10: Multimedia Simple Samples for .NET Open Media Sample

Trace.WriteLine("event Error for mediaServer");
if (el != null)
Trace.WriteLine(e1.Cause.StackTrace);
*/

}

Connectingto The next section of ItxSubmit.aspx.cs attempts to connect to

Interaction Server Interaction Server. It connects using the host and port information acquired

earlier by the CollectSubmitData() function. Unlike the corresponding Java
sample (“Open Media Sample” on page 162), this .NET sample does not alias
this host/port information.

Warning! The various Web API samples illustrate different ways in which
your own applications can communicate with the load balancer and
store data from it:

* Acquire a new server for each request.
 Acquire services by stored aliases.

* Pass the destination server’s host and port information,
unaliased.

The last option—shown in this sample—is potentially dangerous.
It can reveal aspects your network infrastructure (such as your
internal server’s name and port) to potential attackers. Therefore,
Genesys recommends that you nof use this technique in any front-
end application.

protected bool Connect(string host, int port)

{

214

Uri itxServerURI = new Uri("tcp://" + host + ":" + port.ToString());
Endpoint itxEndPoint = new Endpoint(itxServerURI);
itxProtocol = new InteractionServerProtocol (itxEndPoint);

itxProtocol.Opened += new EventHandler (conn_Opened);
itxProtocol.Closed += new EventHandler (conn_Closed);
itxProtocol.Error += new EventHandler (conn_Error);

itxProtocol.ClientType
itxProtocol.ClientName

InteractionClient.MediaServer;
"MCR_WebAPIServer761";

try
{
itxProtocol.Open();
}
catch (Genesyslab.Platform.Commons.Protocols.ProtocolException e1)
{
tbMessages.Text = "Can't connect to the Interaction Server.";
return false;
}

return true;

Genesys Multimedia 7.6 @

Chapter 10: Multimedia Simple Samples for .NET Open Media Sample

Interaction Event Handlers

The final section of ItxSubmit.aspx.cs contains three event handlers,
corresponding to the three buttons that the ItxSubmit.aspx web form offers to
the user:

e SubmitInteraction_onCLlick()

* StopProcessing_onClick()

e UpdatelInteraction_onClick()

Each of these event handlers performs the same basic operations:

* Submit the request selected by the user.

* Analyze the response from Interaction Server, relaying any errors.
* Close the connection to Interaction Server.

These operations are demonstrated below, by code snippets primarily drawn
from SubmitInteraction_onCLick().

Submitting The upper try block of SubmitInteraction_onCLick() submits the user’s
Requests selected request (in this case, sending the interaction) to Interaction Server.
The corresponding catch block traps exceptions raised in the submission
attempt. The outer else branch reports an exception if the CollectSubmitData ()
function has failed to capture and parse all required information:

protected void SubmitInteraction_onClick(0Object sender, EventArgs e)
{
if (CollectSubmitData() == true)
{
try
{
if (Connect(strHost, iPort) == true)
{
RequestSubmit reqSubmit = RequestSubmit.Create();
KeyValueCollection userData = new KeyValueCollection();
userData.Set (AttachDataKey1, AttachDataValuel);
userData.Set (AttachDataKey2, AttachDataValue2);
userData.Set (AttachDataKey3, AttachDataValue3);
userData.Set("FirstName", strFirstName);
userData.Set("LastName", strlLastName);

reqSubmit.UserData = userData;
reqSubmit.MediaType = strMediaType;
reqSubmit.Interactionld = strinteractionlD;
reqSubmit.Queue = strQueuve;
reqSubmit.Tenantld = iTenandID;
reqSubmit.InteractionType = "Inbound";
reqSubmit.InteractionSubtype = "InboundNew";
reqSubmit.IsOnline = false;

IMessage im = itxProtocol.Request(reqSubmit, new

TimeSpan (0, 0, 30));

Web API Client—Developer’s Guide 215

Chapter 10: Multimedia Simple Samples for .NET Open Media Sample

try

{

216

if (Connect(strHost,

{

catch (Exception exception)

{
tbMessages.Text = "Exception occured.\r\n" +
exception.ToString();
}
}
else
{

tbMessages.Text = strMessages;

Warning! The Web API server does not validate dynamic data; that is the

responsibility of your application code. In production code
corresponding to the code block above, your application should
check that names of attached data (such as AttachDataKey1 and
AttachDataKey2) are not empty and not identical. In the case of
empty or duplicate names, the server might reject the data or
userData might throw an exception.

In the StopProcessing_onCLlick () event handler, the corresponding try block
halts processing of the interaction. Note the placeholders in which you can
implement your own reason code and description:

try

{
if
{

(Connect(strHost, iPort) == true)

ReasonInfo reason = ReasonInfo.Create();
reason.Reason = 123456789;
reason.ReasonDescription = "Put your reason here";

RequestStopProcessing requestStopProcessing =

RequestStopProcessing.Create(strInteractionID, reason);

IMessage im = itxProtocol.Request(requestStopProcessing, new

TimeSpan(@, 0, 30));

In the UpdateInteraction_onClick () event handler, the corresponding try
block deletes the interaction’s third key-value pair, while also updating the first
two key-value pairs with new values from the newly submitted data:

iPort) == true)

KeyValueCollection kvcChangedProperties = new KeyValueCollection();

kvcChangedProperties
kvcChangedProperties
kvcChangedProperties
kvcChangedProperties

.Set (AttachDataKey1, AttachDataValuel);
.Set (AttachDataKey2, AttachDataValue2);
.Set("FirstName", strFirstName);

.Set ("LastName", strLastName);

Genesys Multimedia 7.6 @

Chapter 10: Multimedia Simple Samples for .NET Stat Server Sample

KeyValueCollection kvcDeletedProperties = new KeyValueCollection();
kvcDeletedProperties.Set (AttachDataKey3, AttachDataValue3);

requestChangeProperties requestChangeProperties =
RequestChangeProperties.Create();
requestChangeProperties.Interactionld = strInteractionID;
requestChangeProperties.AddedProperties = kvcChangedProperties;
requestChangeProperties.DeletedProperties = kvcDeletedProperties;
requestChangeProperties.AddedProperties = new KeyValueCollection();

Analyzing The second section of each interaction handler’s code analyzes
Responses [Interaction Server’s response, then either reports success or relays any errors.
Here is that code block from SubmitInteraction_onCLlick():

if (im != pull &% im.Id == EventAck.Messageld)
{
EventAck eventAck = im as EventAck;
strinteractionID = eventAck.Extension["InteractionId"].ToString();
tbInteractionID.Text = strInteractionlID;
tbMessages.Text = "Operation succesfully submitted to the " + strHost + ":" +
iPort.ToString();;
}
else if (im != null && im.Id == EventError.Messageld)
{
EventError eventError = im as EventError;
tbMessages.Text = "Can't submit interaction to the InteractionServer. " +
eventError.ErrorDescription;

Closing Finally, this line in each interaction handler closes the connection to
Connections [nteraction Server, to avoid leaking resources:

itxProtocol.Close();

Stat Server Sample

The ...\Statistics directory contains files for the Stat Server Sample.This
sample demonstrates a web form through which users can select from a list of
six predefined statistics and retrieve their current value.

Purpose

The Statistics Sample shows how to:
* Connect to Stat Server using the Stat Server API.
* Specify and submit a list of statistics.

¢ Retrieve a current values of selected statistics.

Web API Client—Developer’s Guide 217

Chapter 10: Multimedia Simple Samples for .NET Stat Server Sample

Functionality Overview

Files

The following sections outline the code used to implement the Statistics
Sample:

¢ “Creating the HTML Header” on page 218

¢ “Constructing the HTML Body” on page 219

* “Declaring and Importing Packages” on page 219

* “Declaring Variables and Importing Constants” on page 220
e “Collecting User Data” on page 220

* “Drawing the Form and Submitting User Data” on page 221
e “Getting Load Balancer and Stat Server Instance” on page 221
* “Spare Event-Handler Prototypes” on page 221

e “Connecting to Stat Server” on page 222

* “Processing the Request” on page 221

* “Event Handlers” on page 223

¢ “Closing Connections” on page 225

The ..\Statistics directory contains the Stat Server Sample. The sample
consists of two files, StatInfo.aspx and StatInfo.aspx.cs.

Code Explanation

Creating the HTML

218

Header

Like the other .NET samples, the Stat Server Sample separates user interface
and logic components. The following subsections explain the code in
StatInfo.aspx and StatInfo.aspx.cs files.

User Interface Implementation

The StatInfo.aspx file controls most of the page presentation to the user.
The following subsections explain the code in that file.

The StatInfo.aspx file begins by building an HTML header:

<head)

{title)MCR Samples 7.6.1 Stat Server Sample</title>

{meta http-equiv="Content-Type" content="text/html" />

<{link rel="stylesheet" href="../../mcr_style.css" type="text/css" />
{/head>

Genesys Multimedia 7.6 @

Chapter 10: Multimedia Simple Samples for .NET Stat Server Sample

Constructing the Next, the code includes the HTML code to create the drop down list that
HTML Body contains statistics for you to display:

<body style="background-image:url(../../fon.gif)
"onload="javascript:window_onload(); ">

{form id="Form2" action="StatInfo.aspx" method="post"runat="server")

{td colspan="2"

align="center">h2>Enter information for StatServer<{/h2)

{td>Please select statistic to display</td>
<td>
Casp:DropDownList ID="selStatistic" width="250px"runat="server")
Casp:ListItem Value="1")
Chat: total distribution time
{/ asp:ListItem)
Casp:ListItem Value="2")
Chat: queue length
{/asp:ListItem>
Casp:ListItem Value="3")
Chat: total distributed
{/asp:ListItem)
Casp:ListItem Value="4")
Webform: total distribution time
{/asp:ListItem)
Casp:ListItem Value="5")
Webform: queue length
{/asp:ListItem)
Casp:ListItem Value="6")
Webform: total distributed
{/asp:ListItem)
{/asp:DropDownList)
/td>. ..

Logic Implementation

The StatInfo.aspx.cs file contains most of the Statistics Sample’s logic. The
following subsections explain the code in that file.

Declaring and Importing Packages

The StatInfo.aspx.cs file begins by loading external packages into memory:

using Genesyslab.Platform.Commons.Collections;

using Genesyslab.Platform.Commons.Protocols;

using Genesyslab.WebApi.Core.ConfigServer;

using Genesyslab.WebApi.Core;

using Genesyslab.Platform.Configuration.Protocols.ConfServer;
using System.Threading;

using Genesyslab.Platform.Reporting.Protocols;

using Genesyslab.Platform.Reporting.Protocols.StatServer;

Web API Client—Developer’s Guide 219

Chapter 10: Multimedia Simple Samples for .NET Stat Server Sample

220

using Genesyslab.Platform.Reporting.Protocols.StatServer.Events;
using Genesyslab.Platform.Reporting.Protocols.StatServer.Requests;
using CfgConnections; //TracelLogger is here

Declaring Variables and Importing Constants

Next, the StatInfo.aspx.cs file declares variables and accesses external
constants:
public partial class StatInfo : System.Web.UI.Page
{
string strHost =""
int iPort = -1
StatServerProtocol statServerProtocol = null;
SimpleSamplesConstants ssc =
new SimpleSamplesConstants();

string strMessages ="
Thread eventThread = null;
int iSelectedStatistic = -1
bool bConnected = false;

AutoResetEvent LlockStatServerReply =
new AutoResetEvent(false);
IMessage msgStatInfoReply = null; ...

Collecting User Data

The Stat Server Sample collects user data with the function called
CollectSubmitData(). Here is the code block that performs data collection:

protected bool CollectSubmitData()

{
try
{
if (strHost == "" || iPort == -1)
{
SimpleSamplesConstants ssc = new SimpleSamplesConstants();
try
{
Servicelnfo si = LoadBalancer.GetServicelnfo
(CfgAppType.CFGStatServer, ssc.TenantName);
strHost = si.Host;
iPort = si.Port;
}
catch (LoadBalancerException e1)
{
tbMessages.Text =
"StatServer is not available at this time.
Please try it later.";
}
}
iSelectedStatistic = int.Parse(selStatistic.Text);
}

Genesys Multimedia 7.6 @

Chapter 10: Multimedia Simple Samples for .NET Stat Server Sample

catch (Exception e)

{
strMessages = "Error during submit: \r\n" + e.ToString();
return false;

)

return true;

Drawing the Form and Submitting User Data

Next, the Page_Load () function initializes the onscreen form by calling the
CollectSubmitData() function discussed in “Collecting User Data,” above:

protected void Page_Load(object sender, EventArgs e)

{
CollectSubmitData();

)

Processing the Request

Getting Load The next section of code attempts to get instances of the load balancer and Stat
Balancer and Stat Server. If it succeeds, it captures the Stat Server host and port information, and
Server Instance the tenant name, to variables:

try
{
if (strHost == "" || iPort == -1)
{
SimpleSamplesConstants ssc = new SimpleSamplesConstants();
try
{
Servicelnfo si = LoadBalancer.GetServicelnfo
(CfgAppType.CFGStatServer, ssc.TenantName);
strHost = si.Host;
iPort = si.Port;
}
catch (LoadBalancerException e1)
{
tbMessages.Text = "StatServer is not available at this time.
Please try it later.";
}
Yo..

Spare Event- The next code block defines event handlers that the sample application does
Handler not use. These are prototypes for your custom event handlers:

Prototypes
private void conn_Opened(object sender, EventArgs e)
{
bConnected = true;
}

Web API Client—Developer’s Guide 221

Chapter 10: Multimedia Simple Samples for .NET Stat Server Sample

222

Connecting to
Stat Server

private void conn_Closed(object sender, EventArgs e)
{

bConnected = false;

)

private void conn_Error(object sender, EventArgs e)
{
/* remove comments when ErrorEventArgs could be resolved
ErrorEventArgs el = null;
if (e is ErrorEventArgs)
el = (ErrorEventArgs)e;
Trace.WriteLine("event Error for mediaServer");
if (el I= null)
Trace.WriteLine(e1.Cause.StackTrace);
*/
}

The next section of StatInfo.aspx.cs attempts to connect to Stat Server. It
connects using the host and port information acquired earlier by the
CollectSubmitData() function.

Warning! The various Web API samples illustrate different ways in which
your own applications can communicate with the load balancer and
store data from it:

* Acquire a new server for each request.
* Acquire services by stored aliases.

* Pass the destination server’s host and port information,
unaliased.

The last option—shown in this sample—is potentially dangerous.
It can reveal aspects your network infrastructure (such as your
internal server’s name and port) to potential attackers. Therefore,
Genesys recommends that you not use this technique in any front-
end application.

protected bool Connect(string host, int port)

{
Uri statServerURI = new Uri("tcp://" + host + ":"

+ port.ToString());

Endpoint statEndPoint = new Endpoint(statServerURI);
statServerProtocol = new StatServerProtocol (statEndPoint);
statServerProtocol.EnableLogging
(new TraceLogger (TraceLogger.LevelDebug));
statServerProtocol.0Opened += new EventHandler (conn_Opened);
statServerProtocol.Closed += new EventHandler (conn_Closed);
statServerProtocol.Error += new EventHandler (conn_Error);
statServerProtocol.ClientId = 777;
statServerProtocol.ClientName = "WebAPIServerDotNet";
eventThread = new Thread(new ThreadStart(StatServerEventThread));

Genesys Multimedia 7.6 @

Chapter 10: Multimedia Simple Samples for .NET Stat Server Sample

eventThread.Start();

try
{
statServerProtocol.0Open();
}
catch(Genesyslab.Platform.Commons.Protocols.ProtocolException e1)

{
tbMessages.Text = "Can't connect to the StatServer.";
return false;

}

return true;

)

The Connect (string, int) method above, uses the StatServerEventThread
thread to handle responses from StatServer and to notify the main thread about
these responses by setting the state of the LockStatServerReply object. The
main thread waits for these notifications and analyses the response or exits by
time-out.

Event Handlers

The final section of StatInfo.aspx.cs contains the GetStatInfo_onCLlick ()
method:

The GetStatInfo_onClick () determines which statistic the user has selected
from the dropdown list, and calls the RequestStatInfo () method to submit the
selected request to Stat Server and return the resulting value.

Here is the GetStatInfo_onClick () method:

protected void GetStatInfo_onClick(0Object sender, EventArgs e)
{
if (CollectSubmitData() == true)
{
try
{
if (Connect(strHost, iPort) == true)
{
string strResult = "";
switch (iSelectedStatistic)
{
case 1:
strResult = RequestStatlInfo
(ssc.TenantName, ssc.ChatQueue,
"eserviceinteractionstat.jar:cs
total distribution time chat",
StatisticType.Historical);
break;
case 2:
strResult = RequestStatlInfo
(ssc.TenantName, ssc.ChatQueue,

Web API Client—Developer’s Guide 223

Chapter 10: Multimedia Simple Samples for .NET Stat Server Sample

"eserviceinteractionstat.jar:cs
queue length chat",
StatisticType.Current);
break;
case 3:
strResult = RequestStatlInfo
(ssc.TenantName, ssc.ChatQueue,
"eserviceinteractionstat.jar:cs
total distributed chat",
StatisticType.Historical);
break;
case 4:...
default:
strResult = "Incorrect selected option.";
break;
}
statServerProtocol.Close();
strMessages = strHost + ":" + iPort.ToString() + "\r\n";

strMessages += "Stat result = " + strResult + "\r\n";
}
}
catch (Exception exception)
{
strMessages =
"Exception occured.\r\n" + exception.ToString();
}

)

tbMessages.Text = strMessages;...

The code for the RequestStatInfo() is shown below:

public string RequestStatInfo(string strTenantName, string strQueueName,
string strStatMetrics, StatisticType stType)

{
string strReturnvalue = "";
StatisticObject objectDescription =
new StatisticObject(strTenantName, strQueueName, StatisticObjectType.StagingArea);
StatisticMetric statisticMetric = new StatisticMetric(strStatMetrics);
statisticMetric.TimeProfile = "CollectorDefault";
statisticMetric.TimeRange = "Range0-120";
Statistic queueStat = new Statistic(objectDescription, statisticMetric);
StatisticsCollection statisticsCollection = new StatisticsCollection();

statisticsCollection.AddStatistic(queueStat);

Notification notification = Notification.Create

(NotificationMode.Periodical, 100000);
//Notification notification = Notification.Create(NotificationMode.Immediate, 1);
RequestOpenPackage requestOpenPackage = RequestOpenPackage.Create

(12345, stType, statisticsCollection, notification);

IMessage m = statServerProtocol.Request(requestOpenPackage);

224 Genesys Multimedia 7.6 @

Chapter 10: Multimedia Simple Samples for .NET Stat Server Sample

if (m !=null)
{
if (m.Name == EventPackageOpened.MessageName)
{
if (false == lockStatServerReply.WaitOne (15000, true))
{
strReturnValue = "Timeout occured. No response from StatServer.";
}

else if (msgStatInfoReply != null 3&
msgStatInfoReply.Name == EventPackageInfo.MessageName)
{
EventPackageInfo epi = msgStatInfoReply as EventPackageInfo;
IEnumerator Enumerator = epi.Statistics.GetEnumerator();
while (Enumerator.MoveNext())

{
Statistic stat = Enumerator.Current as Statistic;
strReturnValue += stat.StringValue;
break;
}
}
else
{
if (msgStatInfoReply != null)
strReturnvalue = "Error.Unexpected message from StatServer: "
+ msgStatInfoReply.Name;
else
strReturnValue = "Error. Empty message from StatServer.";
}
}
else if (m.Name == EventPackageError.MessageName)
{
EventPackageError epe = m as EventPackageError;
strReturnValue = epe.Description;
}
else
{
strReturnvalue = "Error. Unexpected message from StatServer: " + m.Name;
}
}
else
{
strReturnValue = "Error. Empty message from StatServer.";
}
return strReturnValue;

Closing Finally, this line in each interaction handler closes the connection to
Connections Stat Server, to avoid leaking resources:

statServerProtocol.Close();

Web API Client—Developer’s Guide 225

Chapter 10: Multimedia Simple Samples for .NET Universal Contact Server Sample

Universal Contact Server Sample

Purpose

This sample demonstrates a web form through which users can access a given
contact’s interaction history from the Interaction table of Universal Contact
Server’s database and display it in an ordered list.

The Universal Contact Server Sample shows how to:

* Connect to Universal Contact Server using the UCS APIL.

* Query the database based on first name, last name and e-mail address.
* Displays the result of the query.

¢ Disconnect from the Universal Contact Server.

Functionality Overview

Files

The following sections outline the code used to implement the Universal
Contact Server Sample:

¢ “Creating the HTML Header” on page 227

¢ “Constructing the HTML Body” on page 227

* “Declaring and Importing Packages” on page 229

* “Declaring Variables and Importing Constants” on page 229
e “Collecting User Data” on page 230

* “Drawing the Form and Submitting User Data” on page 230
e “Getting Load Balancer and UCS Instance” on page 230

* “Connecting to Interaction Server” on page 231

* “Closing Connections” on page 239

The ...\UCS directory contains the Universal Contact Server Sample. The
sample consists of four files, UCS.aspx, UCS.aspx.cs, Action.aspx, and
Action.aspx.cs.

Code Explanation

226

Like the other .NET samples, the Universal Contact Server Sample separates
user interface and logic components. The following subsections explain the
code in the UCS.aspx, UCS.aspx.cs, Action.aspx, and Action.aspx.cs

files.

Genesys Multimedia 7.6 @

Chapter 10: Multimedia Simple Samples for .NET Universal Contact Server Sample

User Interface Implementation

The UCS.aspx file controls most of the page presentation to the user.
The following subsections explain the code in that file.

Creating the HTML The UCS.aspx file begins by building an HTML header:
Header
<head)
{link rel="stylesheet" href="../../mcr_style.css" type="text/css" />
{title)MCR Samples 7.6.1 UCS</title>
{/head>

Constructing the Next, the code includes the HTML code to create the input fields for fist name,
HTML Body last name, and e-mail address; the Search button; and to display the query
results:

{body onload="javascript:window_onload();" style="background-image:url(../../fon.gif)">
{form id="ucs_form" method="post" action="UCS.aspx" runat="server")
{table border="1" width="30%")
trd
{td colspan="2" align="center"><h2>Enter information for UCS</h2><{/td>
/tr>
<tr)
{td>UCS host</td>
{td><asp:TextBox ID="tbServerName" AutoPostBack="false" MaxLength="30"
Text="" runat="server" /><{/td)
/tr>
{tr)
<tdPUCS port</td>
{td>{asp:TextBox ID="tbPort" AutoPostBack="false" MaxLength="5"
Text="" runat="server" /><{/td)
/tr>
<tr)
{td>First name:</td)
{td>}<asp:TextBox ID="tbFirstName" AutoPostBack="false"
MaxLength="30" Text="begemot" runat="server" />{/td)
/tr>
{tr)
{td>Last name:</td>
{td)><asp:TextBox ID="tbLastName" AutoPostBack="false" MaxLength="30"
Text="" runat="server" /><{/td>
/tr>
<tr)
{tddE-mail:</td)
{td>}<asp:TextBox ID="tbEMail" AutoPostBack="false"
MaxLength="30" Text="begemoteaspirin” runat="server" /></td)
/tr>
{tr)
{td colspan="2")
{input id="btnSearch" type="Submit" value="Search"

Web API Client—Developer’s Guide 227

Chapter 10: Multimedia Simple Samples for .NET Universal Contact Server Sample

onclick="JavaScript:return SearchButton_onClick();
"onserverclick="Search_onClick" runat="server" /)

/td>
/tr>
{/table>

{table border="1" width="30%")
<trd
{td colspan="2
Color diagram
/td>
/tr>
<trd
{td align="center" style="background-color

/td>
<td align="left">
- Thread with new messages
/td>
/tr>
<trd
{td align="center" style="background-color

/td>
<td align="left">
- Thread with no new messages
/td>
/tr>
<tr)
{td align="center" style="background-color

/td>
{td align="left">
- Message from customer
/td>
/tr>
<t
{td align="center" style="background-color

/td>
{td align="left")
- Message from call center
/td>
/tr>
{/table>

align="center")

<h2>

:{%=threadBackgroundColorNew?>">

:{%=threadBackgroundColor0Ld%>">

:{%=emai LFromCustomerColor%>">

:{%=emai LFromAgentColor%>">

{asp:Label ID="ResultData" runat="server"){/asp:Label)

/h2>. ..

228

Genesys Multimedia 7.6 @

Chapter 10: Multimedia Simple Samples for .NET Universal Contact Server Sample

Logic Implementation

The UCS.aspx.cs file contains most of the Universal Contact Server Sample’s
logic. The following subsections explain the code in that file.

Declaring and Importing Packages

The UCS.aspx.cs file begins by loading external packages into memory:

using System;

using System.Data;

using System.Text;

using System.Configuration;

using System.Collections;

using System.Web;

using System.Web.Security;

using System.Web.UI;

using System.Web.UI.WebControls;

using System.Web.UI.WebControls.WebParts;

using System.Web.UI.HtmlControls;

using Genesyslab.Platform.Commons.Collections;

using Genesyslab.Platform.Commons.Protocols;

using Genesyslab.WebApi.Core.ConfigServer;

using Genesyslab.WebApi.Core;

using Genesyslab.Platform.Configuration.Protocols.ConfServer;
using Genesyslab.Platform.Contacts.Protocols.ContactServer;
using Genesyslab.Platform.Contacts.Protocols.ContactServer.Requests;
using Genesyslab.Platform.Contacts.Protocols.ContactServer.Events;
using Genesyslab.Platform.Contacts.Protocols;

using Genesyslab.Platform.Contacts;

using CfgConnections; ...

using CfgConnections; //TracelLogger is here

Declaring Variables and Importing Constants

Next, the UCS.aspx.cs file declares variables and accesses external constants:

public string threadColorNew = "#8CB388";
public string threadBackgroundColorNew = "#CDDECB";
public string threadColor0Old = "#cococo";
public string threadBackgroundColor0ld = "#EGEGEG";
public string baseBoldColor = "#000080";
public string emaiLFromCustomerColor = "#EFF1F5";
public string emailFromCustomerBorderColor = "#DBE1EA";
public string emailFromAgentColor = "#FAFAF5";
public string emailFromAgentBorderColor = "#EAESDB";
public string bodyColor = "HFFFFFF";
public string bodyBackgroundColor = "#000000";
string strFirstName ="

string strLastName ="

string strEMail =

Web API Client—Developer’s Guide 229

Chapter 10: Multimedia Simple Samples for .NET

Getting Load
Balancer and UCS
Instance

230

Universal Contact Server Sample

string strMessage =
string strTableContent =""
public string strContactID =
string strHost =

int iPort = -1
UniversalContactServerProtocol ucsp = null;
SimpleSamplesConstants ssc = null;;

Collecting User Data

The Universal Contact Server Sample collects user data with the function
called CollectSubmitData (). Here is the code block that performs data
collection:

protected bool CollectSubmitData()

{

try

{
strHost = tbServerName. Text;
strFirstName = tbFirstName.Text;
strLastName = tblLastName.Text;
strEMai l = tbEMail.Text;
iPort = int.Parse(tbPort.Text); ;

}

catch (Exception e)

{
strMessage = "Error during submit: \r\n" + e.ToString();
return false;

}

return true;

i

Drawing the Form and Submitting User Data

Next, the Page_Load () function initializes the onscreen form by calling the
CollectSubmitData() function discussed in “Collecting User Data,” above:

protected void Page_Load(object sender, EventArgs e)
{

CollectSubmitDatal();

ssc = new SimpleSamplesConstants();

if (strHost == "" [| iPort == -1)

{...

Processing the Request

The next section of code attempts to get instances of the load balancer and
Universal Contact Server. If it succeeds, it captures the Interaction Server host
and port information, and the tenant name, to variables:

Genesys Multimedia 7.6 @

Chapter 10: Multimedia Simple Samples for .NET Universal Contact Server Sample

try
{
Servicelnfo si = LoadBalancer.GetServicelInfo
(CfgAppType.CFGContactServer, ssc.TenantName);
tbServerName.Text = si.Host;
tbPort.Text = si.Port.ToString();
}
catch (LoadBalancerException e1)
{
ResultData.Text = "Contact server is not available at this time.
Please try it later.";

Connecting to The next section of UCS.aspx.cs attempts to connect to Universal Contact
Interaction Server Server. It connects using the host and port information acquired earlier by the
CollectSubmitData() function.

protected void Search_onClick(0Object sender, EventArgs e)
{
CollectSubmitDatal();
try
{
Uri ucsURI = new Uri("tcp://" + strHost + ":"
+ jPort.ToString());
Endpoint ucsEndPoint = new Endpoint(ucsURI);
ucsp = new UniversalContactServerProtocol (ucsEndPoint);
ucsp.EnableLogging(new TraceLogger (TraceLogger.LevelDebug));
ucsp.Opened += new EventHandler (conn_Opened);
ucsp.Closed += new EventHandler (conn_Closed);
ucsp.Error += new EventHandler (conn_Error);
ucsp.Open(); ...

The next part of the code submits the users query information, displays the
sorted results, and closes the connection to the UCS:

IMessage msg = ucsp.Request(CreateGetContacts(true));

if (msg != null && msg.GetType() == typeof(EventGetContacts))
{
EventGetContacts eventGC = msg as EventGetContacts;
ContactDatalList cdl = eventGC.ContactData;
if (cdl !'= null && (int)eventGC.CurrentCount > 0)
{
Contact contact = cdl.Get(0);
strContactID = contact.Id;
msg = ucsp.Request(CreateGetInteractions(strContactID));
if (msg !'= null && msg.GetType() == typeof (EventError))
{
EventError error = msg as EventError;
error.FaultString = error.FaultString;

)

Web API Client—Developer’s Guide 231

Chapter 10: Multimedia Simple Samples for .NET

Universal Contact Server Sample

else if (msg != null && msg.GetType() ==typeof
(EventGetInteractionsForContact))

{

}.

EventGetInteractionsForContact egifc =

msg as EventGetInteractionsForContact;
ContactInteractionList cil = egifc.ContactInteractions;
cil.Sort(new ContactInteractionsComparer());
strTableContent = BuildInteractionTable(cil);

..ucsp.Close();
ResultData.Text = strTableContent;...

The CreateGetContacts (bool) method is called by Search_onClick to
retrieve the list of sorted contacts:

private IMessage CreateGetContacts(bool whisSort)

{

RequestGetContacts gcr

new RequestGetContacts();

ComplexSearchCriteria csc = null;

gcer.TenantlId = int.Parse(LoadBalancer.getTenantId
(ssc.TenantName));

gcr .MaxCount = 5;

gcr.Restricted = false;

gcr.SearchCriteria = new SearchCriteriaCollection();

if (strFirstName I= "")

{

)

if

{

SimpleSearchCriteria simplel = new SimpleSearchCriterial();
simplel.AttrName = ContactSearchCriteriaConstants.FirstName;
simplel.AttrValue = strFirstName;

simplel.0perator = Operators.Equal;

csc = new ComplexSearchCriterial();

csc.Prefix = Prefixes.And;

csc.Criterias = new SearchCriteriaCollection();
csc.Criterias.Add(simple1);
gcr.SearchCriteria.Add(csc);

(strLastName 1= "")

SimpleSearchCriteria simple2 = new SimpleSearchCriterial();
simple2.AttrName = ContactSearchCriteriaConstants.LastName;
simple2.AttrValue = strLastName; ...

...if (whisSort)

232

{

ger.SortCriteria = new SortCriteriaCollection();
SortCriteria srt = new SortCriteria();
srt.SortIndex = 0;

Genesys Multimedia 7.6 @

Chapter 10: Multimedia Simple Samples for .NET Universal Contact Server Sample

srt.AttrName = ContactSortCriteriaConstants.FirstName;
srt.SortOperator = SortMode.Ascending;
ger.SortCriteria.Add(srt);

}

return ger; ...

The CreateGetinteractions(string) method is called by Search_onClick to
retrieve the list of sorted interactions:

private IMessage CreateGetInteractions(string strContactID)
{
RequestGetInteractionsForContact rgifc =
new RequestGetInteractionsForContact();
rgifc.Contactld = strContactID;
rgifc.AttributelList = new StringlList();
rgifc.AttributelList.
Add(InteractionAttributeListConstants.Id);
rgifc.Attributelist.
Add(InteractionAttributeListConstants.Typeld);
rgifc.AttributelList.
Add(InteractionAttributeListConstants.Subtypeld);
rgifc.Attributelist.
Add(InteractionAttributeListConstants.MediaTypeld);...

..rgifc.SearchCriteria = new SearchCriteriaCollection();
SimpleSearchCriteria searchByMediaType =
new SimpleSearchCriteria();
searchByMediaType.Operator = Operators.Equal;

searchByMediaType.AttrName =
InteractionSearchCriteriaConstants.MediaTypeld;

searchByMediaType.AttrValue = "email";

rgifc.SearchCriteria.Add(searchByMediaType);

rgifc.SortCriteria = new SortCriteriaCollection();

SortCriteria srt1 = new SortCriteria();

srt1.AttrName = InteractionSortCriteriaConstants.Threadld;
srt1.SortIndex = 0;

srt1.SortOperator = SortMode.Ascending;
rgifc.SortCriteria.Add(srt1);

SortCriteria srt2 = new SortCriteria();

srt2.AttrName = InteractionSortCriteriaConstants.StartDate;
srt2.SortIndex = 1;

srt2.SortOperator = SortMode.Descending;
rgifc.SortCriteria.Add(srt2); ...

The Bui ldInteractionTable(ContactInteractionList)

method is called by Search_onClick to create a table of sorted interactions:

Web API Client—Developer’s Guide 233

Chapter 10: Multimedia Simple Samples for .NET

Universal Contact Server Sample

public string BuildInteractionTable(ContactInteractionList cil)

{
string
string
string
string
string
string
string

strEmailColor

strEmai lBorderColor
strLastThreadID
strCurrentThreadID
strSubtypeld
strMediaTypeld
strTypeld

string strSubject

string strWebSafeEmai lStatus
int iThreadCounter

string strinteractionState
string strThreadIlnteractionState
bool bFromCustomer

nn
i
nn
i
nn
i
nn
i
nn
i
nn
i
nn
i
nn
i
nn
i

0;
"New"i
"Read“;
false;

StringBuilder strTableContent = new StringBuilder ("\r\n <table border=\"0\"
width=\"100%\" id=\"treadsTable\" cellpadding=\"5\" style=\"border-collapse:

collapse\">)\r\n");

int iTotallncluded = 0;
for (int i =0; i < cil.Count; i++)
{
ContactInteraction ci = cil.Get (i);
Hashtable htAttributes = GetAttributesAsHashtable(ci.InteractionAttributes);
strMediaTypeld = GetAttributeAsString
(htAttributes, InteractionAttributelListConstants.MediaTypeld);
strTypeld = GetAttributeAsString
(htAttributes, InteractionAttributelListConstants.Typeld);
strSubtypeld = GetAttributeAsString
(htAttributes, InteractionAttributeListConstants.Subtypeld);
striWebSafeEmailStatus = GetAttributeAsString
(htAttributes, InteractionAttributelListConstants.WebSafeEmailStatus);
if (strSubtypeld == "OutboundAutoResponse” || strSubtypeld == "OutboundNew"
|| strSubtypeld == "OutboundNotification" || strSubtypeld == "OutboundReply")
bFromCustomer = false;
else
bFromCustomer = true;
if (!bFromCustomer)
{
strinteractionState = "New";
if (strWebSafeEmailStatus != "")
strinteractionState = strWebSafeEmailStatus;
}
else
strinteractionState = "Read";
234 Genesys Multimedia 7.6 @

Chapter 10: Multimedia Simple Samples for .NET Universal Contact Server Sample

The following conditional statement will allow you to display only e-mail
interactions retrieved from UCS:

if (strMediaTypeld == "email" 88 (strSubtypeld == "InboundNew"

|| strSubtypeld == "OutboundAutoResponse"

|| strSubtypeld == "InboundCustomerReply" || strSubtypeld == "OutboundNew"
|| strSubtypeld == "OutboundNotification" || strSubtypeld == "OutboundReply"))

iTotalIncluded++;
strCurrentThreadID = GetAttributeAsString

(htAttributes, InteractionAttributeListConstants.ThreadId);
strSubject = GetAttributeAsString

(htAttributes, InteractionAttributeListConstants.Subject);

if (strCurrentThreadID != strLastThreadID)

{
if (iThreadCounter > 0)
{
strTableContent.Append (" {/table></td></tr><{/table>\r\n");
if (strThreadInteractionState == "New")
{
strTableContent.Append (" <script language=\"JavaScript\">\r\n");
strTableContent.Append(" ChangeThreadStatus(" + iThreadCounter + ", ""
+ threadColorNew + "', '" + threadBackgroundColorNew + "');\r\n");
strTableContent.Append (" </script>\r\n");
}
strTableContent.Append (" /td></tro\r\n");
}..

The Action.aspx.cs file contains the code needed to allow the user to mark the
e-mail as “Read”, print the thread, or print the e-mail. These actions are made
possible by using the CreateInteractionUpdateAttributes,
CreateGetInteractionsForThreadId, and CreateGetInteractionsByEmailld
methods. These methods are called by the Page_Load method:

protected void Page_Load(object sender, EventArgs e)
{
.if (strAction == "mark_as_read")

{
msg = ucsp.Request(CreateInteractionUpdateAttributes(strEmail_Id, iTenant));

if (msg != null && msg.GetType() == typeof(EventUpdatelnteraction))
{
strTableContent = new StringBuilder("<h2 align=\"center\")
Email has been marked as read.</h2>");
strTableContent.Append
("
Close this window and refresh e-mails history.");
}

else if (msg == null)

Web API Client—Developer’s Guide 235

Chapter 10: Multimedia Simple Samples for .NET Universal Contact Server Sample

{
strTableContent = new StringBuilder("<h2 align=\"center\")
Empty response from UCS. Please check UCS log for details.</h2>");
}
}
else if (strAction == "print_thread")
{
msg = ucsp.Request(CreateGetInteractionsForThreadId(strContact_Id, strThread_Id));
strTableContent = new StringBuilder("<h2 align=\"center\")
Email thread history</h2>\r\n");
}
else if (strAction == "print_email")
{
msg = ucsp.Request(CreateGetInteractionsByEmailld(strContact_Id, strEmail_Id));
strTableContent = new StringBuilder(“<h2 align=\"center\">Email info</h2)\r\n");
Yoo

The CreatelnteractionUpdateAttributes(string, int) method updates the
status of an e-mail to ‘read’:

private IMessage CreatelnteractionUpdateAttributes(string strinteractionID,
int iTenantID)

{
The code below sets the mandatory properties of RequestUpdateInteraction
object:
RequestUpdatelnteraction rui = new RequestUpdateInteraction();
rui.InteractionAttributes = new InteractionAttributes();
rui.InteractionAttributes.Id = strinteractionlD;
rui.InteractionAttributes.TenantId = iTenantID;
rui.InteractionAttributes.EntityTypeld = EntityTypes.EmailOut;
rui.EntityAttributes = new EmailOutEntityAttributes();
rui.InteractionAttributes.OtherFields = new KeyValueCollection();

Set the value of attribute that we want to update:

rui.InteractionAttributes.OtherFields.
Add (InteractionAttributeListConstants.WebSafeEmailStatus, "read");
return rui;

The CreateGetInteractionsForThreadld(string, string) method creates an e-
mail history list for a given interaction:

private IMessage CreateGetInteractionsForThreadld(string strContactID,
string strThreadID)
{
RequestGetInteractionsForContact rgifc = new RequestGetInteractionsForContact();
rgifc.ContactId = strContactlID;
rgifc.AttributeList = new StringList();

236 Genesys Multimedia 7.6 @

Chapter 10: Multimedia Simple Samples for .NET Universal Contact Server Sample

Set the list of attributes that we want to retrieve from UCS:

rgifc.AttributeList.Add(InteractionAttributelListConstants.Id);
rgifc.AttributelList.Add(InteractionAttributelListConstants.Typeld);
rgifc.AttributeList.Add(InteractionAttributeListConstants.Subtypeld);
rgifc.AttributeList.Add(InteractionAttributeListConstants.MediaTypeld);
rgifc.AttributeList.Add(InteractionAttributeListConstants.Subject);
rgifc.AttributeList.Add(InteractionAttributelListConstants.Text);
rgifc.AttributeList.Add(InteractionAttributelListConstants.Threadld);
rgifc.AttributeList.Add(InteractionAttributeListConstants.WebSafeEmailStatus);
rgifc.AttributeList.Add(InteractionAttributeListConstants.StartDate);

Note: Requesting the InteractionAttributelListConstants.IxnAttributes
attribute may result in a dramatic decrease in the performance of UCS.
Request it only if it is required.

//rgifc.AttributeList.Add(InteractionAttributeListConstants.IxnAttributes);

rgifc.SearchCriteria = new SearchCriteriaCollection();

Search for only interaction that meet the search criteria, ThreadID:

SimpleSearchCriteria searchByThreadId = new SimpleSearchCriteria();
searchByThreadId.Operator = Operators.Equal;

searchByThreadId.AttrName = InteractionSearchCriteriaConstants.ThreadId;
searchByThreadId.AttrValue = strThreadID;
rgifc.SearchCriteria.Add(searchByThreadId);

rgifc.SortCriteria = new SortCriteriaCollection();

Sort the Interactions by ThreadId and then by StartDate:

SortCriteria srt1 = new SortCriteria();

srt1.AttrName = InteractionSortCriteriaConstants.Threadld;
srt1.SortIndex = 0;

srt1.SortOperator = SortMode.Ascending;
rgifc.SortCriteria.Add(srt1);

SortCriteria srt2 = new SortCriteria();

srt2.AttrName = InteractionSortCriteriaConstants.StartDate;
srt2.SortIndex = 1;

srt2.SortOperator = SortMode.Ascending;
rgifc.SortCriteria.Add(srt2);

return rgifc;

Web API Client—Developer’s Guide 237

Chapter 10: Multimedia Simple Samples for .NET Universal Contact Server Sample

The CreateGetInteractionsByEmailld(string, string) method allows you to
print a specific e-mail:

private IMessage CreateGetInteractionsByEmailld(string strContactID, string strEmailID)

{

RequestGetInteractionsForContact rgifc = new RequestGetInteractionsForContact();
rgifc.ContactId = strContactlID;
rgifc.AttributeList = new StringList();

Set the list of attributes that we want to retrieve from UCS:

rgifc.AttributeList.Add(InteractionAttributeListConstants.Id);
rgifc.AttributeList.Add(InteractionAttributeListConstants.Typeld);
rgifc.AttributeList.Add(InteractionAttributelListConstants.Subtypeld);
rgifc.AttributeList.Add(InteractionAttributelListConstants.MediaTypeld);
rgifc.AttributeList.Add(InteractionAttributeListConstants.Subject);
rgifc.AttributeList.Add(InteractionAttributelListConstants.Text);
rgifc.AttributeList.Add(InteractionAttributelListConstants.Threadld);
rgifc.AttributeList.Add(InteractionAttributeListConstants.WebSafeEmailStatus);
rgifc.AttributeList.Add(InteractionAttributeListConstants.StartDate);

Note: Requesting the InteractionAttributelListConstants.IxnAttributes
attribute may result in a dramatic decrease in the performance of UCS.
Request it only if it is required.

//rgifc.AttributeList.Add(InteractionAttributeListConstants.IxnAttributes);

rgifc.SearchCriteria = new SearchCriteriaCollection();
SimpleSearchCriteria searchByThreadId = new SimpleSearchCriteria();
searchByThreadId.Operator = Operators.Equal;
searchByThreadId.AttrName = InteractionSearchCriteriaConstants.Id;
searchByThreadId.AttrValue = strEmailID;

Search the specific e-mail by the e-mail's ID:

rgifc.SearchCriteria.Add(searchByThreadld);

rgifc.SortCriteria = new SortCriteriaCollection();

To ensure that your results are still sorted, sort the Interactions by ThreadId
and then by StartDate:

SortCriteria srt1 = new SortCriteria();

srt1.AttrName = InteractionSortCriteriaConstants.Threadld;
srt1.SortIndex = 0;

srt1.SortOperator = SortMode.Ascending;
rgifc.SortCriteria.Add(srt1);

238 Genesys Multimedia 7.6 @

Chapter 10: Multimedia Simple Samples for .NET Universal Contact Server Sample

SortCriteria srt2 = new SortCriteria();

srt2.AttrName = InteractionSortCriteriaConstants.StartDate;
srt2.SortIndex = 1;

srt2.SortOperator = SortMode.Descending;
rgifc.SortCriteria.Add(srt2);

return rgifc;

Closing Finally, this line closes the connection to Universal Contact Server, to avoid
Connections [eaking resources:

ucsp.Close();

Web API Client—Developer’s Guide 239

Chapter 10: Multimedia Simple Samples for .NET Universal Contact Server Sample

240 Genesys Multimedia 7.6 @

S

N’

GENESYS

AN ALCATEL-LUCENT COMPANY

Chapter

1 1 Multimedia Compound
Sample

This chapter explains the Multimedia Compound Sample. The current release
provides this sample for Java only. The chapter contains the following
sections:

Overview, page 241

Common Files, page 243

Compound Sample Structure, page 246
Customizing the Compound Sample, page 249
Code Explanation, page 250

Overview

The Compound Sample is a simple web application that demonstrates how to
use the Multimedia web media features such as chat, e-mail, web
collaboration, voice callback, and FAQ in a secure environment.

Note: The Compound Sample presents the Web API media features in one

cohesive application. That’s why it was created. Most of the media
code is taken from the web samples described in Chapter 9. You should
read that chapter before reading this one and make sure you understand
how each of the media features works. Pay particular attention to the
code explanations.

Files and Directory Structure

/CompoundSample761, located under the <tomcat_home>/webapps directory, is the
root directory of the Compound Sample. It contains several subdirectories,
which are listed in Table 9 on page 242.

Web API Client—Developer’s Guide 241

Chapter 11: Multimedia Compound Sample

Overview

Table 9: Names and Purposes of the Compound Sample Directories

Directory Purpose

AccountInfo Contains a JSP file that asks a user to fill out personal
information

Chat Contains the web Chat Sample. “Chat Sample” on page 107
explains this sample in detail.

Callback Contains the web Callback Sample. “Callback Sample” on
page 101 explains this sample in detail.

Email Contains the web E-mail Sample. “E-Mail Sample” on
page 120 explains this sample in detail.

Help Contains help files that assist a user with a particular page.
Most of the sample pages have a He Lp icon that launches a help
file.

Login Contains files for logging in and logging out of the Compound
Samples and files used to validate user names and passwords.

Images This directory holds 25 graphics files for menu tabs, Server
Auvailability icons, phones, and so on. If you want to add
graphics, you should place and reference them here.

MainWindow | Contains the main greeting or entry point to the Compound
Sample

META_INF Contains the manifest.mf file. A web server autogenerates this
file.

WEB_INF Contains a mandatory configuration file for all web

applications: web.xmL. This file contains only the default
content of all web applications. It does not contain any
customized instructions for the Compound Sample.

Sample Demonstration Categories

The Compound Sample has two demonstration categories:

* Authentication
* Media Availability

Genesys Multimedia 7.6 @

Chapter 11: Multimedia Compound Sample Common Files

Authentication

The Compound Sample demonstrates how to:

* Create a simple login function with predefined username and password
values.

* Emulate access to a database and provide a customer’s personal
information from the DB.

* Create common reusable code that is included in each JSP and prevent its
unauthorized use.

Warning! The authentication scheme used in the Compound Sample is for
illustration only and therefore very basic. If you are building a
data-sensitive application, you must use a more secure
authentication scheme.

Media Availability

The Compound Sample demonstrates how to:
* Create a dynamic menu with currently available media.

* Show only the media available based on a status report from Genesys
Local Control Agent.

Common Files

You will find nine common files under the Compound Sample root directory.
This section groups these files in categories and explains each file in detail.

* ApplicationConstants.jsp
* Dblank.jsp

* CheckCorrectLogin.jsp

* CommonScripts.jsp

¢ JSConstants.jsp

* calendar.js

e CommLib.js

* jcc_style.css

* index.html

Web API Client—Developer’s Guide 243

Chapter 11: Multimedia Compound Sample Common Files

244

Placeholder

The blank. jsp file is used as a placeholder in the bottom-right frame of the
Compound Sample. When the frame is initialized, blank. j sp is either replaced
by PersonalInfo.jsp or by the page specified in the RedirectToPage request
parameter. blank.jsp is also used for the hidden frame that is used by the
Compound Sample. (See “Compound Sample Structure” on page 246.)

Calendar Utility

The calendar.js file contains JavaScript utility functions for displaying
calendars and formatting dates.

Common Library

The CommLib. jsp file acts as the common API library, and the
CommonScripts.jsp file acts as the common JavaScript code for all the samples.

The CommLib.jsp file contains functions that:

* Identify a user’s web browser.

* Get handles to HTML frames or control objects.

e Perform basic string manipulation and encoding.

* Retrieve submitted form parameters.

* Return the current time.

The CommonScripts.jsp file contains java methods that:
* Mask unacceptable characters.

* Generate HTML buttons.

* Check for media availability.

For example, the IsMediaAvai Lable method allows you to set the availability of

a media type:

public boolean IsMediaAvailable (int iType)
{
boolean bReturn = false;
SvcDispatcher svcDispatcher = null;
try
{
svcDispatcher = new SvcDispatcher();
if(svcDispatcher != null &8 svcDispatcher.getErrorCode() == 0)
{
if (svcDispatcher.ingSrvcByType(iType, strTenant))
{
Calendar calCurTime = Calendar.getInstance();
calCurTime.setTime(new Date(System.currentTimeMillis()));
int iCurHour = calCurTime.get (Calendar.HOUR_OF_DAY);
int iCurDayOfWeek = calCurTime.get(Calendar.DAY_OF_WEEK);

Genesys Multimedia 7.6 @

Chapter 11: Multimedia Compound Sample Common Files

In the following switch statement, the chat media type and been made
available Monday through Friday from 10AM until 6PM:

switch (iType)
{
case CfgAppType.CFGChatServer:
if (iCurDayOfWeek != Calendar.SUNDAY & iCurDayOfWeek
I= Calendar.SATURDAY)
if (iCurHour »>= 10 && iCurHour <= 18)
bReturn = true;
break;
case CfgAppType.CFGEmailServer:
bReturn = true;
break;
case CfgAppType.CFGUniversalCallbackServer:
bReturn = true;
break;
default:
break; . ..

Constants

The Compound Sample has two constant files, ApplicationConstants.jsp and
JSConstant.jsp. Table 10 shows only the configuration constants in the
ApplicationConstants.jsp file. The Section Name column lists the database
sections under the Options tab of the Multimedia Web API Server Application
object in Configuration Server. The second column lists option names. The
third column lists the corresponding Java variable name in the
ApplicationConstants.jsp file. The last column describes the option named in
column two.

Table 10: Configuration Settings in ApplicationConstants.jsp File

Section Name Field Name Java Constant Name Description

chat chat-queue strChatQueue Chat queue

chat chat-stat-interval strChatStatInterval Interval at which Stat Server
calculates statistics on chat
requests

e-mail email-queue strEmailQueue E-mail queue

e-mail email-stat-interval strEmailStatInterval Interval at which Stat Server
calculates statistics on e-mail
requests

miscellaneous | applets-code-base strCodeBase Code base for all used applets

Web API Client—Developer’s Guide 245

Chapter 11: Multimedia Compound Sample Compound Sample Structure

Table 10: Configuration Settings in ApplicationConstants.jsp File (Continued)

Section Name Field Name Java Constant Name Description
miscellaneous | stat-refresh-interval strStatRefreshInterval Interval for a statistics refresh on
statistics pages
miscellaneous | tenant strTenant Tenant in Configuration Server
Authentication

The CheckCorrectLogin.jsp file demonstrates the authentication section of
the sample. See “Authentication” on page 250 for a detailed discussion of the
security features in the Compound Sample.

Presentation

Greetings Page

The index.html file is the main or greeting page to access the Compound
Sample. The file presents an HTML link to the login page. Figure 26 on
page 248 shows how the file looks after launching.

Graphics
The graphics are all under the Images directory. See the Images entry in Table 9
on page 242 for more information.

Style Sheet

The cascading style sheet (CSS) icc_style.css has instructions for adding the
bold font to header tags, adding tables, and other layout code. This document
does not discuss CSS technologies. You should be able to easily find CSS
tutorials on the Web.

Compound Sample Structure

246

You can access the Compound Sample either through the main index.html
page (see Figure 26 on page 248) or MainFrame.jsp (see Figure 28 on
page 249). In either case, you will be forwarded to the login page (see
Figure 27 on page 248) if your credentials have not yet been authenticated.

The center stage of the Compound Sample is the MainFrame. j sp file. This file
is under the /MainWindow directory and it contains JavaScript functions that
process keys used in the sample. The file also contains a frameset that holds
the LeftNavFrame.jsp, Command.jsp, and Personallnfo.jsp files, as well as a
hidden frame containing blank.jsp. Note that on loading, the frameset

Genesys Multimedia 7.6 @

Chapter 11: Multimedia Compound Sample Compound Sample Structure

contains blank.jsp in the BottomMainFrame. This will be replaced with
PersonalInfo.jsp when the page is initialized. Here is the HTML frameset
code:

{frameset cols="170, *, 0" frameborder="N0" border="0" framespacing="0"

rows="*" onload="javascript:init();">

{frame name="LeftNavFrame" scrolling="N0" noresize
src="../MainWindow/LeftNavFrame.jsp">

{frameset rows="75,#%, 0" frameborder="yes" border="1"

framespacing="0" cols="x")

{frame name="UpperFrame" noresize src="../MainWindow/Command.jsp">
{frame name="BottomMainFrame" noresize src="../blank.jsp"">
{frame name="SystemHiddenFrame" scrolling="N0" noresize src="../blank.jsp")
{/frameset>
{/frameset>

The left frame, LeftNavFrame, contains the site navigator file
LeftNavFrame.jsp. The main frame on the bottom-right of the page contains
input boxes. The top-right frame holds the Command. jsp file that contains menu
tabs. You will see different tabs depending on what media are available. The
main frame changes to load different pages. Both the navigator and top-right
frame command tabs can affect the content displayed in the center. Figure 25
shows the layout of the sample.

Note: The frame layout shown in Figure 25 does not reflect the proportions
you will see in your browser. In particular, the hidden frame on the
right will not show up on your screen.

UpperFrame
(Command.jsp)

LeftNavFrame SystemHiddenFrame
(LeftNavFrame.jsp) (blank.jsp)

BottomMainFrame

Figure 25: Compound Sample Layout

Web API Client—Developer’s Guide 247

Chapter 11: Multimedia Compound Sample Compound Sample Structure

Running the Sample

The primary entry point to the Compound Sample is through the index.html
file. Figure 26 shows how the file looks after you launch it.

Lol x]
Fle Edt View Favorites Tools Help |
GBack » = - @@ (3] A | @search [EFavortes @iveda B | Bh- Sh = - 5] A
Address [] http: techpubs2iCompoundSampleTf =] pe ‘

=)

These pages provide your company's web development
team with a sample of how customers using the website
will interact with your call center and with Genesys E-malil
for Multi-Channel Routing.

(@

GENESYS

Compound sample

Figure 26: Main Greeting Page of the Compound Sample

You must click the Compound Samp Le link to launch the application. After
clicking the link, you are taken to a login page (see “Authentication” on
page 243 for a code explanation), as shown in Figure 27. You must log in to
continue.

L oaw wd carrest e, - s ool Inkeamet Esplonns =100 =

Fis [Vo= Fevordes Took Feip

ik e D Dt Gifets e 3 - O S

Ackironsi [) hemp o sheoar B0 omgun i T e gn. mg =] g

=

Lagin infermation

—
—

Figure 27: Login Page for the Compound Sample

Eventually, the user arrives at MainFrame.jsp, the main page of the Compound
Sample application (see Figure 28 on page 249). If you attempt to access this
file directly without authentication, you are forwarded to the login page shown
in Figure 27.

248 Genesys Multimedia 7.6 @

Chapter 11: Multimedia Compound Sample Customizing the Compound Sample

i
[e —
Sedad o = < (D A Qieeh itewes Gt § 2 b T o
D P T e P = e
K . & ¥
bty
e
GEMELYL
ST bk
[
|
—
|
——————
[i gaticms =]
Ltnwitrn | vty |
LN
ikl O Ll ket

Figure 28: Main Page for the Compound Sample

Fill out the form on the bottom-right frame and click Continue. If you filled out
the form correctly, the Continue button opens a new page with a listing of the
media features available to you at that moment. You should also see extra tabs
on the top-right pane for each of the available media. You can click these tabs
to access a particular page directly.

Note: The media servers are not always available. The sample includes a
demonstration of that point. Issues like communication traffic, office
hours, agent availability, client and server error, or network problems
can all contribute to the lack of service.

Customizing the Compound Sample

You can modify or add HTML links to point to other new pages, replace the

background color or design, company logo, and add other branding items on
the main page of the Compound Sample. You can also add or modify HTML
controls on the pages.

Note: Keep in mind that the purpose of the Compound Sample is to
demonstrate the Multimedia media functions and features in one
cohesive application and to be a tool to help you build your own
application. You should not modify the sample for production use
because most of its components are sample code themselves (from
Chapter 9).

Web API Client—Developer’s Guide 249

Chapter 11: Multimedia Compound Sample Code Explanation

Code Explanation

This section reviews the code for these features of the Compound Sample:
* “Authentication” on page 250

* “Chat” on page 253

¢ “E-Mail” on page 256

Authentication

250

Two files handle authentication in the Compound Sample. Login.jsp presents a
GUI to you to enter your credentials. After the data entry, the page forwards
you to the CheckLogin.jsp file, which contains the actual authentication code.
The following subsections outline the key lines of code in each file.

Warning! The authentication scheme used in the Compound Sample is for
illustration only and therefore very basic. If you are building a
data-sensitive application, you must use a more secure
authentication scheme.

Logging In

The following code snippets are from the Login.jsp file. The line below
forwards the data entered on the login page to the CheckLogin.jsp page:

<FORM Name="LoginForm" AutoComplete="off" METHOD="POST"
ACTION="../Login/CheckLogin.jsp">

This is the HTML code for the input boxes for user name and password:

CINPUT TYPE="text" NAME="userid" SIZE="13" MAXLENGTH="11")
C{INPUT TYPE="password" NAME="password" SIZE="13" MAXLENGTH="8")

The Java code calls the GenerateButton () method from the CommonScripts.jsp
file and passes in the HTTPServletRequest and the output stream (in this case,
the JSPWriter) arguments:

{%GenerateButton ("Login", "Login_onClick();", request, out);%>

The GenerateButton () method shown below checks the browser type, such as
Internet Explorer or Netscape, that the user is using and generates HTML code
applicable to the browser. The request.getHeader () call returns the browser
type. The try-catch block then decides which HTML code to write to the
output stream:

Genesys Multimedia 7.6 @

Chapter 11: Multimedia Compound Sample Code Explanation

public void GenerateButton (String strTitle, String strJavaScript,
HttpServletRequest request, JspWriter out){

String strBrowser = request.getHeader ("User-Agent");
String strout = "";
try(
if (strBrowser.index0f ("MSIE") != -1){
strOut += "<input type=\"button\" class=\"coolButton\"value=\"";
strOut += strTitle + "\" onClick=\"javascript:"+strdavaScript + "\">";
Yelse {
strOut += "" +strTitle + "</a)";
}
out.write (strOut);
Ycatch (Exception e) {}

If the user makes a login error, the code in the Login_Onclick () method
prompts the user to reenter the credentials. Otherwise, it submits the form.

function Login_onClick()

{
if (document.forms[0].userid.value == "")
{
alert ("Please enter login information.");
return;
}
if (document.forms[0].password.value == "")
{
alert ("Please enter password.");
return;
}
document.forms[0].submit();
}

Getting Authenticated

The CheckLogin.jsp code implements a simplified verification of user
credentials:

String strUserID= i18nsupport.GetSubmitParametr(request, "userid");

String strPassword= i18nsupport.GetSubmitParametr(request,
"password");

if (strUserID != null 88 strUserID.equals("123")){
session.putValue("login", "true");

%>

If the user enters the data required, the JSP forwards the user to the
MainFrame.jsp page. Otherwise, it returns the user to the login page:

Web API Client—Developer’s Guide 251

Chapter 11: Multimedia Compound Sample Code Explanation

{jsp:forward page="../MainWindow/MainFrame.jsp"/>
LY n

{jsp:forward page="../Login/
Login.jsp?Error=Incorrect+login.+Please+try+again."/>

Web Media Features in the Compound Sample

Callback

252

The Compound Sample shares much of the media-related code from the simple
web samples described in Chapter 9. However, the Simple Samples are stand
alone demonstrations, which is reflected in the code. On the other hand, the
Compound Sample is an application, which required some modification of the
shared code to make it function as a whole.

The following files are used to demonstrate the callback features of the
Compound Sample:

* CallbackOptions.jsp—checks for callback availability and presents the
callback JSP only if the callback service is available.

* HtmlCallback.jsp—provides functionality similar to the Cal Lback JSP used
in the Simple Sample.

* Calendar.jsp—provides a JavaScript calendar window.
Code Explanation
You must read the Simple Callback Sample for a complete explanation of the

basic code, as this section focuses only on how the code is modified for the
Compound Sample.

Minor Differences

Some minor differences occur between the Simple Sample and Compound
Sample versions, such as variable names and parameters.

The Compound Sample also imports other JSP files—CommonScripts.jsp and
CheckCorrectLogin.jsp:

<%e include file="../CommonScripts.jsp" %>
<%e include file="../CheckCorrectLogin.jsp" %>

The second statement checks for proper authentication and forces the user back
to the login page if he or she tries to access the callback page directly.

Genesys Multimedia 7.6 @

Chapter 11: Multimedia Compound Sample Code Explanation

Main Differences

The Compound Sample uses files that are very similar to the ones used by the
Simple Sample. The overall code and logic are basically the same, with a few
differences:

¢ Compound Sample’s version of the HTMLCal Lback . j sp file contains code for
authentication (it uses the CheckCorrectLogin.jsp file). It also uses the
style sheet for the Compound Sample.

* Several JavaScript functions are different, as noted in the next section.

Handling User Events

Several of the JavaScript functions used in the Compound Sample are different
from those used in the Simple Callback Sample.

The following functions are essentially the same in both samples:

* window_onload()

* window_onunload()

* on_view_list()

* on_request()

These functions are different:

* selPhoneNum_onChange ()—sets the media type to voip if the selected phone

number is equal to the client IP address. Otherwise, it sets the media type
to voice.

* GetStartDate()—gets the requested callback start date.
* GetEndDate ()—gets the requested callback end date.

Chat

One of the media features in the Compound Sample is chat. These files are
used to demonstrate it:

* ChatOptions.jsp—checks for chat media availability and presents a chat
window only if chat is available.

* ChatTranscript.jsp—supports popular Internet expressions such as
smiling or frowning facial expressions and hyper links in an e-mail or chat
communication.

* HtmlChatCommand.jsp—contains Java and JavaScript code that controls the
Media Options tab in the top-right frame.

* HtmlChatFrameSet.jsp—a frameset that holds the HtmLChatCommand. jsp and
HtmlChatPanel.jsp files.

* HtmlChatPanel.jsp—contains the chat panel where users can enter and see
the chat transcript.

Web API Client—Developer’s Guide 253

Chapter 11: Multimedia Compound Sample Code Explanation

You must read the simple Chat Sample for a complete explanation of the basic
code because this section focuses only on how the code is modified for the
Compound Sample.

Minor Differences

Some minor differences occur between the Simple Sample and Compound
Sample versions, such as variable names and extra parameters for
queue-related information.

The Compound Sample also imports other JSP files—CommonScripts.jsp and
CheckCorrectLogin.jsp:

<{%e include file="../CommonScripts.jsp" %>
<%e include file="../CheckCorrectLogin.jsp" %>

The second statement checks for proper authentication and forces the user back
to the login page if he or she tries to access the chat page directly.

Main Differences

The Compound Sample uses chat files that are very similar to the ones used by
the Simple Sample. The overall code and logic are basically the same, with a
few differences:

* Compound Sample chat includes an extra file—ChatOptions.jsp. The
Command. j sp file uses it to check for different chat media availability, such
as chat or a combination of chat and another media.

¢ Compound Sample’s version of the HTMLChatPanel.j sp file contains code
for authentication (it uses the CheckCorrectlLogin.jsp file). It also uses the
style sheet for the Compound Sample.

e Compound Sample’s version of the ChatStatInfo.jsp file contains code
that references the constants from the ApplicationConstants.jsp file:

<%include file="../ApplicationConstants.jsp" %>
It also adds an extra line to call the GetDataFromConfigServer () method in
ApplicationConstants.jsp to retrieve option values from the Compound

Sample Application object in Configuration Server:

{%GetDataFromConfigServer ();%>

254 Genesys Multimedia 7.6 @

Chapter 11: Multimedia Compound Sample Code Explanation

function on_connect

{

Chat Box

The main difference in the chat panel is the implementation of emotion icons
and hyper links. This implementation is contained within the four methods of
the ChatTranscript.jsp:

* AddMessage ()—adds messages from server to the chat transcript panel.

* ParseSmilesAndLinks ()—parses message to be displayed. Shows links as
clickable hyper-links and smiles as emoticons.

* ProcessOneWord ()—checks each word in the message to determine if it is a
an emoticon or a hyper-link.

* HideHTML ()—used to prevent hacking by hiding all potentially dangerous
content, such as these symbols: < > &. This makes the incoming message
harmless to the client.

An array of GIF files found in the ChatTranscript.jsp are used for emotion
icons. You can replace any of these GIF files with your own to customize your
chat box. In order for the text to be recognized as a hyper link it must begin
with one of the following formats:

o http:\\
* http://
e https:\\
e https://
b WWW .

During a chat, the user clicks on an icon representing a facial expression. The
ProcessOneWord () function determines that an emoticon is present and then the
PasreSmi lesAndLinks () function parses the message. When the user clicks
send, the correct image is inserted in the message box.

Chat Command

There is only one main modification of the HtmLChatCommand. j sp—the
on_connect () function. The Compound Sample stores the information the user
entered in the top-right frame of the sample. The following code snippet shows
the modified section:

O

clearTimeout (timerID);

document.forms[0]

document.forms[0].
document.forms[0].
document.forms[0].

document. forms[0]
document. forms[0]
var RightNow=new
document. forms[0]
document. forms[0]

.cmd.value = "connect";

first_name.value = top.GetValue("FirstName");
last_name.value = top.GetValue("LastName");
email_address.value = top.GetValue("FromAddress");
.queue_key.value = top.GetValue("<Z=fldnInterest%>");
.subject.value = top.GetValue("Subject");
Date();
.timeZoneOffset.value = RightNow.getTimezoneOffset();

.submit();

Web API Client—Developer’s Guide 255

Chapter 11: Multimedia Compound Sample Code Explanation

E-Mail

256

The code for the e-mail feature in the Compound Sample is basically the same
as that for the simple E-mail Sample; however, there a few differences. For
example, in the simple E-mail Sample you are required to enter all of the
information on the form, while the Compound Sample stores this information
for the user. The Compound Sample demonstrates the E-mail History
functionality and the ability to print this history. It also enables us to link the
reply to an e-mail that has its parent message stored in the Universal Contact
Server Database.

One of the media features in the Compound Sample is e-mail. These files are
used to demonstrate it:

* Email.jsp—contains Java code snippets that use the e-mail portion of the
Web API to send e-mails.

* EmailHistory.jsp—gets customer interactions history from Universal
Contact Server.

* EmailHistoryFrameset.jsp—the frameset for the e-mail history
functionality.

* EmailOptions.jsp—shows all available e-mail options, like web form
submission or e-mail history, from Universal Contact Server.

* PrintHistory.jsp—prints selected thread or single e-mail. Also helps to
update attach data of the interaction.

The majority of the code pertaining to the e-mail history and the print history
functionality is contained in the Emai lHistory.jsp and the PrintHistory.jsp.

The PrintHistory.jsp File Explained
The first line in the PrintHistory.jsp file sets the page content type:

{%e page contentType = "text/html; charset="windows-1252" %>

The second line is a call to the response.setContentType () method. This sets
the content type or character encoding to use in the response to the client:

{%response.setContentType ("text/html; charset=" +
i 18nsupport.GetCharSet()); %>

Then the sample code loads the following libraries into memory:

{%e page import="Genesys.webapi.system.loadbalancing.*"%)
{%e page import="Genesys.webapi.media.irs.direct.*"%)

{%e page import="Genesys.webapi.media.irs.protocol.*"%)
{%e page import="Genesys.webapi.media.common.*"%>

Genesys Multimedia 7.6 @

Chapter 11: Multimedia Compound Sample Code Explanation

{%e page import="Genesys.webapi.utils.i18n.*"%>

{%e page import="Genesys.CfgLib.*"%)

{%e page import="Genesys.webapi.media.ucs.direct.*"%)
{%e page import="java.io.*"%)

{%e page import="java.util.*"%>

<%e include file="../CommonScripts.jsp" %>

<%e include file="../CheckCorrectLogin.jsp" %>

The getValueFromMap method is used to retrieve any value of the key by the
specified name:

A

public String getValueFromMap (Map map, String strName)

{

//Useful attributes: Text, Threadld, Subject, FromPersonal, Mailbox,
//SentDate, StartDate, EndDate

String strBody = null;
_ucs_attribute atrBody = (_ucs_attribute) map.get(strName);
if (atrBody != null)
{
Object oBody = atrBody.getValue();
if (oBody != null)
strBody = oBody.toString();

}
if (strBody == null)
strBody = "";
return strBody;
}
%

Then the code creates a relationship to a style sheet:
<link rel="stylesheet" href="/CompoundSample761/icc_style.css"type="text/css">
The code uses two external JavaScript files:

{SCRIPT LANGUAGE=javascript SRC="/CompoundSample761/CommLib.js">{SCRIPT)
{SCRIPT LANGUAGE=javascript SRC="/CompoundSample761/JSConstants.jsp"></SCRIPT)

Variables are declared:

<
String action = i18nsupport.GetSubmitParametr (request, "action");
String thread_id = i18nsupport.GetSubmitParametr (request, "thread_id");
String email_id = i18nsupport.GetSubmitParametr (request, "email_id");
String contact_id = i18nsupport.GetSubmitParametr (request, “contact_id");
%>

Web API Client—Developer’s Guide 257

Chapter 11: Multimedia Compound Sample Code Explanation

An instance of the load balancer is created and a Universal Contact Server is
selected for each request. The remaining code allows you to print all of the
e-mail history or one specific e-mail. The file also contains the logic needed to
create the color coded table that the e-mail history is displayed in.

<%
if(action != null)
{
String svcHost = "";
int svcPort = -1;
svcDispatcher = new SvcDispatcher();
_ucs_direct search = null;

// We select UCS server for each request(!)
if(svcDispatcher != null && svcDispatcher.getErrorCode() == 0 3&
svcDispatcher.ingSrvcByType (CfgAppType.CFGContactServer, strTenant))
{
svcHost = new String(svcDispatcher.getSrvcHost().toLowerCase());
svcPort = svcDispatcher.getSrvcUCSApiPort();
search = new _ucs_direct();
search.connect (svcHost, svcPort);

)

List emins = null;
_ucs_interaction one_mail = null;
if (search != null)
{
if (action.equals("mark_as_read"))
{
one_mail = search.get_one_interaction(email_id);
_ucs_parameter_map userdata = one_mail.getInteractionAttributes();

if (userdata == null)
userdata = new _ucs_parameter_map ();
userdata.put (strWebSafeEmailStatus, "Read");

search.update_interaction (email_id,
svcDispatcher.getTenantId(strTenant).intValue(), userdata);

out.println("<H2 align=\"center\">Email has been marked as read.
Please refresh emails history frame</H2>");
out.println ("
Close this window and refresh history");
}
else if (action.equals("print_thread"))
{
emins = search.get_interactions_thread(thread_id);
out.println("<H2 align=\"center\">Email thread history</H2>");
}

258 Genesys Multimedia 7.6 @

Chapter 11: Multimedia Compound Sample Code Explanation

else if (action.equals("print_email"))
{
one_mail = search.get_one_interaction(email_id);
Vector aVec = new Vector();
aVec.add (one_mail);
emins = (List) aVec;
out.println("<H2 align=\"center\">Email info</H2>");
}

else
{
out.println("<H2 align=\"center\")
Unsupported action command performed.</H2>");
)
)

The EmailHistory.jsp File Explained

Most of the code in this file has been explained in detail within the explanation
of the PrintHistory.jsp. The majority of the code in this file creates the color
coded table that the e-mail history is displayed in, but there are a few new
functions within this file:

* Submit_onCLlick ()—submits an e-mail.

* Reset_onClick()—clears the fields of the e-mail form.

* ClickonRow()—expands and collapses a row in the e-mail history table.
* MarkAsRead ()—marks an e-mail as read.

* PrintThread ()—prints the e-mail history.

* PrintOneEmail ()—prints a single e-mail.

Linking E-mail Replies with Parent Messages

Code changes in the Emai L. jsp and the Emai LHistory.jsp files that are not
included in the Simple Sample enables linking of the customer’s reply to the
exact parent message in the Universal Contact Server Database.

Note: To attach a reply to the exact parent e-mail, you must add the
parameter ParentId. The Id of the original e-mail message must be
included in a parameter passed by the submit method.

See the following code in the Emai L. jsp file.

First, create a parentId String variable and set to the return value of the
GetSumitParametr method:

String parentld = i18nsupport.GetSubmitParametr (request, "ParentId");

if(parentId == null) parentld = ";

Next, create a hidden variable:

Web API Client—Developer’s Guide 259

Chapter 11: Multimedia Compound Sample Code Explanation

{tr

/t

>

{td colspan=6)

ry

{textarea cols="100" rows="10"

NAME="<%=mask_htmLl (f LdnEmai LBody) %>" ><%=mask_html_for_textarea(body) %><{/textarea>
<input type="hidden" name="ParentId" value="")

/tdy

If the there is a parent message related to this reply, add the message to the
userdata information:

if (parentId != null && parentld.equals("") == false)
userdata.addElement (new _kvitem("ParentId", parentld));

Use the setRepLlyAttributes function to add the parentId value to the
ParentId attribute of the form:

function setReplyAttributes (parentld)
{
document.forms[0].ParentId.value = parentld;

)

Note the changes made to the Emai LHistory. jsp file, shown below, for this
functionality.

Obtain the Interaction ID using the getValueFromMap method and put the value
into the String, emai LID:

String emailID = getValueFromMap (map, "Id");

Call the GeneratedavaScript and pass in the emai LID as a parameter:

GenerateJavaScript (out, strSubject, emailBody, i, emaillD);

See the following modified GenerateJavaScript function that includes a String
strParentId parameter:

public void GeneratedavaScript (JspWriter out, String strSubject, String strBody, int
iNumber, String strParentlId)

{
t

{

260

ry

out.
out.
out.
out.

out.

println
println
println
println

("<script language=\"JavaScript\">");
("function ReplyToEmail" + iNumber + "()");
(Il{ll);

parent.WebFormFrame.document.forms[0]."+ fldnSubject + ".value =\

+ MaskSymbols("Re: "+strSubject) + "\";");

println ("

parent.WebFormFrame.document.forms[0]."+ fldnEmailBody + ".value

Genesys Multimedia 7.6 @

Chapter 11: Multimedia Compound Sample Code Explanation

=\"" + MaskSymbolsForReply(strBody) + "\";");

The next line in the function adds the strParentId to the reply:

out.println (" parent.WebFormFrame.setReplyAttributes (\"" + strParentId + "\");");
out.println ("}");
out.println ("</script>");

)

catch (IOException e)

{

)

}

Web API Client—Developer’s Guide 261

Chapter 11: Multimedia Compound Sample Code Explanation

262 Genesys Multimedia 7.6 @

S

N’

GENESYS

AN ALCATEL-LUCENT COMPANY

Chapter

1 2 Multimedia Test Tools

This chapter describes the Multimedia test tools, in three sections:
« Overview, page 263

- Using the Tools, page 265

+ Troubleshooting Guide, page 269

Overview

This chapter shows how to access the test tools provided with the Multimedia
web sample installation. The installation wizard prompts you to install these
tools.

This chapter does not discuss how the customized server-page files are
constructed, nor the code involved in creating them.

Java

In the Java implementation, five test tools are available. You access the main
index page for these tools through a URL similar to this one:

http://<{web_server_hostname):<web_server_port)/
TestTool761/index.html

where <web_server_hostname):<web_server_port) is the host and port
information for the machine on which you installed the Multimedia test tools.
Figure 29 shows the menu page. Notice that the top frame contains a scrollable
list of test tools.

Web API Client—Developer’s Guide 263

Chapter 12: Multimedia Test Tools Overview

| AR 75 tut took service . Windows, Intermet Taplorer =

(Q = B remchocatomt TenTau TS = (e B

H R 18 e ol B o citege = Dok~)

MCR 7.5 TestTools

menu

(

\ AN RN AR

Tene

Figure 29: Test Tools Menu Loaded Successfully

Warning! Genesys recommends that you restrict public access to your host
machine’s entire .../TestTool761or ...\TestTool761 directory.
Pages inside this directory reveal details of your internal network
infrastructure—such as host names, ports, and tenant names.

.NET

In the .NET implementation, the 7.6 release(s) provides a single load-
balancing test tool. You can access this tool through a URL similar to this one:

http://<web_svr_host)>:<{web_svr_port>/WebAPIServer761/
TestTool761/LBTest.aspx

Alternatively, you can access this tool in the following way:

1. Load the index.htm page. This is available in the top-level directory of the
NET samples, with other common files. (See “Shared Files” on page 171.)

2. Then click Loadbalancing informational page link on that page.
Either way, Figure 31 on page 266 shows the resulting test page.

264 Genesys Multimedia 7.6 @

Chapter 12: Multimedia Test Tools Using the Tools

Using the Tools

Use the tools to verify the configuration of your media servers and to see
which media servers are available. The test tools verify the configurations for
these components:

* Load-Balancing Servlet

* E-mail Server Java

» Stat Server

* Voice Callback Server (see the note on page 265)
e Chat Server

Note: This chapter does not discuss the configuration tests for Voice Callback
Server and the combination of all Multimedia servlets.

Load-Balancing Servlet Configuration

Java In the Java implementation, you can test the load-balancing servlet’s
configuration by clicking either of the first two links in the Test Tools menu
page’s upper frame. Each of these links shows exactly the same information
about the load-balancing servlet and all active servers. The first link is called
“LoadBalancing servlet info page.” The second is called “Combination of info

pages above.” Figure 30 shows a successful result from clicking on the first
link.

Web API Client—Developer’s Guide 265

Chapter 12: Multimedia Test Tools Using the Tools

266

.NET

¥ MMnNMLMMWW
rl—.”\]JJ"‘ﬁl'ﬂfﬁlﬁ"ll el s il prowidies infoiraton about sl acive penen; n curanl configuraton

:Pmmm ‘B infoemation aboct all Serdets fnoem MCR AP Waming this pags may nol work propory i soma of abdve tex! fails 1o exetube

Swil fant Information about MCR API Juyo cluases and serviots
)‘mﬂm Sﬂummmmnfmlms.m puossiti detectid mrsconhgubens,
}imﬂm Sdlﬂmn‘mmnmucrwm mmmmmwm
imm Hmmmmmmsmmmdﬂmmmm
Serviel's lermation

Loadialanong | Version 75 00003
Disgnostic tena: Mortsy, March (5 2007 47900 P4 Status: Fesady
Wb AP Sonves_Jova_T50_Alef aspann - 2020

OEMEAYL (B conbg senver, asperin . K040

Start time: Manalay, March 05, 2007 4 35 50 P4, uuuqundu et dofinod, Requests count: 0

Ci 0012007 Genesrs L Al nghts reseneed.

LaagBalancing i
W Linsw _.___.ﬂlhmc‘_ IS o Realtime deta

. Bervicatyps : Nama in CME Ho#t Part | Swmts | Version | ARss MM Tlf!lllllll Tema mark
[CFGSatSonms Stal_Sorer_ TS0 | aspann m onabied |7 500015 104] nof_actvy []
CFGWeBAPEeve (Wob_APY Sonmr_Jave_T50_Alef - went | © 80[grabled 7500000 | 138] acteeP o
[CFGComaaS e CortanSenes aspinn| 1400, ucsapi=A410 enabied TRO0015 | W7 acveR [
ICFGrarsonSaner ImansionSanves r asgne " a420| araties [7A00070 | 108] ucteer o
CRGCnatSanmn T Chatserwe 7 [aspirin| 4800, wobapi=8778 | onabled [T 500008 | 118 achve® [
|CFGE maiSerms [Tr— [aspinn| 4800, wobapi=B7 77| anablod 7500010 | 114 acveP [

T — "i

Figure 30: Load-Balancing Test Tool

In the .NET implementation, you can test the load-balancing servlet’s
configuration by loading the single test tool, as described in “Overview” on
page 263. Figure 31 shows a successful load of the resulting test page.

D T — | 50 Ll il

EERVICE s Infarmation

LoaSalancer | Veeson 7503

Disgnostic time: Wasdnasady, Fabrawy 38 2007 116857 FM Statun: e S o305
fo LA
Wt AP Setmr NET_T50_AlaR; aspain * 2020,
LUt i eoeil sener aspein - 2044,

Suart timva: Wisdresday, Februny 28 2007 11648 P, Last requent time: Weanestey, Falbvuavy 28 2007 3 1657 PM, Requests count: 0
Copyright [c) 20012007 Genesys Telecommunicatons Labombanes Inc. Al ights resorved.

LondBatancing SERVICE configuralion
Dt from CME A) i - Realzime data

Service bypn " Mamain CME | Host Ports | Tenants | State | Versian Alas Activity statn Temes used Time mark
ConnciSener ConlaciSever aspinn| 4400, esape=dd 10| 75D {erabled 7500015 | 107 wooveP o -
FreracioeSenmr PiEsactiorSenm [asgunn, 4420] o750 unabled T 500010 | 108] acre P o -
S SoulionControiSener_T50 a5pinn 4050 Ny tarants lenabled TS 00007 | 102] acove P o
‘ConigSener confsen wspon| 20201 No enams lsnabied 75 [To9 moweP 0
TStatSoner [Stat_Sever_50 aspinn AD60] men7s0 enatded (75000 15 | 104] st P]
Emaifener E'.umlsem:' ' aspinn| 4600, weDape=BT77| mm7r50 fenatied 7500010 | 114] wveP of -

5 v sscagefenmr | aspinn| 4080] No tenares enabled TE0001 | 127 actwe P [
UrswersaiCatbackSener v:amsuwﬁsz m:u-w weckinar ! " @522 No lenarts [uoabled 5.2 [143 not_acive o
Chasenss ChaGerver | aspinn| 4500, webage=577D] mm/50 enanied 7500009 | 115] wove P o

= Sl R -
Figure 31: Load-Balancing Test Tool

Genesys Multimedia 7.6 @

Chapter 12: Multimedia Test Tools Using the Tools

Verifying Chat Server Configuration

To test the Chat Server configuration, scroll down in the upper frame of the
Test Tools menu page and click the “Chat servers self test page” link.
Figure 32 shows a successful test for the Chat Server configuration.

O - 0 musaenmeany DICRE, Al
EE - T R fii = drbege = T~ [
=
>
¥ Coebination ol alnlo Dapes above (S i] I Y .
> - Sl it snbormmation about E-Mall servirs and possitie defeciid
b iy a
¥ Slat server sof lest page Sef lest fanmation about Sl sen & #
i T Chal Sérvers configurationpage. . .~ . . . H
5‘:" Description Result Resuft description
va
o e
L il VT L
Servers managed by LoadBalancing serviet
Data from CME Fealtsme dats
MName in CME Hast Panrt Enabled siate Vernion Alian Activity state Times ussc Time mark
TRt ST asgenn 4800 webani=BTTH evalied T 5000 09 115 actve F i -
=
[o s & e v

Figure 32: Chat Server Configuration Page

Web API Client—Developer’s Guide 267

Chapter 12: Multimedia Test Tools Using the Tools

Verifying the Configuration of E-Mail Server Java

To test the configuration of E-mail Server Java, scroll down in the upper frame
of the Test Tools menu page and click the “E-mail servers self test page” link.
Figure 33 shows a successful test for this configuration.

O - # oo il A
BN e i = obege = O Tose - [
=

L 1
|
|
| o i M |
| it
! 1b 1 1
=
]
E-Mall servers configuration page
Step # Dencription Result Rasult description
T e 0P
Tl R
EM
Servers managed by LoadBalancing serviet
Cata from CME Reaaitzne cata
Hama in CME Host Port Enabled stats Version Allas Activity state Timas used Tima mark
E-MaitSérx drspann 4000, wobagi=8777 erabied T5000 % 14 ichve P
=
o S o N -

Figure 33: Configuration Page for E-Mail Server Java

268 Genesys Multimedia 7.6 @

Chapter 12: Multimedia Test Tools

Verifying Stat Server Configuration

Troubleshooting Guide

To test the Stat Server configuration, scroll down in the upper frame of the Test
Tools menu page and click the “Stat server self test page” link. Figure 34

shows a successful test for the Stat Server configuration.

7R . vt v - Wirchonn eberroet. Lnorer

g T RIS TR

| " Comtunation o slirfo pages abo

RN AR AR

Stat Servers configuration page

Stap ¥ Description Rénilt

Servers managed by LoadBalancing serviet

Data from CME

HMarmse in CME Hast Pt Enablea staie Wetsan Alias Activity stale

Figure 34: Stat Server Configuration Page

Resalt deiciigtion

Realtime data

led g

Times used

S Lo e foen -

Troubleshooting Guide

The following list provides some suggestions on what to verify if your
application is not accessing the media servers properly. However, it is not an
exhaustive list. Check the Multimedia 7.6 Deployment Guide for more

troubleshooting information.

Data Verification

Check that the following are correct and that there are no spelling errors:

* Media server host name and port
e Web server host name and port
* Servlet engine host name and port

* Application names

Web API Client—Developer’s Guide

269

Chapter 12: Multimedia Test Tools

270

Service Availability

Check the following:

Web server availability
Servlet engine availability
Network connection

Framework availability

Troubleshooting Guide

Genesys Multimedia 7.6 @

S

GENESYS

AN ALCATEL-LUCENT COMPANY

Chapter

13

Sample Client Scenarios

This chapter presents some common scenarios in a web client application, and
shows how to satisfy them by using code snippets from the web samples. The
chapter’s goal is to provide you with some ideas for adding media services to

your web client application. It discusses the following topics:

« Disclaimers, page 271
« Common Scenarios, page 271
« Conclusion, page 274

Disclaimers

The scenarios listed in this chapter are for illustration only, and are not an
exhaustive list. This chapter does not discuss any code outside of the
Multimedia web samples.

If a scenario requires knowledge of general web technology, or of non-Genesys
products, the “Potential Solution” section plainly states that requirement. You
must research these aspects of the scenario if you are not already familiar with
them.

Common Scenarios

Five scenarios are discussed in this section:

* Scenario 1—How to authenticate and assist off-site customers using
Multimedia media services.

* Scenario 2—How to assist website visitors (no user account) using
Multimedia media services.

* Scenario 3—How to assist an on-site customer using Multimedia media
services.

Web API Client—Developer’s Guide 271

Chapter 13: Sample Client Scenarios Common Scenarios

Scenario 1

Scenario 2

272

* Scenario 4—How to track user behavior in a web application.

* Scenario 5—How to track user behavior and assist a customer using
Multimedia media services.

A customer logs into a web application and needs assistance. On the page he is
viewing, there is a Help menu and a form. The menu has a list of media options
through which a service representative can communicate with the customer.
The customer selects one of the options, fills out the related form, and submits
it. The contact center receives this form along with the originating page (the
page the customer was viewing).

Potential Solution

There are a few tricky points in this scenario. Authentication is one, media
availability another.

The authentication scheme in the Compound Sample is too rudimentary for a
production application. If you have a secure application, you should use HTTPS
mode along with user-credential verification. This book does not discuss an
authentication scheme. The web offers many tutorials on authentication.

In the Java samples, the svcDispatcher class is the one that checks for media
availability. The class is more elaborately used in the IsMediaAvai Llable ()
method in the CommonScripts.jsp file.

The ChatOptions.jsp code checks for the availability of different chat services.
For example, it could block the availability of chat services even when some
Chat Servers are available, if a user requests these services during night or
weekend hours when no online agent is available.

The e-mail equivalent is in the Emai L. jsp code. The Common.jsp file checks for
all media.

You can use any common web technology to implement the help function—for
example, a drop-down combo box or a menu. Adding the media options to the
menu is a bit tricky. It is probably easier for you to examine the code in the
customized server-page files just mentioned, and—once you understand that
code—incorporate it into your menu code, instead of calling these classes
directly.

A customer with no user account is visiting your website and needs assistance.
On the page he or she is viewing, there is a He Lp menu and an inquiry form.
The menu has a list of inquiry topics. The customer selects one of the topics,
fills out the related form, and submits it. The contact center receives this form
along with the originating page (the page the customer was viewing).

Genesys Multimedia 7.6 @

Chapter 13: Sample Client Scenarios Common Scenarios

Potential Solution

This is a typical web application scenario. You can use any common web
technology to implement the help function—for example, a drop-down combo
box or a menu. The form can be an ordinary HTML form along with some
JavaScript functions. As for the originating page, you can use a cookie to track
which page the user is viewing, or just keep a hidden value somewhere on the
form and pass along that value during form submission.

Scenario 3

A customer launches your application at his site, and needs assistance. On the
page he is viewing, there is a HeLp button and a form. The button displays help
only through the media option available at that moment. (Your application
determines that media option based on contact-center information; no choices
are available to the customer.) The customer fills out the related form and
submits it. The contact center receives this form, along with the originating
page (the page the customer was viewing).

Potential Solution

This scenario is very similar to “Scenario 1” on page 272—minus the
authentication, because the user is on site. You can either follow the suggestion
for Scenario 1, minus the authentication section; or expand the authentication
scheme to check whether a user is accessing the application from the company
network. If the latter is true, your application does not present the login page.
Depending on how your network is set up, a simple IP test may be all you need
to determine whether the user is on your network.

Scenario 4

A customer is on a specific web application page, and behaves according to a
specific pattern. He triggers a flag, and a Help dialog box opens with a request-
for-assistance form. The customer fills out the required fields presented in the
dialog box, and clicks the Submit button. The contact center receives the
request-for-assistance form.

Potential Solution

The implementation for this kind of scenario can quickly get complicated.
Even so, you can construct the needed web application without hiring a
specialist. You can reconstruct a user behavioral pattern from user events. A
pattern can be just a combination of specific links clicked, or of options (radio
buttons and check boxes) selected. If the pattern matches your application’s
predefined criteria, it triggers a predefined response from your application,
such as launching a dialog box.

Web API Client—Developer’s Guide 273

Chapter 13: Sample Client Scenarios Conclusion

Scenario 5

You can track these user behaviors either by using cookies, or by storing
hidden form values, depending on your need. To track form submission or
refreshment, use state tracking. Each of the web sample discussions in
Chapter 9 has a “Tracking States” subsection that demonstrates how the
corresponding sample tracks the form states.

A customer is on a specific web application page, and triggers a flag that you
have created to indicate a customer who may need help without knowing it.
Without changing the customer’s view, a hidden criterion determines the media
options that might be available to help the customer. If one is available, a He Lp
dialog box appears. If a preferred media type is not available, the dialog box
either does not appear, or defaults to any available media.

Potential Solution

This scenario is basically a combination of Scenario 3 and Scenario 4. Use the
suggestion for Scenario 4, and add the extra check for media availability from
Scenario 3.

Conclusion

274

This chapter reviewed some common usage scenarios in a web application, and
demonstrated how the Multimedia services can improve the overall user
experience.

Genesys Multimedia 7.6 @

S

GENESYS

AN ALCATEL-LUCENT COMPANY

Index

Symbols
_rcclosed 31,37,38
_rcconfail 31,37,38
_rcfalled. 31,37,38
_rciintermnal 31,37, 38
rcok. 31,37, 38
_rctimeout. L. 31,37,38
Numerics
Ostringvalue. 34
A
ABANDON 75
Accountinfofolder 62
acknowledgement
callback 29
email 35
OpenMedia. 82
agent application. 34
aliasrequest 74
alias,chat 74
AllMedia.jsp 62
AllMediaHelp.jsp 63
application L. 26
ApplicationConstant.jsp 40
arrowgif oo 98
Asianlanguages 46
attacheddata. 38
authentication 62,272,273
Compound Sample 243,246
B
binarydata, 26
blank.html 58, 59, 60,64, 137,143
blankjsp 56,63, 118
body element.o 27

Web API Client—Developer’s Guide

browser, identifying 99,172
C
calendarjsp 63
Callback
Server,connecting 30
callback
acknowledgement. L. 29
Compound Sample 252
error. 29,105
eventflow. 78-79
informationrequests 29
message packet. 28
packet. 29
redirect, 29
request 29
requestID., 30
Sample 48,57,101-107,173-178
Sample, files 57,61
Sample, imports. 102
Sample,includes 102
Sample, Javascript functions 106
searchrequest 29
searchresults. 30
Server. 101,173
Server, Application object. 102
Server,connecting 37
Server, connection failure. 31
Server, internalerror 31
Server, lost connection L. 31
Server,noresponse 31
Server, requestfailed 31
statisticsrequest 29
submitpacket. 30, 38
Callback aspxfiles. 174
Callback folder. 63
Callbackjsp 57,101
CallbackOptions.jsp 63
CallbackOptionsHelp.jsp. 64
CallbackSelfTestjsp 64
275

Index

cancel, 38
Open Media Sample. 166
category 92,93
change_properties method. 38
character encoding. 102,108, 111,118,121, 125,
163
characterset 46
character set, multi-byte 46
charsetoption 46
chat. L. 21,24,25
alias oo 74
and co-browse Sample 52,59
and co-browse Sample, files 59
APL. 31,71,97,170
architecture L. 71
concepts. 71
€rror 72,120
estimated wait time 40,119,134,135
exception 72,120,134
folder, 63
joinrequest 73
keyso 33
loggingin L. 72
loginrequest. 73
logoutrequest. 73
mMessSage.o i e 34
nicknames. 33
packetstatus 115, 189, 200
protocol, 31,32
queuelength. 119
refreshrequest 34,73,75

Sample 31,48, 52, 56, 107-117,179-191, 192
202

Sample, files. 55
Sample,imports 111
Sample, includes 111
Sample, Javascript functions 116, 182
securekey. 34
Server. 32,33,34,71,72,73, 111
Server, disconnecting L. 74
Server, loggingin L. 33
Server, registering. 33
Server, timestamp. L. 34
service. oL 71-76
session 32,34,72,112
session, connecting 32
session, disconnecting 32
session, eventflow 73-74
session, joining 32,34
session,leaving 34
session, lifecycle 72
SESSIONS. 31
sessions, distributed. 119,134
state diagram 72
statistics. 39
transcript. 34,73,75
276

transcript position. 34
transcript,empty 75
transcript, updates 34
userID 34

user interface implementation. . 108,174,180,
193

userrequests 114
virtual routingpoint 99
with-Statistics 39,48, 52,56, 117-120
with-Statistics, files 56
Chat Server. See chat
ChatAndCoBrowse 49
ChatAndCoBrowse.htm 59,143
ChatCommand, ChatFrameSet, and ChatPanel
aspxfiles 179,192
ChatOptions.jsp 63
ChatOptionsHelp.jsp. 63
ChatSelfTest.jsp 64
ChatStatinfo.jsp 56, 63, 118
ChatTranscriptjsp 63
CheckLogin.jsp 62
CIM (Customer Interaction Management)
Plattorm 10
class hierarchy. 24
classes
_callback ack. 29
_callback_cancel 29
_callback direct. 30
_callback _envelope. 29
_callback_envelope factory 29
_callback error 29
_callback_getinfo 29
_callback getstat 29
_callback packet 29
_callback _redirect. 29
_callback reqginfo. 29
_callback request. 29
_callback search 29
_callback_searchresult 30
_callback_statinfo. 30
_chat connect 32
_chat direct. 26, 32,33,76
_chat disconnect. 32
_chat_envelope. 32
_chat_envelope_factory 32
_chat packet 26, 32
_chat refresh. 32
_chat_request. 27,32
_chat response. 32
_chat_transcript. 32,76
_communication_exception. . . 24,25,37,39
_direct_access 25, 30, 32
_envelope. L L. 25,28
_envelope factory 25,28
event. 34
_interaction_direct 24,37,38

Genesys Multimedia 7.6 @

Index

irs_ack . ..o 35
irs direct. 26, 36, 69
_irs_envelope 35
_irs_envelope_factory. 35
irs_error 36
irs packet, 26, 36
_irs_submit oL 36
_kvitem ... oo 25
Ckvlist ..o 25
_parse_exception 25
_protocol_element. 25,26,27,28
_stat_chat_queue length 39
_stat_chat_total destributed 39,40
_stat_chat_total_distribution_time. . . . 39,40
_stat_webform_queue length. 39
_stat webform_total destributed 39
_stat_webform_total_distribution_time . . .39
_ucs_attribute 39
ucs directo 39
_ucs_interaction. L. 39
_ucs_parameter_map. 39
classification 67,69
Classification Server 82,93
client application 21,34
clientscenarios. 271-274
closemethod. 38
closedmethod 25
cmd=connect parameter, HTTP request . . . 74
cmd=disconnect parameter, HTTP request . 74
cmd=send parameter, HTTP request 74
Co-Browse
Sample L. 58
Sample, files. 58
Samples. L. 58
Co-Browse Dynamic Start Page
Sample 59
Sample, files. 59
Co-Browse Init Start Page
Sample L. 60
Sample, files. 60
co-browse integration support files. 88
Co-Browse Sample. 52
Co-Browse With Meet Me
Sample 60
Sample, files. 60
Co-Browse.htm. 58
CoBrowse.htm 60
CoBrowseDynamicStartPage 49
Co-BrowseDynamicStartPage Sample. . . . 52
CoBrowseEventHandler.jsp 58, 60
Co-BrowselnitStartPage Sample. 52
CoBrowseMeetMe 49
Co-BrowseMeetMe Sample 52
code pageoption. 46
com.genesyslab.statistics.lib. 40
ComboTestPage.jsp 64

Web API Client—Developer’s Guide

Commandsp 62
CommLibjs 98,99, 172
communicationchannels 81
Compound Sample 51-64, 241-256
authentication. 62,243, 246, 250
callback 252
code explanation 250
configuration 40
files, 61
presentation. 246
running oL 248
structure. 246
compoundsamples 47
Configuration Server. 41
configuration settings 40
CONNECT. 75
connect method 25, 30, 36, 37
connected, user,event. 34
connecting. 32,36
Universal Callback Server 30, 37
connection failure
E-mail ServerJava 37
Interaction Server. 38
Universal Callback Server 31
connection, lost
E-mail ServerJava 37
Interaction Server. 38
Universal Callback Server 31
constants. 99,172
constants.cs 171,172
Constants.js 98, 99
constants.jsp. L. 98, 99
contactcenters. 81
custom application. 82

customer-relationship management (CRM) . .81

D
data,attached 38
databaseaccess. 243
databases 13
deprecated classes

_irs_getstat 36

_irs_getvrpstato 36

_irs_statinfo. 36

_irs_vrpstatinfo 36
diagnostictests 41
direct subpackage 26
disconnecting

ChatServer. 32,73, 74
distributed chat sessions. 119,134
distribution time, total 119,134
document

versionnumber 15
Document Object Model, XML. 28
DOM,XML. 28

277

Index

E

Element, XML 27

e-mail. 21,25, 35,57
acknowledgment packet. 35
APL.o 97,171
envelope. 35
error 123, 205
errorpacket 36
eventflow 69-70
message packet. 31,35
packet., 35, 36
requestID 36
Sample . . . 47,48,51,57,120-124,202-207
Sample, files. 57
Sample,imports L. 121
Sample,includes 122

Sample, Javascript functions . . 123,131,203

Server Java . . . 35,68, 69, 120, 124, 131, 202
Server Java, connecting. 36
Server Java, connection failure 37
Server Java, internalerror. 37
Server Java, lost connection 37
Server Java,noresponse. 37
Server Java, requestfailed 37
service, components 68
session, lifecycle 68
state diagram 68
statistics. 39
submit. 36
submitpacket L. 36
virtual routing point 99
Email aspxfiles. 203
Email folder. 63

E-mail Server Java. See e-mail

E—mail with Attachment Sample . . . 51,57,124

files 57
E-Mail with Statistics Sample. 132
E—Mail with Statistics Sample 52
Emailjsp 57,63, 256
EmailHelp.jsp. 64
EmailHistory.jsp 63, 256
EmailHistoryFrameset.jsp 63, 256
EmailOptions.jsp 63, 256
EMailSelfTest.jsp. 64
empty chat transcript. 75
emptystate.o 72
envelope 25, 26,28
envelope class hierarchy. 28
envelopefactory 25,26
envelope factory class hierarchy. 28
envelope,e-mail 35
errdescmethod.o 33
error

callback 29,105

chat 34,72,120
278

e-mail, 123, 205
Interaction Server. 38, 164
internal, E-mail ServerJava 37
internal, Interaction Server 38
internal, Universal Callback Server. 31
Open Media Sample 38, 164
errormethod. 33
error packet,e-mail 36
estimated waittime 40, 119,134, 135
event flow
callback 78-79
chatsession. 73-74
email 69-70
OpenMedia. 82
event,userconnected 34
event.event body method 34
event body L. 76
event type. 75
event typemethod L. 115
ExampleOfDynamicStartPage.jsp 59, 152
exception
chat. 72,120,134
Interaction Server. 164
Open Media Sample 164
F
factory, envelope. 29
failed request
E-mail ServerJava 37
Interaction Server. 38
Universal Callback Server 31
failure, connection
E-mail ServerJava 37
Interaction Server. 38
Universal Callback Server 31
FAQ Sample. 21,49, 52, 61
files 61
FAQjsp 61
fax 81
Flex Chat. See chat
flex-disconnect-timeout 73
fongif 98
form parameters, retrieving 99,172
frame handles, retrieving 99,172
functions, statistics. 36
G

Genesys Configuration Server. See
Configuration Server
Genesys Interaction Server. See
Interaction Server
Genesys.ComLib.TKV. 40
Genesys.ML.Log. 40

Genesys Multimedia 7.6 @

Index

Genesys.webapi.confserv 48
Genesys.webapi.media.callback. 23
Genesys.webapi.media.callback.direct . . . 30
Genesys.webapi.media.callback.protocol . . 30
Genesys.webapi.media.chat. 23

Genesys.webapi.media.chat.direct. . .32, 48,49
Genesys.webapi.media.chat.protocol .31, 32,48
Genesys.webapi.media.common . 23,25, 37,47

Genesys.webapi.media.direct 23,47
Genesys.webapi.media.fag.direct 49
Genesys.webapi.media.interaction. 23,24
Genesys.webapi.media.irs. 23

Genesys.webapi.media.irs.direct. . . .36,47,48
Genesys.webapi.media.irs.protocol . .35,47,48

Genesys.webapi.media.stat.direct 48
Genesys.webapi.media.stat.protocol. . . .40,48
Genesys.webapi.media.ucs 23
Genesys.webapi.media.ucs.direct 39
Genesys.webapi.stat. 23,36
Genesys.webapi.stat.direct 39,40
Genesys.webapi.stat.protocol 40
Genesys.webapi.system.loadbalancing . .48,49
Genesys.webapi.utils.i18n 48,49
genesyslogo-trans.gif 98
get_interaction_id method 38
getQueueStat method 39, 119
getSrvcHost 43
getSrvcPort. 43
graphical user interface 62

samples 100,173

GUI. See graphical user interface

H
hbapi.html 58, 59, 60, 137, 143
hbmessage_to_var.html . . .58, 59, 60, 137, 143
hbmessage to varjs. 58,59, 60, 137,143
hbmessaging.js. 58, 59, 60, 137, 143
hbmessagingform.html. . . .58, 59, 60, 137, 143
Helpfolder 63
Helpjsp. 64
hiddenvariables 116
host., 69
host/port

resolvealias. 74
HTML form parameters, retrieving 99,172
HTML frame handles, retrieving 99,172
HtmiCallback.jsp 63
HtmIChatCommand.jsp .56,59,61,63,107, 118,

143
HtmIChatFrameSet.jsp. 56,59, 63, 108, 118, 143
HtmIChatPanel.jsp . 56,59, 61,63, 108, 118, 143

HtmIChatPanelHelp.jsp 64
HTTP chat protocol. 32
httprequest. 74

cmd=connect parameter. 74

Web API Client—Developer’s Guide

cmd=disconnect parameter. 74
cmd=send parameter 74
HTTPServletRequest 46,119
HTTPServletResponse 46
|
i18nsupport 46
icc_startjsp 43,98
icc_start clientjsp. 43,98
icc_stylecss. 98
ID
callbackrequest. 30
chatuser L. 34
e-mailrequest. 36
session 72
identificationo 34
Imagesfolder 62
imports
Callback Sample 102
ChatSample 111
Chat with Statistics 118
E-mailSample 121
Open MediaSample 163
includes
Callback Sample 102
ChatSample 111
Chat-with-Statistics 119
E-mailSample 122
Open MediaSample 163
incrementing script position 34
index.html 64,98
information requests
callback 0L 29
InitialStartPageExample.html 60, 150
ingSrveByType. 42
installation testing 53
Installing samples. See Samples
intelligentrouting. 67
interaction 26, 38,81-82, 162
cancel. 162, 207
submit. 162, 207
update. 162, 207
Interaction Server . . 37, 38,69, 81-82, 162, 207
connectionfailure. 38
€ITor. . . v . v o e 38,164
exception L 164
host. 162, 164, 207
internalerror 38
lost connection 38
NOresponNse. 38
port 162, 164, 207
requestfailed 38
resultcode 38
serverresponse. 38

Interaction Submission Sample. See

279

Index

Open Media Sample

interfacemethods 27
internal error
E-mail ServerJava 37
Interaction Server 38
Universal Callback Server. 31
international language support. 46
IPConnection. 37
[txSubmit aspx files. 208
[txSubmitjsp 58, 163
J
Javadoc
Web APl Reference 32,96
JavaScript 99,109,172, 257
common functions. 99,109,172, 257
functions, Callback Sample 106
functions, Chat Sample 116, 182
functions, E-mail Sample 123,131,203
functions, Open Media Sample167,210
joinmethod. 72,112
joining chatsession 32,34
JRun 54
JSP. 69, 101,119
K
key
SECUrE v v i i 34
keys 33
SECUre i e e 34
knowledge management. 67,69
kvlistobjects 27
L
last_positiono 75
lasterrormethod 30, 33, 37, 38
LBTestPage.jsp. 64
leaving chatsession 34
LeftNavFrame.jsp 62, 246
lifecycle 68,72
load balancing 41-46,100,172

servlet . 103,111,119, 122,126, 133, 138, 144,
165,177,205

localization 46
loggedinstate 72
loggingin. 33
Loginfolder. 62
loginmethod 33,76
Loginjsp 62
logoutmethod 33
Logoutjsp 62
280

lost connection

E-mail ServerJava 37
Interaction Server. 38
Universal Callback Server 31
M
MainFramejsp. 62, 246
MainWindow folder 62
MANIFESTMF. 62
mask_htmlmethod. 100
maskingtext. 100
MaskSymbols method 115, 190, 201
Master Software License and Services
Agreement 13
MBCS (multi-byte characterset). 46
MCR Interactive Management CD. . . . 96,169
MCRtesttools. 41
mediachannels 10
mediapackages 28
mediaserver. 38
mediatype. 38,81,162, 207
MESSAGE. 75
message
callback, packet. 28
e-mail, packet. 31,35
META-INF folder. 62
multi-byte characterset 46
Multi-Channel Routing 7 Web API Reference.
See Web API
N
nicknames 33
no response
E-mail ServerJava 37
InteractionServer. 38
Universal Callback Server 31
null. 34
o
OpenMedia 21,24, 26,81-82
acknowledgement. 82
eventflow. 82
packet. 38
Sample . .52,57,162-167,207-217,226-239
Sample, files 57
Sample, imports. L. 163
Sample,includes 163
Sample, Javascript functions 167,210
serverresponse. 38
optionsettings 40

Genesys Multimedia 7.6 @

Index

P
pack method 27,28
package structure 24
packages. See also individual package names23
packet 25,26, 35
callback 29
callback, message. 28
callback,request 29
callback, submit 30, 38
class hierarchy 26
email 36
e-mail, acknowledgment. 35
e-mail,error 36
e-mail, message. 31,35
e-mail, submit L. 36
OpenMedia. 38
statistics 30
parse method. 27,28
party id. 76
PersonallnfoHelp.jsp. 64
port. 69
position, incrementing script 34
PrintHistory,jsp 63, 256
process method 25
protocol subpackage 25
Q
gstring.js 58,59, 60, 137,143
R
rcmethod. 30, 33, 36, 38
redirect
callback, 29
refresh
method, 34
request 34
request,chat. 75
register method. 38
registering 33
reporting 81
reqdmethod 30, 36
request
aliaso 74
callback 29
failed, E-mail ServerJava. 37
failed, Interaction Server 38
failed, Universal Callback Server 31
ID,callback 30
ID,e-mail 36
refresh. 34
resolve alias, host/port. 74

response, no

Web API Client—Developer’s Guide

E-mail ServerJava 37

Interaction Server. L. 38

Universal Callback Server 31
responseLive.js 59
responselLive.StartApp.html 59
responselLiveLauncherhtml 59
responselLiveScripletLauncher.html 59
result code, Interaction Server. 38
root packetclass. 27
routing oL 67,69
Routing Server, Universal 120, 202
runmethod. 38
Runnable 25, 30, 32, 36, 37
S
samples

directory structures 54

installing. 53

sharedfiles 98,171
samples. See individual samples by name
scenarios, client 271-274
script position, incrementing. 34
script posmethod 34
search

request, callback 29

results, callback. 30
securekey 34
secure_key

method 34

parameter. 33
Security.jsp. L 98, 100
Send action

Open Media Sample 165
sendmethod. 38
serverevent 115, 189, 200
servletcontainer. 22,62
servletengine 22
session,chat. 72
session_id L. 75
session_id parameter 72
setContentType method 46,102
simple samples . . 47,51-64,95-167, 169-210

files. 55
socket connection 25
SQL 13
start_at.o 75
StatServer. 119, 133, 217
stat direct L. 39,40
stateo 68,72

diagram,chat 72

diagram,e-mail 68
Statinfo aspxfiles 218
statistics 67,117,119,134

APl 97

callbackrequest. 29

281

Index

functions. L. 36
packages 39
packet. 30
Statistics Server 119, 133
statusmethod 34
stop_processingmethod 38
strategies. 67,69
string manipulation and encoding function. . 99,
172
stringvalueO. 34
subclasses 26, 27,28
_chat packet 26
_direct_access L. 25
irs packet 26
_protocol_element. 27
submit callback packet. 30, 38
submit e-mailpacket 36
submitmethod 30, 36, 38
submit,e-mail 36
superclass 27

SvcDispatcher . . 42-46,103, 111,119, 122,126,
133, 138, 144, 165,177, 205

synchronize 30, 33, 36, 37
T
TestTools. 53,263

files 64
thread 25, 30, 33, 36, 37, 38
threading 25
time, retrieving L. 99,172
time offset 76
timeout. 73
timestamp

ChatServer 34
timestampmethod 34
Tomecat 54
total distributiontime 119,134
Training Server. 93
transcript. 34

position 34
transcript method. 34,76
transcript updates,chat 34
transcript,chat 34,73,75
troubleshooting guide 269
U
Unicode 46
Universal Callback Server. See Callback Server
Universal Routing Server. 120, 202
UniversalCallbackSelfTest.jsp 64
user behavior, tracking. 273-274
user connectedevent 34
useriD,chat 34
282

user interface implementation, chat . . 108,174,
180, 193
userrequests,chat 114
user idmethod 34
user_id parameter 33
user_nick 76
user_ type 76
Vv
vector 76
vector, classes
_event. 34
version numbering
document. 15
virtual routing point.o L. 99
voicecallback 21,24
W
wait time, estimated, chat 40
Web API
architecture 22
architecture,e-mail 23
class hierarchy 24
Javadoc. 47
JSP 69
package structure. 24
Reference (Javadoc) 32,96
Server. 81,82
servlet., 69
USage v e 47
webbrowser. L. 82
web collaboration 21,24
webform. 81
webserver. 82
webxmlo 62
webapi.media.chat.protocol 49
webapi.media.common 29, 36, 39, 40, 49
webapi.media.direct 25, 30, 32, 36
webapi.media.irs.protocol 29, 35, 36

web-based callback. See callback
web-based chat with AJAX. See chat
web-based chat. See chat

web-based e-mail. See e-mail
web-based FAQ. See FAQ

web-based history. See history
web-based open media. See open media
web-based statistics. See statistics

WEB-INF folder 62
WeblLogic 22
WebSphere 22
workflow strategies 67

Genesys Multimedia 7.6 @

Index

X

XML 25,26
data 27
Document Object Model (DOM). 28
Element. 27
envelope protocol schema 25

Web API Client—Developer’s Guide

283

Index

284 Genesys Multimedia 7.6 &

	Table of Contents
	Preface
	Multimedia and the CIM Platform
	CIM Platform
	Multimedia

	Intended Audience
	Usage Guidelines
	Chapter Summaries
	Document Conventions
	Related Resources
	Making Comments on This Document
	Document Change History
	New in Version 7.6.1

	About Web API Clients
	Important Note About .NET Architecture
	Java Architecture
	Packages
	Class Hierarchy

	Packets and Envelopes
	Packet
	Envelope
	Envelope Factory

	Media Packages (Java)
	Callback
	Chat
	E-Mail
	Open Media
	Universal Contact Server

	Statistics Packages
	API Accessibility (Java)
	Configuration Server
	Load Balancing
	Balancing Multiple Web API Servers
	Balancing Multiple Chat Servers
	Balancing Multiple Instances of E-Mail Server Java
	International Language Support

	API Usage in the Samples

	About the Samples
	Overview
	Simple Samples
	Compound Sample
	Test Tools

	Installing the Samples
	Tools You Need Before Installation
	Installation Process
	Installation Testing

	Directory Structure
	Java
	.NET
	Simple Sample Files
	Compound Sample Files
	Test Tool Files

	Understanding and Using the E-Mail Service
	Overview
	Life Cycle of an E-Mail Session
	Event Flow of an E-Mail Session

	Understanding and Using the Flex Chat Service
	Overview
	Life Cycle of a Chat Session
	Event Flow of a Chat Session
	Transcripts

	Understanding and Using the Callback Service
	Overview
	Architecture
	Event Flow of a Callback Request

	Understanding and Using the Open Media Service
	Overview
	Architecture
	Event Flow of an Open Media Request

	Understanding and Using the Web Collaboration Service
	What is Co-Browsing?
	Architecture
	Web Collaboration Process
	Integrating Co-Browsing into Your Application

	Understanding and Using the FAQ Service
	Overview
	Genesys Knowledge Management
	Genesys Content Analyzer
	FAQ Objects
	Sample FAQ.jar File

	Multimedia Simple Samples for Java
	Overview
	Sample Overview

	Shared Files
	File Descriptions

	Callback Sample
	Purpose
	Functionality Overview
	Files
	Code Explanation

	Chat Sample
	Purpose
	Functionality Overview
	Files
	Code Explanation

	Chat with Statistics Sample
	Purpose
	Functionality Overview
	Files
	Code Explanation

	E-Mail Sample
	Purpose
	Functionality Overview
	Files
	Code Explanation

	E-Mail with Attachment Sample
	Purpose
	Files
	Code Explanation

	E-Mail with Statistics Sample
	Purpose
	Files
	Code Explanation

	Co-Browse Samples Overview
	Common Files

	Co-Browse Sample
	Purpose
	The CoBrowseEventHandler.jsp File Explained

	Chat and Co-Browse Sample
	Purpose
	Files
	Code Explanation

	Co-Browse Meet Me
	Purpose
	Files
	The CoBrowseEventHandler.jsp File Explained

	Co-Browse Init Start Page
	Purpose
	Files
	The CoBrowseEventHandler.jsp File Explained

	Co-Browse Dynamic Start Page
	Purpose
	Files
	Code Explanation
	Build Your Own Dynamic Start Page Example
	Settings
	Limitations of the Dynamic Start Page

	FAQ
	Purpose
	Files
	Code Explanation

	Open Media Sample
	Purpose
	Functionality Overview
	Files
	Code Explanation

	Multimedia Simple Samples for .NET
	Overview
	Samples Included
	Files Included: .ASPX Versus .ASPX.CS

	Shared Files
	File Descriptions

	Callback Sample
	Purpose
	Functionality Overview
	Files
	Code Explanation

	Chat Sample
	Purpose
	Functionality Overview
	Files
	Code Explanation

	Chat with AJAX Sample
	Purpose
	Functionality Overview
	Files
	Code Explanation

	E-Mail Sample
	Purpose
	Functionality Overview
	Files
	Code Explanation

	Open Media Sample
	Purpose
	Functionality Overview
	Files
	Code Explanation

	Stat Server Sample
	Purpose
	Functionality Overview
	Files
	Code Explanation

	Universal Contact Server Sample
	Purpose
	Functionality Overview
	Files
	Code Explanation

	Multimedia Compound Sample
	Overview
	Files and Directory Structure
	Sample Demonstration Categories

	Common Files
	Compound Sample Structure
	Running the Sample

	Customizing the Compound Sample
	Code Explanation
	Authentication
	Web Media Features in the Compound Sample
	Callback
	Chat
	E-Mail

	Multimedia Test Tools
	Overview
	Java
	.NET

	Using the Tools
	Load-Balancing Servlet Configuration
	Verifying Chat Server Configuration
	Verifying the Configuration of E-Mail Server Java
	Verifying Stat Server Configuration

	Troubleshooting Guide

	Sample Client Scenarios
	Disclaimers
	Common Scenarios
	Scenario 1
	Scenario 2
	Scenario 3
	Scenario 4
	Scenario 5

	Conclusion

	Index

